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Abstract

So-called CF-FM bats are highly mobile creatures who emit long calls in which much of the

energy is concentrated in a single frequency. These bats face sensor interpretation problems

very similar to those of mobile robots provided with ultrasonic sensors, while navigating in

cluttered environments.

This dissertation presents biologically inspired engineering on the use of narrowband Sonar

in mobile robotics. It replicates, using robotics as a modelling medium, how CF-FM bats pro-

cess and use the constant frequency part of their emitted call for several tasks, aiming to im-

prove the design and use of narrowband ultrasonic sensors for mobile robot navigation.

The experimental platform for the work is RoBat, the biomimetic sonarhead designed by

Peremans and Hallam, mounted on a commercial mobile platform as part of the work reported

in this dissertation. System integration, including signal processing capabilities inspired by the

bat’s auditory system and closed loop control of both sonarhead and mobile base movements,

was designed and implemented. The result is a versatile tool for studying the relationship

between environmental features, their acoustic correlates and the cues computable from them,

in the context of both static, and dynamic real-time closed loop, behaviour.

Two models of the signal processing performed by the bat’s cochlea were implemented,

based on sets of bandpass filters followed by full-wave rectification and low-pass filtering.

One filterbank uses Butterworth filters whose centre frequencies vary linearly across the set.

The alternative filterbank uses gammatone filters, with centre frequencies varying non-linearly

across the set. Two methods of estimating Doppler-shift from the return echoes after cochlear

signal processing were implemented. The first was a simple energy-weighted average of filter

centre frequencies. The second was a novel neural network-based technique. Each method

was tested with each of the cochlear models, and evaluated in the context of several dynamic

tasks in which RoBat was moved at different velocities towards stationary echo sources such

as walls and posts. Overall, the performance of the linear filterbank was more consistent than

the gammatone. The same applies to the ANN, with consistently better noise performance than

the weighted average. The effect of multiple reflectors contained in a single echo was also

analysed in terms of error in Doppler-shift estimation assuming a single wider reflector.

Inspired by the Doppler-shift compensation and obstacle avoidance behaviours found in

CF-FM bats, a Doppler-based controller suitable for collision detection and convoy navigation

in robots was devised and implemented in RoBat. The performance of the controller is satisfac-

tory despite low Doppler-shift resolution caused by lower velocity of the robot when compared

to real bats.

Barshan’s and Kuc’s 2D object localisation method was implemented and adapted to the
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geometry of RoBat’s sonarhead. Different TOF estimation methods were tested, the parabola

fitting being the most accurate. Arc scanning, the ear movement technique to recover eleva-

tion cues proposed by Walker, and tested in simulation by her, Peremans and Hallam, was

here implemented on RoBat, and integrated with Barshan’s and Kuc’s method in a preliminary

narrowband 3D tracker.

Finally, joint work with Kim, Kämpchen and Hallam on designing optimal reflector sur-

faces inspired by the CF-FM bat’s large pinnae is presented. Genetic algorithms are used for

improving the current echolocating capabilities of the sonarhead for both arc scanning and IID

behaviours. Multiple reflectors around the transducer using a simple ray light-like model of

sound propagation are evolved. Results show phase cancellation problems and the need of a

more complete model of wave propagation. Inspired by a physical model of sound diffrac-

tion and reflections in the human concha a new model is devised and used to evolve pinnae

surfaces made of finite elements. Some interesting paraboloid shapes are obtained, improving

performance significantly with respect to the bare transducer.
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Chapter 1

Introduction

This work presents biologically inspired engineering on the use of ultrasound in mobile robotics.

It replicates, using robotics as a modelling medium, how echolocating bats process and use

biosonar for several tasks, aiming to improve the design and use of narrowband ultrasonic

sensors for mobile robot navigation.

Echolocation is the ability to localise targets based on the acoustical information contained

in the reflections of emitted sound pulses [Suga, 1990]. In nature, there are at least two different

creatures who echolocate: bats — in air — and dolphins — underwater. The former are the

source of inspiration for this work.

1.1 The context

1.1.1 Back to the early days in Robotics

In the middle eighties, Brooks [1986] introduced the behaviour-based approach which gave a

completely different perspective to robotics. The basic idea was to interconnect, at the lowest

possible level, the perception (sensors) and action (actuators) of a physical agent interacting

with the real world. Brooks invented the “subsumption architecture” which was implemented

in physical robots of varying shapes such as wheeled robots or insect-like robots.

A lot of work in robotics was done before the arrival of this approach but relatively few

fully integrated robot systems able to run in real time were built. Most of this work was done

in the assembly area1, and only a few places such as Stanford (Shakey [Nilsson, 1984]) and

Carnegie Mellon (CART [Moravec, 1979]) experimented with mobile robots. The main prob-
1Assembly robots are not able to move from the location where they are fixed, in contrast with mobile robots

which are able to move around an environment. Relevant examples are the Stanford robot (Stanford University,
1971), the PUMA robot (Unimation, 1978), and the SCARA robot (University of Tokyo, 1979) [Groover et al.,
1986].

1
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lem for these experiments was to make the robots perform in real time in a real environment

such as a laboratory. Because of the great amount of sensor information provided by cameras

and other kinds of sensors, and the way these sensors were interconnected to the actuators, it

was (and still is, in some cases) extremely difficult to process all the data and produce an out-

put from the actuators in a short enough time scale to make the robot explore its environment

in a reliable way. The generally poor performance of robots in anything approaching an un-

constrained environment suggested a fundamental problem existed. Disagreements about the

nature of this problem and the best ways of finding a solution arose. The Behaviour-based ap-

proach emerged from these disagreements, differing from the Symbolic functionalist approach

to intelligence (GOFAI2) [Haugeland, 1985] in claiming that intelligence is not caused by a

set of facts and rules explicitly represented and manipulated inside the agent, but by a set of

behaviours resulting from the interaction of the agent with the environment [Brooks, 1991].

Brooks’ robots were able to perform simple tasks such as collecting empty soda cans in a lab-

oratory, learning to walk, and avoiding obstacles. This, as a first step towards robot autonomy,

was a successful start. However, the scalability of this approach is not clear. Besides Brooks’

Behaviour-based approach, several other architectures have been implemented such as the RAP

system [Firby, 1989], the RUR (Really Useful Robots) project [Nehmzow et al., 1989], Touring

Machines [Ferguson, 1992], schema-based control architecture [Arkin and Hobbs, 1993] and

tele-reactive architecture [Nilsson, 1994].

Nowadays in the robotics community there is a general agreement about the four levels of

competence required by a robot in order to navigate autonomously. These competences are ob-

stacle avoidance, map building, localisation and path planning. In other words: a robot capable

of surviving and performing some specific task in a dynamic environment — whose structure

is being constantly modified in an unpredictable way — without any specific knowledge of it,

is “autonomous”.

This is the dream. The reality, as addressed by Hallam [1991], is far away from it, the main

problem being the lack of an appropriate methodology for designing robots. Hallam argues that

the problem of “intelligence” in an autonomous robot can be analysed as an orchestration of

different levels of thought and action such as engineering the environment, altering the robot’s

morphology, altering the space of actions and altering the control strategy. Though, because of

the trade-offs existing among these levels, a different problem arises: how do we choose the

“right” level to work in?

