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The biotransformation and bioconcentration of natural and synthetic steroid estrogens by 

Chlorella vulgaris were investigated using batch shaking experiments with incubation for 

48 hours in the light or dark. Estradiol and estrone were inter-convertible in both light 

and dark conditions, however this biotransformation showed a preference to estrone. In 

the light, 50% of estradiol was further metabolized to an unknown product. Apart from 

biotransformation, estrone as well as hydroxyestrone, estriol and ethinylestradiol were 

relatively stable in the algal culture, while estradiol valerate was hydrolyzed to estradiol 

and then estrone within 3 hours of incubation. All the tested estrogens exhibited a degree 

of partitioning to C. vulgaris, however, the concentrations of estriol, hydroxyestrone, 

ethinylestradiol and estradiol valerate were always below the quantification limits. For 

estradiol and estrone, the partitioning of these estrogens in the algal extracts to the 

filtrates was below 6% of the total present. The average concentration factor for estrone 

was around 27, however the concentration factor for estradiol is not reported since no 

equilibrium was reached between aqueous solution and that within the cells due to 

continuing biotransformation.  
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Natural phenolic steroid estrogens (estradiol and estrone) and the synthetic 

estrogen, ethinylestradiol, have been detected in aquatic systems and their occurrence is 

associated with vitellogenesis and reproductive abnormalities in wild fish (3,5,7,16,21). A 

more complete understanding of their behavior in the aquatic environment is required to 

enable accurate risk assessments to be undertaken (9). Algae, given their substantial 

biomass, extensive range of habitat and diversity play an important role in the fate of 

organic compounds in the aquatic ecosystem (14,15). They may degrade or take up 

contaminants thereby acting as a medium for bioconcentration and subsequent 

biomagnification in higher trophic levels (14,15,20). Biosorption of heavy metals and 

organic pollutants by algae has been frequently reported (12,14) and some macroalgae 

have been shown to have the same detoxification enzymes as those found in the 

mammalian liver, the so called “green liver” (15). It has been demonstrated that 

Ochromonas danica has the ability to break down phenolic compounds to pyruvate and 

carbon dioxide (19).  

Ethinylestradiol and estradiol valerate are synthetic estrogens produced by 

modifying the structure of estradiol. Ethinylestradiol can be deethinylated to estradiol in 

the human liver, though a majority (up to 80%) of ethinylestradiol is excreted from 

humans unchanged in conjugated forms (4), while estradiol valerate is readily hydrolysed 

to estradiol in the liver to exhibit its estrogenic functions (18). In the environment, the 

persistence of ethinylestradiol has been reported in sewage treatment works and rivers 

(7,13,22). With respect to the natural estrogens, estradiol and estrone, they are readily 

transformed via oxidative and reductive pathways by 17β-hydroxysteroid dehydrogenase 
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(17β-HSDH) in a range of organisms (4). Microorganisms that do not produce estrogens, 

such as fungi and bacteria, also exhibit the ability to facilitate this biotransformation 

through such pathways when exposed to estradiol and estrone (4,11,13,23,27). These 

steroid estrogens may also be further metabolized to estriol and hydroxyestrone, which 

play an important role in a range of organisms (4). 
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The aim of this study was to investigate the interaction of a common and widely 

studied fresh water alga, Chlorella vulgaris, with different natural (estradiol, estrone, 

hydroxyestrone and estriol) and synthetic (ethinylestradiol and estradiol valerate) 

estrogens and establish whether they are biotransformed or bioconcentrated. 

  

Materials and Methods 

Chemicals  

Individual working solutions of estradiol, estrone, estriol, hydroxyestrone, 

estradiol valerate, estradiol acetate and ethinylestradiol (Sigma, Poole, UK) were 

prepared in HPLC grade acetone (Rathburn, Walkerburn, UK) at 10 mg l-1. Chlorella 

vulgaris was purchased from the Culture Collection of Algae and Protozoa (CCAP), 

Windermere, UK. The alga was grown in Jaworski’s medium (JM), as recommended by 

CCAP, with continuous aeration and illumination (cool white fluorescent light at 300 lux 

was provided by Osram L58 W23 tubes) in a temperature controlled room set at 18±2oC. 

