220 research outputs found

    Measured beam patterns of biomimetic receivers improve localisation performance of an ultrasonic sonar

    Get PDF
    The Beam Based Method (BBM) is a novel sonar system inspired by bat echolocation for a sonar system with one emitter and two receivers. Knowledge of the beam pattern of the receivers makes it possible to estimate the orientation of a reflecting target. In this paper, the beam pattern of four biomimetic receivers is included in the sonar system model to test which one makes the BBM localization method most accurate. Simulations are designed in MatLab and, along with the sonar system, they also model ultrasonic emission, reflection by a target and filtering through the receivers' beam pattern. All receivers are associated with similar error values in estimating target orientation. This sonar system will be built and mounted on robots for non-destructive evaluations

    Directional receiver for biomimetic sonar system

    Get PDF
    An ultrasonic localization method for a sonar system equipped with an emitter and two directional receivers and inspired by bat echolocation uses knowledge of the beam pattern of the receivers to estimate target orientation. Rousettus leschenaultiiā€™s left ear constitutes the model for the design of the optimal receiver for this sonar system and 3D printing was used to fabricate receiver structures comprising of two truncated cones with an elliptical external perimeter and a parabolic flare rate in the upper part. Measurements show one receiver has a predominant lobe in the same region and with similar attenuation values as the bat ear model. The final sonar system is to be mounted on vehicular and aerial robots which require remote control for motion and sensors for estimation of each robotā€™s location

    Features in geometric receiver shapes modelling bat-like directivity patterns

    Get PDF
    The directional properties of bat ears as receivers is a current area of interest in ultrasound research. This paper presents a new approach to analyse the relationship between morphological features and acoustical properties of the external ear of bat species. The beam pattern of Rousettus leschenaultiiā€™s right ear is measured and compared to that of receiver structures whose design is inspired by the bat ear itself and made of appropriate geometric shapes. The regular shape of these receivers makes it possible to control the key reception parameters and thus to understand the effect on the associated beam pattern of the parameters themselves. Measurements show one receiver structure has a beam pattern very similar to that of R. leschenaultiiā€™s ear, thus explaining the function of individual parts constituting its ear. As it is applicable to all bat species, this approach can provide a useful tool to investigate acoustics in bats, and possibly other mammals

    Autonomous robot systems and competitions: proceedings of the 12th International Conference

    Get PDF
    This is the 2012ā€™s edition of the scientific meeting of the Portuguese Robotics Open (ROBOTICAā€™ 2012). It aims to disseminate scientific contributions and to promote discussion of theories, methods and experiences in areas of relevance to Autonomous Robotics and Robotic Competitions. All accepted contributions are included in this proceedings book. The conference program has also included an invited talk by Dr.ir. Raymond H. Cuijpers, from the Department of Human Technology Interaction of Eindhoven University of Technology, Netherlands.The conference is kindly sponsored by the IEEE Portugal Section / IEEE RAS ChapterSPR-Sociedade Portuguesa de RobĆ³tic

    Shape Classification Using Hydrodynamic Detection via a Sparse Large-Scale 2D-Sensitive Artificial Lateral Line

    Get PDF
    Artificial lateral lines are fluid flow sensor arrays, bio-inspired by the fish lateral line organ, that measure a local hydrodynamic environment. These arrays are used to detect objects in water, without relying on light, sound, or on an active beacon. This passive sensing method, called hydrodynamic imaging, is complementary to sonar and vision systems and is suitable for collision avoidance and near-field covert sensing. This sensing method has so far been demonstrated on a biological scale from several to tens of centimeters. Here, we present measurements using a large-scale artificial lateral line of 3.5 meters, consisting of eight all-optical 2D-sensitive flow sensors. We measure the fluid flow as produced by the motion of five different objects, towed across a swimming pool. This results in repeatable stimuli, whose measurements demonstrate a complementary aspect of 2D-sensing. These measurements are both used for constructing temporal hydrodynamic signatures, which reflect the objectā€™s shape, and for flow-feature based near-field object classification. For the latter, we present a location-invariant feature extraction method which, using an Extreme Learning Machine neural network, results in a classification F1-score up to 98.6% with selected flow features. We find that, compared to the traditional sensing dimension parallel to the sensor array, the novel transverse fluid velocity component bears more information about the object shape. The classification of objects via hydrodynamic imaging thus benefits from 2D-sensing and can be scaled up to a supra biological scale of several meters

    Towards a bionic bat: A biomimetic investigation of active sensing, Doppler-shift estimation, and ear morphology design for mobile robots.