Another important issue on the search for a robot design methodology is the lack of com-

plete benchmarking. Hallam and Hayes [1997] explored the possibilities and consequences of
2Good and Old Fashioned Artificial Intelligence.
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introducing a benchmarking in the field of robotics research, addressing the implications of

standardisation on what they consider to be the three main components of robotic design: ex-

perimental platform — which constrains the kind of the research tasks that can be performed;

task — does a suitable set of tasks, neither too generic nor too specific exist?; and environment

— the implications of the environment’s properties on the performance of the agent are not

straightforward. Hallam and Hayes see the problem as how to constrain these components,

suggesting the constraint of two of them — task and environment — as the more promising.

In fact, as Hallam and Hayes [1997] argue, “the art of robotics is the design of embodied

agents that act in physical environments to achieve customer-specified tasks”. This can be seen

nowadays in the popular robot contests and games (see, for example [Lund, 1999; Durá and

Malcolm, 2000]) from which interesting applications could be scaled up.

1.1.2 The Physics is out there

The environment is full of cues unexploited by the sensors. For instance, most of the com-

mercial robots available come with fixed ultrasonic sensory configurations (e.g. the commonly

known Walter’s Sonar-ring [Walter, 1987]) which do not allow exploitation of the physics of

echolocation (e.g. Doppler-shift estimation) as addressed in chapter 2. However, an intelligent

use of a single (or limited number of) dynamic sensor(s) rather than the dumb use of lots of

static sensors would allow these cues to be extracted as will be seen along this dissertation.

One of the pilars in robotics is sensing. Heale and Kleeman [2000] believe in that “map

building, localisation and path planning in robotics are not limited by algorithms but by the

sensors”. On the same idea, this work is focused at the perceptual level, with the aim of

exploiting the sensory capabilities of the robot while keeping the coupling between sensing

and action before working at any higher level. Considering the path from the sensors to the

actuators as a chain in which every link plays an important role, I believe that perception, the

first link of the chain, is the most important. All the information not provided by the sensors will

need to be deduced, somehow, by means of a more complex architecture or more processing

time. Thus, the aim is to extract all the relevant information from the environment by exploiting

the physics of the sensors. The fundamental idea behind this approach is, as stated by Walker

et al. [1998a], that “agent-environment interactions should be characterised and investigated in

terms of the physical principles governing the operation of an agent’s sensors (or, equivalently,

actuators) throughout the execution of a specific task. This is somewhat of a departure from

other computational approaches which study perception in terms of internal representational

schemes and behavioural control architectures”.

Looking at nature many examples of this can be seen. The example most relevant to our
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work and the one which became our source of inspiration is bat biosonar. Bats exhibit navi-

gation and prey-capture skills that if duplicated in a robot would be the envy of any robotics

engineer. “All the neural computations needed to perform the estimation tasks underlying the

acquisition of vital information about the environment occur within a brain the size of a large

pearl” [Suga, 1990]. Stimulus ensembles on which these tasks have to be carried out range

from single-target situations (e.g. track an insect in mid-air) to structure-rich environments,

where each echo is a superposition of reflections from many reflecting facets.

Another important factor taking part during the bat’s perceptual process is dynamics: bats

are mobile animals; they often echolocate on the wing and can move their heads and ears as

well as the nose or mouth whenever they emit echolocation signals. As we will see in the

background section concerning bats in the next chapter, bat ear dynamics allow environment

cue extraction while navigating.

However, how can all this be relevant to robotics? The relationship between bats and robots

arises because the sensor interpretation problems of bats, while navigating in cluttered envi-

ronments such as forests, are very similar to those of mobile robots provided with ultrasonic

sensors when navigating in laboratories. Moreover, the constant frequency part of the pulses

emitted by narrowband echolocators is analogous to the one typically emitted by robotic ultra-

sonic sensors in terms of bandwidth. Hence, a better understanding of how these perceptual and

motor mechanisms actually work in bats could improve the design of sensors and controllers

for mobile robots.

1.2 Motivation

The natural creature which triggers my curiosity is the bat. Hence the aim of this thesis, in a

very simple and concise way, is to extract ideas from bat biosonar (the most accurate airborne

Sonar system known) and do engineering (i.e. replicate these ideas on a robot) with them.

Moreover, the motivation underlying our work is to investigate how simple and dynamic

devices, coupled appropriately to their environment through sensors and actuators, can robustly

achieve tasks in a noisy auditory environment. To address this issue I use robotics as a mod-

elling medium for studying the role that dynamically generated acoustical cues — such as

Doppler-shifts — may play in bats’ 3D acoustic perception.

To do this, I use a sensor consisting of one emitter and two receivers (as the ears) provided

with independent panning and tilting and located one on each side of the emitter, devised by

Peremans et al. [1997]. The emitter and receivers are mounted on a head which can also pan

and tilt, providing the sensor with 4 independent degrees of freedom (DOF) in total. This
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biomimetic sensor, henceforth called the sonarhead, allows modeling different strategies that

might be used by bats to actively explore their environment as we will see, together with the

rest of the platform used in this work, in chapter 3.

1.2.1 Why Sonar?

Sonar, which stands for Sound Navigation And Ranging, has been widely used in the robotics

community as a means of range measurement. However, despite some successes, results have

been disappointing as pointed out by McKerrow and Hallam [1990], Leonard and Durrant-

Whyte [1992] and Peremans et al. [1993] among others.

As we will see in detail in the next chapter, we believe that the reason for this bad perfor-

mance is due to the fact that most research on ultrasonic sensing in mobile robots has suffered

from the ‘ultrasonic sensor = Polaroid range sensor’ fallacy. This sensor, by extracting Time-

Of-Flight (TOF) for the first echo only, discards most of the information present in the echo

signal. Thus it is necessary to perform extensive post-processing on a large number of range

readings in order to construct consistent and reliable environment models from them.

It is the author’s belief that Sonar for mobile robotics has not been fully exploited. The

motivation for this work is therefore to show how current ultrasonic sensing in mobile robotics

can be improved using Sonar in an intelligent way instead of using more powerful — and

expensive both in terms of cost and of processing time — equipment, such as vision cameras

or laser range sensors.

1.2.2 Why Biomimetic?

“How do they do that?” is a common question when wondering about how a living creature

performs a particular task. In fact this curiosity, arising from the incredible versatility, reliabil-

ity and adaptiveness of animal behaviour, is the reason why we decided to follow a biomimetic

approach, i.e. extract ideas from nature on how bats use biosonar and implement them on a

robot. However, it is important to clarify that nature does not always provide the best solution

to an engineering problem. For instance, aircrafts fly much faster using engines than birds do

by fluttering their wings.

Recently there has been an increase in researchers of different areas of Artificial Intelli-

gence and Computer Science following this biomimetic approach or relating somehow their

work to it. As Lee [1996] says,

“...there is a recent ‘back to nature’ trend: Supporters of Artificial Neural Net-
works continue to cite neuroscience as their inspiration and justification; genetic
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algorithms evolve problem solutions in a Darwinian way; the new field of ‘Arti-
ficial Life’ is concerned with the study of artificial systems which exhibit lifelike
behaviours...”

From the other side, as a Robotics approach to Biology, biologists are becoming interested

in creating tools that will allow them to explore the sensory world of animals with synthetic

observers and test hypotheses for adaptive sensing behaviour in real-world conditions. Hence,

Biorobotics, as a direct link between biology and robotics at the level of real sensori-motor

systems and robotic hardware, is a novel and interesting field of research which is aimed at

contributing to both science and engineering. We will go back in detail to the biomimetic

approach in chapter 2.

1.3 Objectives

The main objective of this work is to improve the design and use of narrowband ultrasonic

sensors for mobile robot navigation by applying ideas from bat biosonar.

More specifically, these ideas are related to

� the estimation and use of Doppler information in mobile robotics.