The algal cultures were allowed to grow into the stationary phase (20 days) achieving 

approximately 2 g l-1 (dry weight). Stationary phase cultures maximised the amount of 

biomass available to allow for determination of trace levels of steroid estrogens sorbed to 

the solid phase. 
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Biotransformation and bioconcentration experiments 

All the batch experiments were undertaken in triplicate. Individual estrogens 

(500ng) (estradiol, estrone, estriol, hydroxyestrone, estradiol valerate and 

ethinylestradiol) were spiked separately into 250 ml Teflon bottles (dark) or 500 ml 

conical flasks (light) and blown to dryness with a gentle nitrogen stream. Algal culture 

(200 ml) was transferred into the bottles or flasks so that the initial concentration was of 

2.5 μg l-1 and placed on a rotary shaker in the dark or aerated in the light with triplicate 

samples taken at time intervals of 3, 6, 24 and 48 hours. The optical density of the algal 

culture was measured at 680 nm and converted into mass of algae (dry weight) for each 

sampling time. Further kinetic experiments on the biotransformation of estradiol were 

undertaken using different algal cell densities (0.8, 1.5 and 2.3 g l-1, dry weight) shaking 

for 1, 18 and 48 hours and a range of estradiol concentrations per gram of algae (9.7, 97, 

388 and 969 μl l-1 g-1) in the dark for 6 hours.  

 
Estrogen determination in filtrate and algal cells  

Algal cells were filtered from the growth culture using a glass fibre filter (GF6) 

(Scheicher & Schuell, London, UK). Before extraction, 500 ng of estradiol acetate was 

spiked into the separated algal cells and filtrate for the determination of the final recovery 

in each sample. Estrogens in the algal cells were extracted overnight by soxhlet extraction 

using 150 ml dichloromethane (DCM) (Rathburn, Walkerburn, UK). Estrogens in the 

liquid phase were extracted by liquid-liquid extraction using 200 ml DCM. Extracted 

estrogens were evaporated to 1 ml using a rotary evaporator, transferred into a reaction 

vial and dried with a gentle nitrogen stream. The derivatization mixture (N-methyl-N-
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(trimethylsilyl)-tri-fluoroacetamide: trimethylsilylimidazole: dithioerythritol; 1000:2:2; 

v/v/w) (Sigma, Poole, UK), 50 μl, was added, the reaction vial sealed, and placed in a 

heating block at 60 
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oC for 30 min. The solution was again evaporated to dryness and 0.2 

ml of 2 mg l-1 mirex (internal standard) (Promochem, Welwyn, UK) in hexane was then 

added before gas chromatography-mass spectrometry (GCMS) analysis. The GCMS 

conditions, calibration, identification and quantification procedures have been described 

previously (8). The GCMS limit of quantification was 10 μg l-1 in final extracts, however, 

some samples exhibited responses of target ions at correct retention times below this level 

and such results have been reported as being less than the quantification level, but above 

the detection limit of 5 μg l-1. 

 

Quality Control  

Before the experiments, quality controls were undertaken to ensure that the 

estrogens did not sorb to the laboratory equipment. The recovery efficiency of the soxhlet 

and liquid-liquid extraction for the algae and the filtrate spiked with 500 ng each of 

estrogen mixture was evaluated with respect to the recovery of estradiol acetate. The 

recovery for soxhlet extraction was 65% and for liquid-liquid extraction was above 85% 

for all the estrogens, except for estriol where recoveries were 50% in both extraction 

methods. Moreover, there was no estrogen peak detected from the blanks of the algae and 

filtrate extracts.  
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Fate of estrogens in algal culture  

The concentration of estradiol in the culture medium fell rapidly over the first 3 

hours of incubation, and this decline was more pronounced in the light than the dark 

