31,734 research outputs found

    Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

    Full text link
    Recent results establish for 2-spin antiferromagnetic systems that the computational complexity of approximating the partition function on graphs of maximum degree D undergoes a phase transition that coincides with the uniqueness phase transition on the infinite D-regular tree. For the ferromagnetic Potts model we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximating the partition function of the ferromagnetic Potts model is at least as hard as approximating the number of independent sets in bipartite graphs (#BIS-hardness). We improve this hardness result by establishing it for bipartite graphs of maximum degree D. We first present a detailed picture for the phase diagram for the infinite D-regular tree, giving a refined picture of its first-order phase transition and establishing the critical temperature for the coexistence of the disordered and ordered phases. We then prove for all temperatures below this critical temperature that it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree D. As a corollary, it is #BIS-hard to approximate the number of k-colorings on bipartite graphs of maximum degree D when k <= D/(2 ln D). The #BIS-hardness result for the ferromagnetic Potts model uses random bipartite regular graphs as a gadget in the reduction. The analysis of these random graphs relies on recent connections between the maxima of the expectation of their partition function, attractive fixpoints of the associated tree recursions, and induced matrix norms. We extend these connections to random regular graphs for all ferromagnetic models and establish the Bethe prediction for every ferromagnetic spin system on random regular graphs. We also prove for the ferromagnetic Potts model that the Swendsen-Wang algorithm is torpidly mixing on random D-regular graphs at the critical temperature for large q.Comment: To appear in SIAM J. Computin

    Recognizing graphs close to bipartite graphs.

    Get PDF
    We continue research into a well-studied family of problems that ask if the vertices of a graph can be partitioned into sets A and B, where A is an independent set and B induces a graph from some specified graph class G. We let G be the class of k-degenerate graphs. The problem is known to be polynomial-time solvable if k=0 (bipartite graphs) and NP-complete if k=1 (near-bipartite graphs) even for graphs of diameter 4, as shown by Yang and Yuan, who also proved polynomial-time solvability for graphs of diameter 2. We show that recognizing near-bipartite graphs of diameter 3 is NP-complete resolving their open problem. To answer another open problem, we consider graphs of maximum degree D on n vertices. We show how to find A and B in O(n) time for k=1 and D=3, and in O(n^2) time for k >= 2 and D >= 4. These results also provide an algorithmic version of a result of Catlin [JCTB, 1979] and enable us to complete the complexity classification of another problem: finding a path in the vertex colouring reconfiguration graph between two given k-colourings of a graph of bounded maximum degree

    A note on minimum degree, bipartite holes, and hamiltonian properties

    Get PDF
    We adopt the recently introduced concept of the bipartite-hole-number due to McDiarmid and Yolov, and extend their result on Hamiltonicity to other Hamiltonian properties of graphs with a large minimum degree in terms of this concept. An (s, t)-bipartite-hole in a graph G consists of two disjoint sets of vertices S and T with |S| = s and |T| = t such that E(S, T) = θ. The bipartite-hole-number ∼α(G) is the maximum integer r such that G contains an (s, t)-bipartite-hole for every pair of nonnegative integers s and t with s + t = r. Our main results are that a graph G is traceable if δ(G) ≥ ∼α(G)-1, and Hamilton-connected if δ(G) ≥ ∼;α(G) + 1, both improving the analogues of Dirac's Theorem for traceable and Hamilton-connected graphs.</p

    Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

    Get PDF
    Recent results establish for the hard-core model (and more generally for 2-spin antiferromagnetic systems) that the computational complexity of approximating the partition function on graphs of maximum degree D undergoes a phase transition that coincides with the uniqueness/non-uniqueness phase transition on the infinite D-regular tree. For the ferromagnetic Potts model we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximating the partition function of the ferromagnetic Potts model is at least as hard as approximating the number of independent sets in bipartite graphs, so-called #BIS-hardness. We improve this hardness result by establishing it for bipartite graphs of maximum degree D. To this end, we first present a detailed picture for the phase diagram for the infinite D-regular tree, giving a refined picture of its first-order phase transition and establishing the critical temperature for the coexistence of the disordered and ordered phases. We then prove for all temperatures below this critical temperature (corresponding to the region where the ordered phase "dominates") that it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree D. The #BIS-hardness result uses random bipartite regular graphs as a gadget in the reduction. The analysis of these random graphs relies on recent results establishing connections between the maxima of the expectation of their partition function, attractive fixpoints of the associated tree recursions, and induced matrix norms. In this paper we extend these connections to random regular graphs for all ferromagnetic models. Using these connections, we establish the Bethe prediction for every ferromagnetic spin system on random regular graphs, which says roughly that the expectation of the log of the partition function Z is the same as the log of the expectation of Z. As a further consequence of our results, we prove for the ferromagnetic Potts model that the Swendsen-Wang algorithm is torpidly mixing (i.e., exponentially slow convergence to its stationary distribution) on random D-regular graphs at the critical temperature for sufficiently large q

    Fast Algorithms at Low Temperatures via Markov Chains

    Get PDF
    For spin systems, such as the hard-core model on independent sets weighted by fugacity lambda>0, efficient algorithms for the associated approximate counting/sampling problems typically apply in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for abstract polymer models, and present an elementary proof of rapid mixing of this new chain under sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms with running time O(n log n) for the Potts model and O(n^2 log n) for the hard-core model, in contrast to typical running times of n^{O(log Delta)} for algorithms based on Barvinok\u27s polynomial interpolation method on graphs of maximum degree Delta. In addition, our approach via our polymer model Markov chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin system Glauber dynamics restricted to even and odd or "red" dominant portions of the respective state spaces

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements

    Threshold graph limits and random threshold graphs

    Full text link
    We study the limit theory of large threshold graphs and apply this to a variety of models for random threshold graphs. The results give a nice set of examples for the emerging theory of graph limits.Comment: 47 pages, 8 figure
    • …
    corecore