� the implementation of active sensing methods in a physical robot for 3D object localisa-

tion.

� ear morphology design for improving the capabilities of a biomimetic Sonar sensor using

evolutionary techniques.

Also, a secondary objective of this work is to develop a robotic tool which will provide

useful insight into animal feedback and control systems, complementary to those from a direct

biological investigation.

1.4 Structure of the dissertation

This dissertation is structured in eight chapters (including this one) in the following way:

Chapter 2 gives a review of the fields of ultrasonic sensing in mobile robotics — from

the physics of the transducer to robot navigation — bat biosonar — only the topics relevant

to this work — and the biomimetic approach — a novel methodology for both science and

engineering.
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Chapter 3 describes RoBat, the biomimetic platform with which the experiments described

in this work were performed. It also summarises the research topics investigated in this disser-

tation.

In Chapter 4, two models of the signal processing performed by the bat’s cochlea, together

with two methods of estimating Doppler-shift from the return echoes after cochlear processing,

are implemented and compared. It also addresses the problem of multiple reflectors in terms

of error in Doppler-shift estimation and discusses the reliability of assuming a single wider

reflector.

Chapter 5 investigates how Doppler can be used in indoor environments as a frequency cue

for robotic tasks taking inspiration from bat behaviours. A Doppler-based controller suitable

for collision detection and convoy navigation in robots is devised and implemented in RoBat.

In chapter 6, the 2D object localisation method devised by Barshan and Kuc [1992] is

adapted to the geometry of the sonarhead and implemented on RoBat. The ear movement

technique to recover elevation cues proposed by Walker [1997] and tested in simulation by her,

Peremans and Hallam [Walker et al., 1998b], is also implemented and tested on RoBat. Both

techniques are finally integrated in a preliminar 3D tracker system.

Chapter 7 presents a joint work with Kim, Kämpchen and Hallam on designing optimal

ear morphology, inspired by the CF-FM bat’s large pinnae, for improving the echolocating

capabilities of the sonarhead.

Finally, chapter 8 summarises and discusses the contributions of this work, drawing con-

clusions and outlining areas for further work. Formulas, parameters and technical information

are included in appendices A, B and C.



Chapter 2

Background and methodology

2.1 Introduction

It is the intention of this chapter to give an overview of the different disciplines related to this

work. For the sake of clarity, this chapter has been divided into three main parts that will be

briefly summarised next.

The first part covers the field of ultrasonic sensing in mobile robotics, from the physics of

ultrasound to the intelligent vs. dumb uses of the Polaroid range sensors. It also describes other

approaches to the use of Sonar and, finally, advocates exploiting physics, taking inspiration

from the behavioural aspects of bat biosonar, as the intelligent way of using these sensors.

Bat biosonar is visited in the second part, in which an overview of bat echolocation — the

most accurate existing airborne Sonar system — is given, covering some neurophysiology and

ethology, and pointing out some aspects from which to extract ideas that can be applied to

ultrasound-based navigation in mobile robots.

Finally, the third part of the chapter introduces the biomimetic approach as the methodology

used in this work, i.e. the way in which to integrate the two previous sections and do both

science and engineering with them. Examples of biorobotics work in general, and biomimetic

Sonar in particular, will be given. Some of the concepts covered in this chapter will be extended

in subsequent chapters.

2.2 Ultrasonic Sensing in Mobile Robotics

2.2.1 Introduction and basic concepts

A conventional review of mobile robot navigation would consist of a list of referred work di-

vided into several sections according to the different competences with respect to mobile robot

8
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autonomy, that is, obstacle avoidance, map building, localisation and path planning. Very

complete surveys can be found in [McKerrow, 1991; Leonard and Durrant-Whyte, 1992; Lee,

1996]. However, in this section we will focus on the engineering goal of this work, i.e. ex-

ploiting the physics of the ultrasonic sensors, taking ideas both from engineering and nature in

order to improve mobile robot navigation. Therefore this section is organised in terms of the

different kind of approaches to and uses of Sonar sensing in mobile robotics.

Despite the different architectures, algorithms and sensor configurations, most of the au-

thors of the extensive ultrasound literature somehow coincide in focusing on reliability prob-

lems when using ultrasonic sensors for navigational tasks. In fact, the use of ultrasonic sensors

for mobile robot navigation has been under-rated for many years. As suggested by Lee [1996],

“many researchers, frustrated by problems of wide beam width and unwanted reflections, have

decided that ultrasonic sensing is only suitable for short-range obstacle avoidance.”. This re-

sulted in the use of other sensors such as vision cameras — which are more expensive and

require much more processing time — laser range sensors and also new sensors such as LI-

DAR — an acronym for light detection and ranging — [Adams, 2000].

A good approach to ultrasonic sensing in mobile robots involves using a realistic model of

the sensor, as described in section 2.2.3. Extensions of this approach (including ours) which

acquire and post-process the echoes in different ways will also be introduced there.

Non-contact sensors used for measuring the distance from the body of the robot to any

object within a specific range are called range sensors. These sensors are based on two physical

principles: the time-of-flight (TOF) of a pulse and triangulation. TOF sensors measure the time

between the pulse is emitted and when the return echo is detected. Half this time is multiplied

by the speed of the pulse in the medium (air or water) to calculate the distance to the object

[McKerrow, 1991]. Radar (an acronym for RAdio Detection And Ranging) is the most common

example of TOF range measurement. It uses reflected electromagnetic radiation to estimate the

velocity and location of a targeted object. In indoor mobile robotics, Radar is not used because

its wavelength is too long for the distances involved. Ultrasound1 is used instead because its

much slower speed makes TOF measurements over short distances feasible.

Triangulation sensors (such as laser sensors) measure range by geometry using two dif-

ferent view-points at a known distance from each other. The two view-points can be achieved

using multiple sensors or a single mobile sensor exploited in an intelligent way e.g. as described

in [McKerrow, 1991].

Combining these two principles — TOF and triangulation — intelligent ultrasonic sen-

sors for mobile robotics can be built, relevant examples being [Peremans et al., 1993, 1998a;
1Any acoustic wave above the normal range of human hearing, i.e. above 20000 Hz.
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McKerrow, 1993; Stanley and McKerrow, 1997; Kuc, 1993, 1996, 1997] amongst others.

There are several ultrasonic transducers available on the market from different manufactur-

ers. As we will see in this section, the Polaroid ultrasonic range sensor2 has the greatest market

penetration in the mobile robotics community. In this work, all the assumptions made and the

uses of the word transducer relate to the Polaroid 6500 electrostatic version [Biber et al., 1980;

Maslin, 1983].

2.2.2 The physics of the ultrasonic transducer

As we aim to exploit the physics of our sensor (the biomimetic sonarhead described in the next

chapter), the first thing to do is to understand how the ultrasonic transducers contained on it

actually work.

Peremans [1994] investigated the linearity assumption of Anke’s multiple electrostatic

transducer model [Anke, 1974] for the Polaroid transducer. If Anke’s assumption holds true,

i.e. the transducer behaves like a linear system in which the emitter and receiver are perfectly

co-located, the spectrum should be equal to the product of the transfer function and the spec-

trum of the input signal: �
Y � f � �����

He � f � Hr � f � ���X � f � �

From the experimental results described in [Peremans, 1994], despite some nonlinear ef-

fects around the 100 kHz part of the spectrum — due to the high signal amplitudes at emission

time — we can assume the linearity of the system. The nonlinear effects — 2nd harmonic

distortion which contains approximately 0.29% of the energy of the signal — can be ignored

because almost all acoustic energy is concentrated around the 50 kHz frequency band, which

is the one we are going to work with.