(Figure 1). However, subsequent change in the estradiol concentration was more rapid in 

the dark, and was accompanied by an increase in the concentration of estrone in the 

media solution. The stability of all estrogens was tested using crude and autoclaved algal 

filtrate (without algal cells) instead of the algal culture as controls. Experimental 

conditions were the same for all sample types. The estrogen concentrations in the crude 

and autoclaved (sterile) filtrates remained constant, which indicated that no biological, 

physical or chemical removal occurred in the algal-cell free or the sterile filtrates. Lack of 

change in the crude filtrates which may have contained bacteria not removed by the GF6 

filter, would indicate that effects observed were due to the algae rather than other 

microorganisms. The most probable explanation for the source of estrone is that it is a 

result of biotransformation of estradiol by the algae, C. vulgaris. This is also supported by 

considering the mass balance of estradiol and estrone in the algal culture, which in the 

dark decreased by less than 20% in total (Table 1). However, in the light there was an 

overall decrease in concentration of both compounds, probably as a result of further 

metabolism (Table 1). These differences in final concentrations of estradiol and estrone in 

light and dark conditions suggest that biochemical processes in the algae have a different 

effect on the estrogens in light and dark conditions.  

Although further transformation products, hydroxyestrone and estriol were 

observed in media extracts, the concentrations were below quantification levels and these 
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are therefore insignificant products or metabolic intermediates with short half-lives. It 

was also possible that the estrogens were removed from the media solution through 

bioconcentration within the algae. The amount of estrogens which partitioned to the algae 

did not exceed more than 9% of the total estrogens by mass (Table 1). Although the 

ultimate fate of estradiol is not clear, it is apparent that in the light, C. vulgaris reduces 

the concentration from 2.50 μg l
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-1 to 0.37 μg l-1, although some 0.60 μg l-1 of the estradiol 

is converted to estrone, which is a potent steroid estrogen.  

Media solutions were also spiked with estrone and again incubated in light and 

dark conditions. In this case, estradiol was observed in the solutions, which would 

indicate that the alga is able to interconvert estrone and estradiol. However, the amount of 

estrone transformed was less than 10% in comparison to the reverse reaction where over 

70% and 22% of estradiol was transformed to estrone in the dark and light, respectively 

(Figure 2). Both estriol and hydroxyestrone were again observed in solution, yet still 

below the quantification limit. It was however, clear that mass balance equations (Table 

2) indicate that overall reduction in concentration of estrone and estradiol was less than 

when solutions were spiked with estradiol. With respect to the partitioning of estrogens to 

the algae, the maximum percentage partitioning was 7%, with the majority of compounds 

remaining in solution (Table 2).  

 The algae also exhibited an ability to hydrolyze estradiol valerate to estradiol and 

estrone in both light and dark (Figure 3). The concentration of estradiol valerate had 

decreased after the first 3 hours of incubation to below the quantification level and this 

drop was associated with the occurence of both estradiol and estrone. The concentration 

of estradiol remained constant throughout the experimental period in both dark and light, 
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however, the level of estrone increased continuously in the dark, but peaked at 24 hours 

in the light. Traces of both estriol and hydroxyestrone were also detected in the filtrate 

but their concentrations were below the quantification limits. This data may suggest that 

estradiol valerate was rapidly transformed to an intermediate before a slower hydrolysis 

to estradiol. Some uptake of estradiol valerate by the algae was observed, however, 

concentrations were below the limit of quantification.  
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For the samples spiked with estriol and ethinylestradiol, a slight drop in 

concentrations of both compounds were observed however the data points were not 

significantly different and thus evidence of removal of these compounds was not 

conclusive. Similarly, it was not possible to quantify any uptake of these estrogens by the 

algae since concentrations were generally below the quantification limits and in some 

cases below the detection levels.  

The fate of hydroxyestrone in the algal culture was also tested and the result was 

compared to that in a culture filtrate (no algae present) as a control. A reduction in 

concentration of hydroxyestrone (<10% of initial spiked) was recorded in the culture with 

a detectable amount of estriol, while the concentration of hydroxyestrone was unchanged 

in the control. The relative stability of hydroxyestrone would indicate that it is not a 

rapidly metabolized intermediate in any transformation pathways.  