    Get PDF
    Institute of Perception, Action and BehaviourSo-called CF-FM bats are highly mobile creatures who emit long calls in which much of the energy is concentrated in a single frequency. These bats face sensor interpretation problems very similar to those of mobile robots provided with ultrasonic sensors, while navigating in cluttered environments. This dissertation presents biologically inspired engineering on the use of narrowband Sonar in mobile robotics. It replicates, using robotics as a modelling medium, how CF-FM bats process and use the constant frequency part of their emitted call for several tasks, aiming to improve the design and use of narrowband ultrasonic sensors for mobile robot navigation. The experimental platform for the work is RoBat, the biomimetic sonarhead designed by Peremans and Hallam, mounted on a commercial mobile platform as part of the work reported in this dissertation. System integration, including signal processing capabilities inspired by the batā€™s auditory system and closed loop control of both sonarhead and mobile base movements, was designed and implemented. The result is a versatile tool for studying the relationship between environmental features, their acoustic correlates and the cues computable from them, in the context of both static, and dynamic real-time closed loop, behaviour. Two models of the signal processing performed by the batā€™s cochlea were implemented, based on sets of bandpass filters followed by full-wave rectification and low-pass filtering. One filterbank uses Butterworth filters whose centre frequencies vary linearly across the set. The alternative filterbank uses gammatone filters, with centre frequencies varying non-linearly across the set. Two methods of estimating Doppler-shift from the return echoes after cochlear signal processing were implemented. The first was a simple energy-weighted average of filter centre frequencies. The second was a novel neural network-based technique. Each method was tested with each of the cochlear models, and evaluated in the context of several dynamic tasks in which RoBat was moved at different velocities towards stationary echo sources such as walls and posts. Overall, the performance of the linear filterbank was more consistent than the gammatone. The same applies to the ANN, with consistently better noise performance than the weighted average. The effect of multiple reflectors contained in a single echo was also analysed in terms of error in Doppler-shift estimation assuming a single wider reflector. Inspired by the Doppler-shift compensation and obstacle avoidance behaviours found in CF-FM bats, a Doppler-based controller suitable for collision detection and convoy navigation in robots was devised and implemented in RoBat. The performance of the controller is satisfactory despite low Doppler-shift resolution caused by lower velocity of the robot when compared to real bats. Barshanā€™s and Kucā€™s 2D object localisation method was implemented and adapted to the geometry of RoBatā€™s sonarhead. Different TOF estimation methods were tested, the parabola fitting being the most accurate. Arc scanning, the ear movement technique to recover elevation cues proposed by Walker, and tested in simulation by her, Peremans and Hallam, was here implemented on RoBat, and integrated with Barshanā€™s and Kucā€™s method in a preliminary narrowband 3D tracker. Finally, joint work with Kim, KĀØampchen and Hallam on designing optimal reflector surfaces inspired by the CF-FM batā€™s large pinnae is presented. Genetic algorithms are used for improving the current echolocating capabilities of the sonarhead for both arc scanning and IID behaviours. Multiple reflectors around the transducer using a simple ray light-like model of sound propagation are evolved. Results show phase cancellation problems and the need of a more complete model of wave propagation. Inspired by a physical model of sound diffraction and reflections in the human concha a new model is devised and used to evolve pinnae surfaces made of finite elements. Some interesting paraboloid shapes are obtained, improving performance significantly with respect to the bare transducer

    Electronic architecture for air coupled ultrasonic pulse-echo range finding with application to security and surface profile imaging

    Get PDF
    Ultrasonic range finding instruments are utilized, e.g., for measuring liquid levels and distance to parking obstacles. However, instruments designed using the conventional electronic architectures to drive the ultrasonic transmitters cannot provide an operating range beyond a few meters for a flat solid wall with normal incidence when powered by a low voltage battery. This both limits the applicability of the existing instruments and makes it difficult to demonstrate their feasibility for new applications. The architecture described here combines a DC/DC boost converter with semiconductor switches, enabling a scalable increase in the operating range for both pulse-echo and pitch-catch modes of operation. It was fully prototyped and successfully tested for novel applications involving ultrasonic range finders, specifically intrusion detection and surface profile imaging. The limitations of the profile sensing device are rather restrictive as it only operates at the incidence angles below 18Ā°, but this device can be developed further. The developed security system was found to be quite practical in its present state

    Toward a Neuromorphic Microphone

    Get PDF
    Neuromorphic systems are used in variety of circumstances: as parts of sensory systems, for modeling parts of neural systems and for analog signal processing. In the sensory processing domain, neuromorphic systems can be considered in three parts: pre-transduction processing, transduction itself, and post-transduction processing. Neuromorphic systems include transducers for light, odors, and touch but so far neuromorphic applications in the sound domain have used standard microphones for transduction. We discuss why this is the case and describe what research has been done on neuromorphic approaches to transduction. We make a case for a change of direction toward systems where sound transduction itself has a neuromorphic component

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs
    • ā€¦
    corecore