Continuing with the physics of the transducer, the Polaroid can be considered as a moving

piston and therefore its radiation pattern will be (e.g. [Braddick, 1965])

Dpiston � θ � � J1 � kasin � θ �����
kasin � θ � �

with θ as the directivity angle, a the radius of the transducer (13 mm in our system), J1 a first

order Bessel function, and k
�

2π f 	 c, being f the frequency at which the transducer is going

to be used (50 kHz in our system) and c the speed of sound in air (approx. 345 m 	 s in indoor

environments3 ).

In our system, the first three zeroes of the Bessel function: kasin � θ � � 3 
 8317, 7 
 0156 and

10 
 1735 correspond to the angles θ
�

18 
 8 � , 36 
 3 � and 59 
 2 � . These zeroes, which correspond
2It is important to differentiate between sensor and transducer. The latter is part of the former, which as a whole

returns a sensed value, e.g. the measured range in the case of the Polaroid range sensor.
3c � 331  0 � 6T � m � s � , T being the temperature in the Celsius scale.
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Figure 2.1: Polaroid transducer directivity (simulated data) for radius=13mm (left) and ra-
dius=26mm (right) at f

�
50 kHz (radial units in dB).

to the transition between lobes in the directivity pattern (as seen in figure 2.1 (left)), introduce

“blind spots” that result in the impossibility of detecting a reflector if positioned at any of these

angles. Figure 2.1 shows two different simulated directivity patterns for transducers of different

size.

For circumventing this constraint, some systems use chirped-pulses instead. In that case,

there will be multiple radiation patterns due to the many frequency components of their spectra.

Since our system sends constant frequency pulses of 50 kHz, its radiation pattern will be the

one shown in figure 2.1 (left).

The half-width of the main lobe of our system is

Θ
�

arcsin � λ 	 a � � 15 �
λ being the wavelength (approximately 7 mm for f

�
50 kHz) and a the diameter of the trans-

ducer (26 mm in our system). However, as can be seen in figure 2.5, the radiation pattern is not

perfectly symmetrical. Due to this small asymmetry, an average value for the main lobe width

of roughly 26 � can be taken. This is clearly seen in figure 2.5, which shows the directivity

pattern of the Polaroid transducer normalised to 0 dB. As seen in the figure, the energy of the

main lobe decreases 40 dB at approximately 13 � .
There is also a physical effect in the airborne ultrasound that we should not forget about,

which is the atmospheric absorption of sound. The absorption of sound in air Hair is frequency

dependent and is given in [Peremans, 1994] by the transfer function

Hair � f � � 10
� α

�
f � r

10 exp ��� j2π f
2r
c
� �
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where α � f � is the absorption coefficient in dB/m at a frequency f , 2r the distance between

transmitter and receiver and c the speed of sound in air. In his thesis, Peremans [1994] used the

approximate analytical expression for α � f � derived in [Bass et al., 1972] to calculate
�
Hair � f � �

for objects at different distances (assuming a temperature of 20 � , pressure of 1 atm and a

relative humidity of 50%). In his experiments, as expected, absorption increased as distances

grew larger. An important effect of the strong frequency dependence of absorption is that it can

distort a large bandwidth pulse shape considerably. Fortunately, this distortion does not affect

the system used in this work which operates at narrowband signals of 50 kHz. From the data

in [Peremans, 1994] we can estimate an attenuation factor of roughly 0.3 at 3 meters distance

for this frequency.

Finally, summarising this section on the Polaroid transducer’s physics, we saw that almost

all acoustic energy is concentrated around the 50 kHz frequency band. In addition, the trans-

ducer acts as a notch filter (figure 2.1), the notches depending on the angle of the radiation

pattern which depends on the radius as seen before.

2.2.2.1 Types of reflectors in indoor environments

According to the size of the emitted pulse wavelength we can classify different types of objects

into two main groups with respect to their surface radius:

� Reflecting objects: for which the surface radius is larger than the wavelength of the

emitted pulse (6.9 mm in our case). The reflection may be specular (i.e., mirror-like) or

diffuse.

� Diffracting objects: with a surface radius smaller than the wavelength of the emitted

pulse.

In indoor environments, e.g. robotics laboratories, most objects produce reflecting echoes

except for particular cases such as facets of some objects, edges and the textures of some

surfaces which can introduce diffraction. In particular, large and acoustically smooth reflecting

objects produce specular reflections which maintain the integrity of the incident wavefront.

These objects produce loud echoes which are highly directional — determined by the angle

of incidence with respect to the surface — and independent of the pulse frequency. Some

examples from a transducer in which the transmitter (T) and receiver (R) are co-located (like

the Polaroid transducer) are illustrated in figure 2.2 and analysed next.

Figure 2.2 (a) shows a transducer emitting with incidence angle of 5 � and receiving an echo

with intensity

I ∝
exp

� 2mr σwall

r2 �
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(a) (b) (c) (d)

Figure 2.2: Echoes from surfaces with different orientation and visibility. (Adapted from
[Walker, 1997] with permission.)

σ being the effective target radius, m the energy attenuation constant — inversely proportional

to frequency — used for calculating the atmospheric absorption, and r the frequency inde-

pendent beam spreading term. In figure 2.2 (b), however, there is no echo received because

the reflected beam misses the receiver. In figure 2.2 (c) a reflection produced by a cylindrical

reflector can be seen. These kind of convex specular surfaces, typical of metal posts, intro-

duce beam spreading such that the incoming spherical waves are scattered to form new waves,

centered at the point of reflection and with intensity proportional to

I ∝
exp

� 2mr σconvex

r3 

Finally, diffuse reflections, which are produced by diffracting objects, can be seen over a

wide area (figure 2.2 (d)). In this case, the object of the figure produces scattering through both

reflection of the planar faces (specular) and spherical facets (diffuse) and through diffraction at

the surfaces in the shadow region. In this case, the intensity of the received echo is

I ∝ 3
exp

� 2mr σsphere

r4 

An attempt at modelling diffuse reflections of TOF Sonar was presented in [Gilkerson and

Probert, 1999]. However, after the paper was published, the authors found that in airborne

Sonar using Polaroid transducers and smooth targets, a diffuse model was not useful. The

experimental results described in [Gilkerson and Probert, 1999] were more likely to be due to

interference from small reflections from the edges of the planar targets4 .

Researchers agree about the three main groups of objects — depending on the type of echo

they produce — that can be found in indoor environments [Kuc and Siegel, 1987; Bozma and

Kuc, 1991; Leonard and Durrant-Whyte, 1991; Sabatini, 1992; Peremans, 1994; Kleeman and

Kuc, 1995]:
4Personal communication from Paul Gilkerson.
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Figure 2.3: Mirror-like T/R configuration of wall, corner and edge reflectors. (Reproduced
from [Walker, 1997] with permission.)

� Walls produce lossless reflections that appear like a perfect mirror to the acoustic waves.

The T/R transducer can be modelled by separate transmitter and receiver aperture (figure

2.3 (a)).

� Corners are defined as the line between two perpendicular walls forming a concave

dihedral. The angle of inclination of the equivalent receiver aperture is the negative of

that for the wall (figure 2.3 (b)). There is also a diffracted signal — originating from the

line of intersection between the two walls defining the corner — which is much smaller

than the reflection and thus can be ignored.

� Edges usually have dimensions smaller than the pulse wavelength and therefore produce

a diffracted echo. These echoes are characterised by a cylindrically diverging wave ema-

nating from the edge location (figure 2.3 (c)) which has very low amplitude and, in most

cases, is invisible to the robot.