Using the preceding observations, a possible pathway for transformation of the 

steroid estrogens by C. vulgaris is shown in Figure 4. Ethinylestradiol was persistent in 

the algal culture, while estradiol valerate was hydrolyzed to estradiol and estrone. Due to 

the interconversion preference for estrone, it is evident that estradiol valerate was 

hydrolyzed to estradiol and then transformed to estrone. In light conditions, 
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approximately 50% of estradiol was metabolized into an unknown product and some of 

the estradiol was transformed to estrone, while in dark conditions, biotransformation to 

estrone was the major pathway. Although estrone, hydroxyestrone and estriol were 

detected in the algal culture under light conditions, the low concentration and the stability 

of these estrogens in the culture indicated that as a major metabolic pathway it is 

insignificant compared to the unknown pathway observed to occur in the light.  
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Bioconcentration of estrogens in the algae 

On exposure of C. vulgaris to estradiol and estrone, a degree of partitioning of 

both estrogens was observed to occur between the algae and aqueous phase. However, a 

true “bioconcentration factor” cannot be reported as equilibrium was not been reached, 

and transformation continued. For the samples spiked with estradiol, the concentration of 

estradiol decreased significantly in the filtrate with time, and the occurence of estrone in 

the algal extract was most probably a result of intracellular biotransformation (rather than 

uptake from the filtrate), thus no bioconcentration factor can be reported (Table 1). For 

the samples spiked with estrone, although biotransformation did occur, the level of 

estrone in the filtrate remained relatively constant and the concentration of estradiol was 

also consistently low. It was therefore likely that estrone extracted from the algae 

originated from the filtrate solution and thus a concentration factor for estrone between 

the algae and filtrate was calculated to give an insight into the probable bioconcentration 

factor for estrone. The average concentration factors for estrone in both light and dark 

conditions was approximately 27 (Table 2).  
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Effect of cell density on transformation of estradiol 1 
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 The kinetics of the biotransformation process from estradiol to estrone were 

determined over a range of cell densities in the dark only as in light the end products of 

transformation were unknown. The rate of biotransformation of estradiol to estrone 

declined with an increase in cell density and shaking time (Figure 5), which indicated that 

substrate levels were limiting under these experimental conditions.  

 

Effect of substrate level on the rate of transformation  

 In order to investigate the effect of substrate level on biotransformation, different 

concentrations of estradiol were spiked into the culture. The final concentration of estrone 

produced increased with initial estradiol concentration up to 400 μg l-1 g-1 of algae, 

however at 969 μg l-1 g-1 there was no significant increase in the final estrone 

concentration. The regression line produced using the first 3 data points indicated that 

within experimental error, the concentration of estradiol became limiting below 400 μg l-1 

g-1 (Figure 6) which is equivalent to 2.58 μg of estrone produced per gram of algae per 

hour and is likely to indicate the maximum capacity of C. vulgaris to transform estradiol 

to estrone under experimental conditions.  

 

Discussion 

In the present study, the hydrolysis of estradiol valerate to estradiol by C. vulgaris 

has been demonstrated, however, under the conditions used in this study, transformation 

of ethinylestradiol, through deethinylation or other pathways, was not observed. With 

respect to estradiol and estrone, C. vulgaris exhibited a preference toward estrone in both 
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light and dark. This biotransformation may be significant to the alga by reducing the 

estrogenic potency and increasing the polarity of estrogens for excretion or further 

metabolism (4,25). The occurrence of estriol and hydroxyestrone is an indicator of further 

hydroxylation of estrone to more polar metabolites (4,25). However, such a pathway 

accounts for a small proportion, < 4% of total loss of estrone/estradiol in the light and 

another, unidentified pathway must therefore be responsible for 50% loss of the 

estrogens. It is possible that conjugation of the estradiol may occur in the light. 

Conjugation increases polarity and is the method by which the steroid estrogens are 

excreted in urine in a range of animal species (4). However, this process also occurs in 

plants and partially or completely deactivates plant hormones and phytoestrogens (2). 

