53,520 research outputs found

    Microbial detoxification of deoxynivalenol (DON), assessed via a Lemna minor L. bioassay, through biotransformation to 3-epi-DON and 3-epi-DOM-1

    Get PDF
    Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose-response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity

    Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris

    Get PDF
    The biotransformation and bioconcentration of natural and synthetic steroid estrogens by Chlorella vulgaris were investigated using batch shaking experiments with incubation for 48 hours in the light or dark. Estradiol and estrone were inter-convertible in both light and dark conditions, however this biotransformation showed a preference to estrone. In the light, 50% of estradiol was further metabolized to an unknown product. Apart from biotransformation, estrone as well as hydroxyestrone, estriol and ethinylestradiol were relatively stable in the algal culture, while estradiol valerate was hydrolyzed to estradiol and then estrone within 3 hours of incubation. All the tested estrogens exhibited a degree of partitioning to C. vulgaris, however, the concentrations of estriol, hydroxyestrone, ethinylestradiol and estradiol valerate were always below the quantification limits. For estradiol and estrone, the partitioning of these estrogens in the algal extracts to the filtrates was below 6% of the total present. The average concentration factor for estrone was around 27, however the concentration factor for estradiol is not reported since no equilibrium was reached between aqueous solution and that within the cells due to continuing biotransformation

    Xenobiotic biotransformation potential of Pseudomonas rhodesiae KCM-R5 and Bacillus subtilis KCM-RG5, tolerant to heavy metals and phenol derivatives

    Get PDF
    Two environmental bacterial isolates KCM-R5 and KCM-RG5 were selected from xenobiotic-polluted environment. KCM-R5 was identified as Pseudomonas rhodesiae and KCM-RG5 as Bacillus subtilis. KCM-R5 demonstrated tolerance to heavy metals and KCM-RG5 to heavy metals and phenol derivatives. Both strains were studied for xenobiotic biotransformation in order to contribute towards bioremediation of polluted environments. Pseudomonas rhodesiae KCM-R5 and Bacillus subtilis. KCM-RG5 possess unusual ability to utilize ortho-nitrophenol (o-NP) and 2,4- dichlorophenoxyacetic acid (2,4-D). o-NP and 2,4-D were added at concentration 30 mg/l. The possible indictive/inhibiting effect of Pb cations (40mg/l) was also studied. Pseudomonas rhodesiae KCM-R5 removed 86 % of o-NP and below 1% of 2,4-D. Bacillus subtilis KCM-RG5 eliminated 83% of o-NP andunder 1% of 2,4-D. Biotransformation effectiveness of o-NP reached 95-100% in contrast to 2,4-D where the effectiveness was just 15-20%. Cell morphological changes were registered during the biotransformation processes. The obtained results could contribute to manage bioremediation processes in polluted with heavy metals and phenol derivatives environments. . 1, . 2, . 2, .

    Biotransformation of halogenated 2′-deoxyribosides by immobilized lactic acid bacteria

    Get PDF
    An efficient and green bioprocess is herein reported to obtain halogenated nucleosides by transglycosylation using immobilized lactic acid bacteria (LAB). Lactobacillus animalis ATCC 35046 showed a yield of 95% at 0.5 h to synthesize 5-fluorouracil-2-deoxyriboside (floxuridine). Calcium alginate was the best matrix for whole-cell immobilization by entrapment. Its productivity was 87 mg/L h in a continuous bioprocess. When adsorption techniques were evaluated, DEAE-Sepharose was the support which showed higher microbial load, its productivity being 53 mg/L h. Additionally, this microorganism was able to produce 5-bromouracil-2-deoxyriboside, 6-chloropurine-2-deoxyriboside and 6-bromopurine-2 -deoxyriboside.© 2Fil: Britos, Claudia Noelia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cappa, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; ArgentinaFil: Rivero, Cintia Wanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; ArgentinaFil: Sambeth, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas ; ArgentinaFil: Lozano, Mario Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; ArgentinaFil: Trelles, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Biotecnología Sustentable; Argentin

    Biotreatment of cr(VI)-containing wastewater mediated by indigenous bacteria

    Get PDF
    Indigenous Pseudomonas veronii 2E, Klebsiella oxytoca P2 and Klebsiella ornithinolityca 1P were tested as catalysts for the transformation of Cr(VI) to Cr(III) for Cr(VI)-containing wastewater biotreatments. The Cr(VI) biotransformation was assayed during bacterial growth and by using pre-grown quiescent cells. Proof of the unsuitability of a biotreatment based on Cr(VI)-reduction during bacterial growth was found: the reduction rate and the maximum Cr(VI) concentration able to be reduced were too low. On the other hand, high density suspensions of pre-grown quiescent cells presented the highest reduction rates, especially in the presence of an electron donor. The most efficient strain for Cr(VI) removal was Pseudomonas veronii 2E. Optimal pH and temperature for the biotransformation process resulted 7 and 32ºC respectively. The maximum initial reduction rate obtained in these conditions was 0.49 mg Cr(VI) h-1 g cell dry weight-1 (9.4 µmol Cr(VI) h-1 g cell dry weight-1). Proof of the feasibility and efficiency of this technology is provided by using in calcium alginate immobilized P. veronii 2E cells for the treatment of a real Cr(VI)-containing industrial wastewater.Fil: Alessandrello, Mauricio. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vullo, Diana Lia. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Asymmetric microbial reduction of ketones: absolute configuration of trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol

    Get PDF
    A set of five fungal species, Botrytis cinerea, Trichoderma viride and Eutypa lata, and the endophytic fungi Colletotrichum crassipes and Xylaria sp., was used in screening for microbial biocatalysts to detect monooxygenase and alcohol dehydrogenase activities (for the stereoselective reduction of carbonyl compounds). 4-Ethylcyclohexanone and acetophenone were biotransformed by the fungal set. The main reaction pathways involved reduction and hydroxylations at several positions including tertiary carbons. B. cinerea was very effective in the bioreduction of both substrates leading to the chiral alcohol (S)-1- phenylethanol in up to 90% enantiomeric excess, and the cis–trans ratio for 4-ethylcyclohexanol was 0:100. trans-4-Ethyl-1-(1S-hydroxyethyl)cyclohexanol, obtained from biotransformation by means of an acyloin-type reaction, is reported here for the first time. The absolute configurations of the compounds trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol and 4-(1S- and 4-(1R-hydroxyethyl)cyclohexanone were determined by NMR analysis of the corresponding Mosher’s esters

    Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride

    Get PDF
    The biotransformations of a series of substituted sulfides were carried out with the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride. Several products underwent microbial oxidation of sulfide to sulfoxide with medium to high enantiomeric purity. With regard to sulfoxide enantioselectivity, the (R)-enantiomer was favoured in biotransformations by T. viride and E. lata while the (S)-enantiomer was favoured in those by B. cinerea. A minor amount of sulfone product was also obtained

    Reductive Biotransformation of Ethyl Acetoacetate: A Comparative Studies using Free and Immobilized Whole Yeast Cells

    Get PDF
    Bioreduction of ethyl acetoacetate with free and immobilized yeast whole cell was achieved by using water and sucrose combination. After detachment from immobilized beads under basic condition, the corresponding ethyl(S)-(+)-3-hydroxybutanoate was isolated with 98 to 100% yield. Immobilized beads of yeast whole cell were prepared at different temperature which affects the morphology and physiology of the beads for the diffusion of the enzyme, which shown the maximum conversion of the substrate to products as compared to the free yeast whole cell

    Introducing the concept of biocatalysis in the classroom: The conversion of cholesterol to provitamin D 3

    Get PDF
    Biocatalysis is a fundamental concept in biotechnology. The topic integrates knowledge of several disciplines; therefore, it was included in the course “design and optimization of biological systems” which is offered in the biochemistry curricula. We selected the ciliate tetrahymena as an example of a eukaryotic system with potential for the biotransformation of sterol metabolites of industrial interest; in particular, we focused on the conversion of cholesterol to provitamin D3. The students work with wild type and recombinant strains and learn how sterol pathways could be modified to obtain diverse sterol moieties. During the course the students identify and measure the concentration of sterols. They also search for related genes by bioinformatic analysis. Additionally, the students compare biotransformation rates, growing the ciliate in plate and in a bioreactor. Finally, they use fluorescence microscopy to localize an enzyme involved in biotransformation. The last day each team makes an oral presentation, explaining the results obtained and responds to a series of key questions posed by the teachers, which determine the final mark. In our experience, this course enables undergraduate students to become acquainted with the principles of biocatalysis as well as with standard and modern techniques, through a simple and robust laboratory exercise, using a biological system for the conversion of valuable pharmaceutical moieties.Fil: De Luca, Belén M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Nudel, Berta Clara. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Gonzalez, Rodrigo Horacio. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Nusblat, Alejandro David. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    Asymmetric microbial conversion of (E)-2-benzylideneindan-1-one by the filamentous fungi Botrytis cinerea, Trichoderma viride, and Eutypa lata

    Get PDF
    The transformation of (E)-2-benzylideneindan-1-one 1 by the filamentous fungi Botrytis cinerea, Trichoderma viride, and Eutypa lata as biocatalysts was studied. The results showed the catalytic potential of these fungi in affording several hydroxylation and reduction products, three of them reported here for the first time. The absolute configuration of enantiomerically pure 2-benzylindane derivatives was determined
    corecore