Despite the difficulty for being detected from a single echo, corners and walls can be de-

tected from several consecutive echoes providing reliable cues as we will see in section 2.2.3.2.

2.2.3 The Polaroid range sensor fallacy

As mentioned at the beginning of this chapter, unsatisfying results were obtained by the robotics

community using ultrasonic range sensors. What was wrong with these sensors? In our opin-

ion, most research on ultrasonic sensors for mobile robots has suffered from the ‘ultrasonic

sensor = Polaroid range sensor’ fallacy [Peremans, 2000]. This sensor [Biber et al., 1980],

which is used in mobile robotics for determining the proximity of objects, converts the time of

the first amplitude measurement greater than a threshold into a distance value.
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This operation mode discards most of the information present in the echo signal such as

Doppler-shifts and incoming echoes from further reflectors. Even worse, wide beam-width

(due to the piston-like transducer’s radiation pattern), unwanted reflections (e.g. when ap-

proaching a concave reflector such as a corner) and diffracted reflected problems contribute

to worsen performance when operated in this way. Hence extensive post-processing has to

be performed on large numbers of range readings to construct consistent and reliable environ-

ment models out of them [Moravec and Elfes, 1985; Leonard and Durrant-Whyte, 1991]. From

the study of biological acoustic sensorimotor systems [Popper and Fay, 1995; Nachtigall and

Moore, 1988], however, we believe that much more information can be extracted from these

echoes. Doing so leads to improved robotic ultrasonic sensors [Peremans et al., 1998a].

An illustration of the performance of the Polaroid range sensor can be seen in the sketch of

figure 2.4 (left). In this figure, the sensor measures time t1 which is the time for the sensor to

detect the first echo exceeding the threshold value, ignoring a second echo from a further re-

flector. Figure 2.4 (right) shows a real example in which incoming echoes from three reflectors

at different ranges are plotted.
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Figure 2.4: Time-of-flight (TOF) estimation. Left plot: sketch of the conventional TOF ultra-
sonic sensor performance showing the envelope of an echo detected at time t1 and a further
ignored echo. Right plot: real data showing an echo from a close reflector (echo 1) and incoming
echoes from further reflectors (echoes 2 and 3).

The old Polaroid range sensor — the one implemented in cameras — used to send 1 ms

chirps — containing 56 pulses from 60 to 50 kHz — every 200 ms. These multi-frequency

chirps were used because the absorption coefficients of some materials at specific frequencies

can result in the lack of an echo. Also, a textured surface can produce echo cancellation by

producing sufficient phase shift for some parts of the reflected signal resulting in a destruc-

tive interference [McKerrow, 1991]. The problem with this configuration was that the Polaroid
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electrostatic transducer is made of a capacitor which is charged with a bias voltage by transmit-

ting a pulse. This voltage starts decreasing with time which affects the frequency resonance of

the transducer working in receiver mode. This resulted in false readings since in most cases the

60 kHz part of the echo was missed because of the transducer frequency response at that spe-

cific time, receiving only the lower frequency — near to 50 kHz — components of the chirp.

In other words, the decay of the bias voltage affected reception resulting in erroneous range

estimations.

The newer Polaroid 6500 Series range transducer [Polaroid, 1982] sends 16 cycles of a 49.4

kHz square wave pulse and therefore the frequency response problem does not exist anymore.

However, there is another false readings problem (as addressed by Lee [1996] among others)

when the reflector is located in a low-amplitude part of the polar directivity pattern (see figure

2.5). In such cases, the capacitor which measures the TOF takes longer to charge and reach the

threshold, resulting in a wrong estimation of the range.

Figure 2.5: Polaroid (6500 Series) directivity pattern at 50 kHz.

The only advantage of the TOF implementation is its simplicity of use since multiple re-

flections from the same object (occurring at later times than the first reflection) are ignored.

However, as we stated at the begining of this section, there is an important drawback: the fact

that the sensor fires as soon as an echo reaches the threshold level results in the rest of the

incoming data from that echo being lost. This data is necessary for determining properties of

the reflector such as shape, motion, etc.

Another problem with the Polaroid transducer which affects all configurations is ringing,

consisting of the reverberations produced when the transducer is acting as an emitter. In such

case, false readings at very short distances could happen. The Polaroid sensor circuitry prevents

this problem by disconnecting the receiver circuitry for 2.38 ms on echo reception resulting in

a “blind-zone” for the transducer of approximately 30 cm [Polaroid, 1982].
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How has the Polaroid transducer been used? In the literature we can find, at least, two

well known approaches to the use of ultrasound sensors for navigation in mobile robots: The

grid-map approach and the feature-based approach. These will be reviewed next.

2.2.3.1 Dumb sensing

The grid-map approach, which uses rectangular cells as map primitives whose value denotes

whether the cell is occupied or empty, was originally proposed by Moravec and Elfes [1985].

This idea used a Sonar beam modelled by probability distribution functions defined on a dis-

crete grid. Since then, a large number of papers have further elaborated on the basic ideas

[Elfes, 1987; Matthies and Elfes, 1988; Elfes, 1989, 1992].

Using the same idea, Borenstein and Koren [1989] developed the Virtual Force Field (VFF)

method in which the target applied an attractive force to the robot and obstacles applied repul-

sive forces. This approach had severe problems with motion stability when travelling within

narrow corridors, because of the severe repulsive effect of both walls being easily unbalanced.

Later, Borenstein introduced the Vector Field Histogram (VFH) method which aimed to

achieve a smooth motion of the robot among densely cluttered and unexpected obstacles [Boren-

stein and Koren, 1990]. This method used a similar approach to the certainty and occupancy

grids used by Moravec and Elfes [1985], although it worked faster since it incremented only

one cell per range reading instead of all the cells affected by the range reading.

The grid-map approach is theoretically fairly well founded and has been widely used. How-

ever, there are several weaknesses which lead us not to support this approach. The main one is

that the grid cell does not correspond with an acoustically meaningful feature of the environ-

ment. Even worse, the updating of the grid cells requires constant localisation. Also, due to

the low information rate provided by the Polaroid range sensor, many measurements have to be

collected in order to build usable maps [Peremans, 2000]. In our opinion, a higher level of au-

tonomy — e.g. path planning — can be easily executed by a robot from a grid-map. However,

the difficult part is getting the grid-map from Sonar readings because of the problems stated

above.

Many of the people who followed Elfes’s grid-map approach used different models for the

range sensors (applicable to both ultrasonic and infra-red (IR) sensors) [Oriolo et al., 1995;

Matia and Jimenez, 1998; Pagac et al., 1998; Urdiales et al., 1998, 1999] in order to work out

which cell was the cause of the range echo. These models arose as an attempt to deal with

the uncertainty of these kind of sensors. They estimate, by means of more or less complex

functions, the space occupancy probability from the readings of the sensor, i.e. the probability

of a given cell is occupied.
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2.2.3.2 Intelligent sensing

As in [Walker, 1997], we will use the definition of “intelligent sensor” given by Barshan and

Kuc [1990]: “Intelligent sensors are sensors in which the signal processing algorithms interpret

the observed data, the interpretation being based upon the physical principles governing the

sensor and a model of the environment that is being examined”.

In such terms, people such as Hallam [1984], Kuc and Barshan [1989], Leonard and

Durrant-Whyte [1992], Kleeman [1992], McKerrow [1993], Lee [1996] and Peremans et al.