This process has also been observed to occur in plants to detoxify xenobiotics such as 

DDT and chlorinated phenols (17,24). It is evident that conjugation is a rapid 

detoxification mechanism and an absence of a lag phase for conjugation has been 

demonstrated for plant hormones (2). Such transformation would explain the rapid 

decline in estradiol concentration after the first 3 hours of shaking. Moreover, in the same 

review (2) the effect of light on the stimulation and regulation of conjugation has been 

exemplified in different plant hormones.  
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Estradiol/estrone biotranformation by the algae was observed to be dependent on 

cell density and substrate concentration. In this study a relatively high concentration of 

estrogens in comparison to environmental levels, of around 0.1 – 2 ng l-1 (9), and algal 

cells, were used to allow for monitoring of changes and uptake. The results of the kinetic 

study demonstrated that the biotransformation process operated under conditions of 

substrate limitation, however if the same pattern of substrate limitation occurs in the 
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natural environment, it would be dependent on the ratio of estrogen concentrations 

present, the amount of algae and a range of other factors not included in this study. 

However, our results suggest that, it is likely that biotransformation would reach a 

saturation when the concentration of estradiol in aqueous solution per gram of algae is 

greater than 400 μg l
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-1 g-1. This kinetic study may be used in estimating the probable rate 

of biotransformation of estrogens by algae in different environmental conditions. 

The log Kow values for the steroid estrogens indicate that ethinylestradiol should 

partition to the organic cellular material to a greater extent than other estrogens studied, 

assuming that simple diffusion controls the partitioning process (10,23). However, this 

was not the case and the apparently variable uptake of the compounds suggests that an 

active transport (or exclusion) or a selective binding mechanism may be operating. Since 

it is generally agreed that estrogens pass across membranes via a simple diffusion 

pathway (25), it is likely that bioconcentration of estrogens in the algae is due to an active 

binding mechanism such as binding to receptors or enzymes for biotransformation. 

It has been suggested that accumulation of persistent organic compounds in 

phytoplankton is the first step of biomagnification in the food chain (12,20). However, 

the concentration factors of estrogens in the algae are significantly lower than reported 

for other endocrine disrupting substances such as DDT (3 × 104) (10). It is likely that 

biomagnification of estrone is of less significant than for other endocrine disrupting 

substances in ecosystems.  
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Figure 1. Changes with time (in light and dark conditions) observed after spiking the 

culture with estradiol 
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Figure 2. Changes with time (in light and dark conditions) observed after spiking the 
culture with estrone  
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Figure 3. Changes with time (in light and dark conditions) observed after spiking the culture with 
estradiol valerate  
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Figure 5. Effect of cell density on the formation of estrone from estradiol 
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Figure 6. Effect of estradiol concentration on the biontransformation  
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Table 1. Mass balance and distribution of estrogens in algae and filtrate in samples spiked 

with estradiol 

 

DARK Algae (ng g-1) Filtrate (μg l-1) Partitioning to  
Hours 

Mass 
balance (ng) Estradiol Estrone Estradiol Estrone algae* (%) 

Initial 500 0 0 2.5 0 0 
3 506 98 66 2.2 0.26 3 

24 485 201 175 0.63 1.62 8 
48 426 137 72 0.22 1.81 5 

LIGHT       
Initial 500 0 0 2.5 0 0 

3 362 206 17 1.57 0.13 6 
24 298 59 269 0.82 0.52 12 
48 252 30 97 0.38 0.57 9 

14 * Sum of estrogens in algae/ in filtrates 
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Table 2. Mass balance, distribution and concentration factor of estrogens in algae and 

filtrate in samples spiked with estrone 
 

DARK Algae (ng g-1) Filtrate (μg l-1) Partitioning to  Conc. factor#

Hours 
Mass 

balance (ng) Estradiol Estrone Estradiol Estrone algae* (%)  
Initial 500 0 0 2.5 0 0 0 

3 509 103 47 0.31 2.16 3 22 
24 445 83 98 0.24 1.90 4 52 
48 424 109 41 0.10 1.95 4 21 

LIGHT        
Initial 500 0 0 2.5 0 0 0 

3 510 240 70 0.11 2.29 6 31 
24 481 72 26 0.12 2.24 2 12 
48 487 157 47 0.17 2.14 7 22 

* Sum of estrogens in algae/ in filtrates; # Concentration factor of estrone in algae/ in filtrate 14 

15 

16 
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