[1993] among others suggested that reliable range readings can be obtained from Sonar if a

realistic model of the sensor is used. At this point, the feature-based approach emerged, con-

verting range measurements into features available in man-made environments, such as walls,

edges, corners, cylinders, etc., using such features as building blocks for constructing maps

[Peremans, 2000]. This is what we consider the beginning of the good approach to intelligent

ultrasonic sensing in mobile robots. Some of the above researchers used the Polaroid range

sensor whereas others used more advanced sensor configurations as we will see in section

2.2.4.

The Edinburgh feature-based navigator [Hallam, 1984; Hallam et al., 1989; Nehmzow

et al., 1989] assumed no a priori map, taking account of explicit environmental motion which

was being used for predicting future states determined by a Kalman filter as in [Hallam, 1984].

Using the same idea but with the limitation that the environment was needed to be known a

priori, a sonar based localisation algorithm for known indoor environments containing geomet-

ric beacons tracked using an extended Kalman filter was presented in [Leonard and Durrant-

Whyte, 1991]. The algorithm was implemented in two different configurations: a vehicle

equipped with a rotating sonar and a mobile robot using a ring of six static sonar transduc-

ers. From the results obtained Leonard and Durrant-Whyte addressed the tradeoffs between

the use of servo-mounted sonars versus a ring of fixed sonars, the main advantage of the servo-

mounted sonar being the local support inherent in a densely sampled scan which makes data

interpretation easier compared with a single range measurement obtained by an isolated sensor

in a ring.

McKerrow [1993] describes a mobile robot provided with a conventional ring of ultrasonic

sensors capable of mapping a room. The sensors are modelled with an arc model which allows

an object to be detected inside an arc with radius equal to the range and arc angle equal to

twice the beam angle. As a result of fusing the readings from the sensors with the motion of

the robot, a surface can be detected as a sequence of arcs.

Lee [1996] exploited the map-building and exploration capabilities of a simple mobile

robot equipped with just one ultrasonic transducer. In that work Lee successfully investigated
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different methods for map-building, localisation and path planning. He also tested several

exploration strategies, obtaining his best results with hybrid architectures combining reactive

navigation with map-based strategies.

All the work on ultrasound for mobile robots seen so far has something in common: Since

the sensor used is the Polaroid range sensor there is no opportunity for acquisition and post-

processing of the echoes. Instead, a semi-reliable range value is obtained. Amongst the in-

formation missed by using this sensor configuration are true-TOF (i.e. a more reliable range),

Doppler-shifts, and phase.

2.2.4 Other ways of using Sonar

Next we will see other ways of using Sonar in mobile robots with respect to sensor configura-

tions: call emissions, phase coherence5 and echo processing.

Kuc and colleagues exploit the physics of sound propagation using the Polaroid trans-

ducer in different configurations, extracting range and amplitude information from the received

echoes.

Kuc and Barshan [1989] started working on a physically based model of acoustic sensor

robot navigation by addressing the problem of differentiating reflections from different objects

as walls, corners and planes. In [Barshan and Kuc, 1990] they showed that planes and corners

cannot be differentiated using a single transducer with the transmitter and receiver co-located

(T/R) as in the Polaroid. They suggested using an array of two transducers (both in T/R mode)

instead. With such a sensor configuration, corners and planes can be discriminated by exploit-

ing the difference in sign of the virtual receiver characterising these surfaces as seen in figure

2.3 (a) and (b).

Kuc and Viard [1991] developed a strategy for guiding an autonomous vehicle equipped

with a Polaroid ultrasonic sensor through an unstructured environment composed of specular

surfaces. Their system avoids collisions with obstacles using a scanning procedure which

exploits the physics of sound propagation, being capable of differentiating between the echoes

reflected from surfaces and those diffracted from edges. Further work by Kuc and colleagues,

this time using a biomimetic approach, will be analysed in section 2.4.4 of this chapter.

Other researchers used Barker codes or perfect codes (pseudo-random binary coded wave-

forms imported from RADAR theory [Berkowitz, 1965; Burdic, 1968]) in conjunction with

matched filters for accurate estimation of target range.

Peremans and colleagues used Barker codes and matched filters in their work. After suc-

cessfully experimenting with a single Polaroid sensor [Audenaert et al., 1992], they built a
5Regarding Sonar systems, a coherent system is a system which keeps records of the phase of the received echo.
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high-resolution sensor based on tri-aural perception capable of determining the position of ob-

jects in 2D (distance and bearing angle) using the information contained in one single snapshot

of a moderately complex scene such as an office environment [Peremans et al., 1993; Peremans,

1994]. The sensor, which was composed of three ultrasonic sensors (one transmitter/receiver

and two extra receivers), could also discriminate between different types of reflectors such as

walls and edges. They also employed sensor movement for distinguishing between corners and

planes. The results were obtained through determining the arrival times of the echoes arriving

at the three receivers. This differs from the conventional TOF ultrasonic sensor which pro-

cesses only the first echo to arrive at the receiver as we saw earlier in this section. They also

compared their sensor performance with those of Matthies and Elfes [1988] and Moravec and

Elfes [1985], arguing that the main performance difference lies in the number of measurements

required to arrive at comparable results.

DSPs are very powerful tools for signal processing applications, performing operations

such as FFT and convolution products extremely fast. These operations have direct application

in Sonar processing. For example [Heale and Kleeman, 2000]’s system consists of a real time

DSP Sonar echo processor mounted on a mobile robot which allows on-the-fly map building

with a 0.1 degree error in bearing estimation. This high map-building speed is possible because

their system permits repetition rate of 27 Hz for ranges up to 5.4 meters 6.

Another way of using Sonar is the CTFM (Continuous Transmission Frequency Modu-

lated) sensor, which emits a sawtooth frequency modulation pattern that allows mapping range

into frequency by mixing the echo with the emission. This kind of sensor permits efficient

pattern classification based on sound signatures as demonstrated by McKerrow’s group in

plant species classification [Harper and McKerrow, 1995; McKerrow and Harper, 2001] and

landmark-based navigation in outdoor environments [Ratner and McKerrow, 1998, 2000].

Along the same lines, Politis and Probert [2001] did interesting work on textured surface

classification for robot navigation based on a geometric scattering model. Among the different

surfaces their system recognised were hard smooth floors, carpets, asphalts and tile patterns.

One particular usage of CTFM Sonar has been in the development of prosthetic devices for

the blind [Kay, 1980, 1999]. CTFM systems allow the patient to classify different objects and

find their way by distinguishing different sound signatures. However, a common problem with

this kind of application is that the disabled patient tends to reject the prosthetic device because

it interferes with the sense they rely on most: hearing.

Another interesting example is the work done by Blanes and colleagues [Blanes et al., 1998;
6Our system (RoBat) can achieve repetition rates of 18 Hz (monaural) or 12 Hz (binaural) for 3 meter ranges as

we will see in the next chapter.
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Blanes, 2000]. Their system consists of a sensor which can rotate 360 � made of cheap piezo-

ceramic transducers. The two emitters and two receivers are located in such a way that they can

be used in two different configurations: single emitter and double emitter. The former generates

pulses with a main lobe of 30 � whereas the latter, due to the superposition of both directivity

patterns when both transducers emit synchronously, generates a much narrower (5 � ) lobe. Their

system uses a coherent demodulator which extracts the phase and quadrature components from

the echoes reducing the bandwidth of the signal from 40 kHz to 4 kHz and therefore reducing

the number of samples needed.

In the literature we also find examples of target localisation and classification using artifi-

cial neural networks. Barshan continues her previous work with Kuc on feature-based target

differentiation from amplitude and range values [Barshan et al., 2000]. These values are now

fed into a neural network which allows a more robust differentiation of objects. This increase

in robustness suggests that using neural networks to process Sonar data and the exploitation of

amplitude measurements may be useful in future applications.

Ecemis and Gaudiano [2000] used an ultrasonic transducer mounted on a mobile platform

to perform object recognition in two different ways: first, using the power spectral density of

the echoes, and second, using the envelope function. They trained a fuzzy ARTMAP neural

network [Carpenter et al., 1992] to recognise different types of objects, such as a 1-litre plastic

water bottle, a metal trash can and a LEGO wall, from different ranges. The envelope func-

tion proved to be better for almost all the cases. From our point of view, these results make

sense since not much frequency information — apart from Doppler shifts, which they do not

use because of taking static measurements — can be expected from the Polaroid transducer

when sending constant frequency pulses. Despite good results, Ecemis and Gaudiano note the

difficulty of recognising objects using Sonar if they are approached from arbitrary positions

because of the great rate of change in the echo envelopes.

2.2.4.1 Our approach

In this work we also advocate an intelligent sensing approach, i.e. exploiting the physics of the

agent and the environment as in some of the work reviewed above. Our system, which is fully

described in chapter 3, has control of the emitted call and echo reception, and can be phase

coherent if necessary. Thus our system is conceived to be:

� simple: using one single dynamic sensor instead of several static sensors (as in the sonar-

ring of most commercial robots).
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� embedded: because of the design and configuration of the sensor and the way it is

appropriately coupled to the robot’s body.

� informative: the whole echo is acquired and post-processed in search of valuable infor-

mation (cues from the environment) instead of only the first peak as in the Polaroid range

sensor.

At this point, there is a significant difference in the way we make use of Sonar with respect

to the different uses previously described in this section. The previous approaches apply en-

gineering techniques such as Radar theory, Barker codes, matched filtering and CTFM Sonar

among others for the sake of improving performance. In contrast, in this work, because of our

interest in how bats echolocate, we use biologically-plausible models — which do not nec-

essarily provide the fastest performance — instead. Thus we take a different approach i.e.,

biomimetic, as a way of implementing in artificial devices ideas extracted from nature.

2.3 Echolocating bats

2.3.1 An introduction to bat echolocation

Bat biosonar has been widely studied since Griffin [1958] demonstrated how bats can orient

themselves by Sonar. In fact, bats can successfully locate and hunt insects in acoustically clut-

tered environments (e.g. forests and caves) with extreme accuracy by the use of echolocation.

Echolocation is the ability of bats to localise targets based on the acoustical information

contained in reflections of their own emitted ultrasound pulses [Suga, 1990]. In nature we can

find examples of underwater echolocation, such as that performed by dolphins, and airborne

echolocation as in the case of bats. However, among the more than 800 different spices of bats,

not all can echolocate. Focusing on the echolocating ones, these can be divided into two broad

non-taxonomic groups based on the time-frequency-structure of their echolocation pulses: For

FM bats (FM = frequency modulated), such as the big brown bat Eptesicus fuscus, echolocation

calls are multi-harmonic chirps. The duration and bandwidth of the frequency sweep as well

as the shape of the instantaneous frequency as a function of time vary between species. The

frequency range covered extends up to approximately 200 kHz. In CF-FM bats, echolocation

pulses are often dominated by prolonged CF ( = constant frequency) signal portions, although

frequency-modulated “tails” are always present as well. Allocation of energy to the CF and FM

portions of a signal varies with behavioral context [Tian and Schnitzler, 1997]. In this work,

we focus on the latter group i.e., the CF-FM bat.
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Two families of CF-FM bats, Rhinolophidae and Hipposideridae, have been the most ex-

tensively studied. Well known examples are the Greater Horseshoe bat Rhinolophus ferrume-

quinum and the Mustached bat Pteronotus parnellii. Instead of emitting their calls through the

mouth as most FM bats do, Rhinolophids emit through their nostrils, which change shape for

focusing and directing the ultra-sound waves as desired [Nowak, 1994].

Figure 2.6: Rhinolophus ferrumequinum (Photos from [Nowak, 1994]). Copyright by W. Wis-
senbach and P. Rödl.

The fact that sound waves are attenuated as they travel through air suggests that echoloca-

tion is a short ranging localisation system. At higher frequencies, as in the case of Rhinolophus

ferrumequinum which emits a 83 kHz frequency pulse [Pye and Roberts, 1970], the attenua-

tion effect is even more significant although the target resolution increases and smaller prey

become detectable [Walker, 1997; Jones, 1999]. After arriving at the target, the bat’s emitted

sound wave is reflected by the surface of the object. The surface of a reflector plays an impor-

tant role: convex and rough surfaces spread the sound front in all directions, the amplitude of

the echo decreasing proportional to 1
r3 or faster, where r is the range of the target. In contrast,

the attenuation of the echo reflected by a scattering surface such as a large wall is proportional

to 1
r2 [Walker, 1997]. Also, if points on the surface have different distances to the bat, the echo

will be the summation of all reflections. Phase cancellations and amplifications can occur, in

which case duration of the echo is elongated. The information — cues from the environment

— that can be obtained from an echo by an echolocating bat can be summarised as:

� Range. The delay of the echo gives the range (distance) of the bat to the reflector.

� Azimuth angle. Given by differences in the arrival time, phase and amplitude between
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the two ears.

� Elevation angle. Given by interference patterns of sound waves reflected within the

structure of the pinna. This happens only in FM bats like the big brown bat Eptesicus

fuscus in which target elevation estimation relies on pinnae morphology instead of pinnae

motion as in the CF-FM bat.

� Relative speed. Moving targets such as flying insects produce a Doppler-shift in the

echo’s carrier frequency which provides the relative velocity between the bat and the

prey (target).

� Shape. The amplitude of the echo can provide information about the shape and size of

the reflector, as described above.

� Frequency patterns. The wing movements of insects modulate the frequency of the

emitted call producing energy patterns along the frequency spectrum which can be used

for detecting specific fluttering prey.

In the next two sections we will see how these cues are extracted and used from neurophys-

iological and ethological points of view.

2.3.2 Neurophysiology of the bat’s auditory system

The bat’s auditory system is structured in the same way as that of other mammals having

an external, a middle and an inner ear (see e.g., [Pickles, 1982]). Incident sound is directed

towards the ear canal by the pinna, a cartilaginous flap of the external ear which is very mobile

and has a highly convoluted surface in many bat species. This mobility plays an important role

since the bat’s ears have a directional sensitivity, i.e. the same echo is perceived by each ear

with different amplitudes as the angles of the incoming sound differ between the ears.

As seen in figure 2.6, CF-FM bats have large pinnae. This might compensate for the loss of

intensity in the echo due to the high frequency of their call. With large pinnae, the perceptual

volume gain — the increase of sound pressure — of the ear can be maximised [Obrist et al.,

1993]. Moreover, muscles in the inner ear can regulate the size of its aperture for reducing the

amplitude of loud sound [Nowak, 1994].

The ear canal ends up at the tympanic membrane which passes the acoustic signals to the

cochlea’s oval window membrane through the ossicle bones. These small bones are in charge

of adapting (matching) impedances between the air and the cochlea. The cochlea, located

in the inner ear, is a fluid filled, spiral apparatus that transforms the physical motion of the
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oval window membrane into neuronal response. At the base of the cochlea there are two

membrane-covered holes, the oval window and the round window, which function to relieve

the fluid pressure. Figure 2.7 shows a cut-away cross section of a cochlear duct. The dashed

lines indicate fluids paths from the input at the oval window and back to the round window

[Lyon and Mead, 1988].

Figure 2.7: Diagram of the mammalian cochlea (adapted from [Lyon and Mead, 1988]).

Inside the cochlea there is a partition called the basilar membrane (BM) which is a flexible

membrane that bends in response to sound. The BM is wider at the apex than at the base and

its response to sound waves travelling along it establishes a code in which different locations of

membrane are maximally deformed at different sound frequencies. Thus, low-frequency sound

will propagate all the way to the apex of the BM before dissipating while high-frequency sound

will dissipate near the base. The BM holds the hair cells, the mechanical-neural transducers of

the auditory system. These cells detect the bending motion of their hairs and respond both by

changing an internal voltage and by releasing a neurotransmitter [Bear et al., 1996].

The transduction processing in the cochlea performs a joint time-frequency analysis of

the incoming signal. A simple model of this analysis is a bandpass filter bank with subsequent

demodulation in each channel by a combination of full-wave rectification and lowpass filtering.

In the FM bat the layout of the auditory filter bank follows the general mammalian pattern of

keeping filter quality constant as center frequency varies. CF-FM bats deviate considerably from

this pattern by forming an auditory fovea in the frequency range where the carrier frequencies

of the echoes are kept by the Doppler-shift compensation behavior of these animals [Behrend

et al., 1999]. Towards the center of the fovea, filter qualities rise steeply to the highest values

known (maximum Q10dB
� 400 in Rhinolophus ferrumequinum); outside this frequency band

the CF-FM bats follow the general mammalian pattern.

The neural phase of transduction is rather complicated comprising several auditory path-
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ways which converge into the inferior colliculus before ascending to the auditory cortex. What

happens in this part of the bat’s brain is still a matter of research, not much being known so

far. An exception is the relatively well-researched mapping system in the auditory cortex of

the moustached bat for representing echo delay and Doppler-shift [Suga and Jen, 1977; Suga

et al., 1981].

2.3.3 Ethology

It is quite interesting, and not completely understood, the way in which Rhinolophids and

Hipposiderids, which use narrow-band call structures, perform echolocation.

They may, similarly to FM bats, determine target range through echo delay. However, since

CF-FM bats emit long pulses of up to 100 ms, this can result in an overlap of these pulses with

the received echoes if the target is within a range of 5 m [Griffin et al., 1962]. One way in which

CF-FM bats seem to solve this problem is by decreasing the duration of the pulse as the target

comes nearer to it. At the same time, the rate at which these pulses are sent increases resulting

in a quicker update of perceptual information. Recent studies showed that only the terminal

FM component of a call changes for very low target ranges. This may indicate the importance

of the FM component for the estimation of target range and for a refinement in calculating prey

spatial orientation when hunting [Tian and Schnitzler, 1997].

Auralisation — the ability to locate and identify a sound source — is a perceptual mecha-

nism which echolocating bats exploit in a very impressive way. In order to estimate the target

position in 3D, the bat must be able to extract the target’s range and ‘solid’ angle from the

echo. This angle is defined by the azimuth — horizontal direction — and elevation — ver-

tical direction — of the echo. In the case of the horizontal angle, interaural intensity (IIDs),

time (ITDs) and phase (IPDs) differences are powerful lateralisation cues that can be used by

binaural auditory systems, i.e. when having a receiver placed on each side of the head (as in

bats).

From sound localisation theory (see e.g. [Handel, 1989]) it is known that IPDs and ITDs

are used in the case of low frequencies while IIDs are used with high frequencies. The border

line between these two depends on the size of the subject’s head (distance between the ears)

and on sound wavelength. If the latter is bigger than the former ITDs or IPDs can be used,

otherwise IIDs are used. Experiments with crickets [Webb, 1993] and some passive listener

bats — bats which use the sound emitted by the prey — [Heffner et al., 1999] have indicated

the use of IPDs.

With respect to the CF-FM bats, it has been demonstrated that in Rhinolophus ferrume-
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quinum, whose call frequency of 83 kHz has a wavelength of approximately 4.2 mm smaller

than the distance between its ears, IIDs play a role in obstacle avoidance [Flieger and Schnit-

zler, 1973]. This is valid also for our sonarhead for which the 50 kHz call frequency wavelength

of approximately 7 mm is also much smaller than the distance between the two “ears” as we

will see in chapter 3.2.

However, how can the target’s elevation angle be estimated from a echo consisting of a

monochromatic tone i.e when spectral cues are unavailable? It is known that narrowband

echolocators such as the CF-FM bat move the pinna to alter the directional sensitivity of their

perceptual systems whereas broadband listening systems (e.g. humans and broadband emitting

bats) rely on pinna morphology to alter acoustic directionality at different frequencies [Walker

et al., 1998b]. Moreover, biologists have investigated the importance in Rhinolophids and Hip-

posiderids of pinna motion along vertical arcs of about 30 � as shown in figure 2.8, observing a

high correlation between the emitted pulses and these ear movements [Griffin et al., 1962; Pye

et al., 1962; Pye and Roberts, 1970]. In the behavioural studies performed by Griffin [1958],

Gorlinsky and Konstantinov [1978] and Mogdans et al. [1988], the ears of a Rhinolophus fer-

rumequinum were impaired by immobilization. These results showed that ear movements play

a greater role in localising a sound source in the vertical plane than in the horizontal one. The

vertical movements are performed in the following way: while one ear is moved in the positive

vertical direction the other ear performs the same motion in the opposite angular direction, the

frequency of these movements increasing as the target range decreases. These pinna move-

ments, named ‘arc scanning’ by Walker [1997], alter the directional sensitivity of the auditory

system so as to make it possible for a narrow-band echolocator to collect and compare inter-

aural intensity disparities collected from several regions of the frontal sound field. Moreover,

they produce local Doppler-shifts and thus create additional directivity information, as the mag-

nitude of the Doppler-shift is dependent on the target’s elevation [Walker, 1997; Walker et al.,

1998b; Peremans et al., 1998a]. Effective use of these spatio-temporal cues would require

pinna movement and echo arrival to be highly synchronised, but could give rise to powerful

directional cues even under conditions of monaural hearing [Walker et al., 1998b].

Arc scanning also allows the bat to simultaneously obtain the amplitude of the echo, which

is important for the calculating the IID. Thus, arc scanning, combined with azimuth angle esti-

mation by means of IIDs and target range by echo delay, provides a narrow-band echolocator

with a 3D estimation of an insonified target’s relative position.

The fact that the CF-FM bat modifies the carrier frequency of its own calls, compensating

the Doppler-shift produced when bat, reflector or both are moving, indicates the importance

of the Doppler-shift information in the received echoes [Roverud and Grinnell, 1985; Kobler
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Figure 2.8: Vertical ear movements of Rhinolophus ferrumequinum. Adapted from [Schnitzler
and Grinell, 1977].

et al., 1985; Keating et al., 1994; Tian and Schnitzler, 1997; Behrend et al., 1999]. Moreover,

frequency modulation patterns in the echo produced by the flutter of some insect wings allow

the bat to hunt for a specific prey, e.g. by distinguishing between insects which are part of their

daily diet and the ones which are not [Goldman and Henson, 1977; Schnitzler and Flieger,

1983; Ostwald, 1987; Kober and Schnitzler, 1990; Walker, 1997]. We will go back to these

issues in chapter 5.

Lee et al. [1992, 1995] suggested that bats perform braking control using echolocation in

the same way as birds and humans do using vision, proposing the tau function7 to describe this

behaviour. Lee was one of the first authors to address the concept of acoustic flow, which was

then investigated by Müller [1998]. Müller advances an interesting hypothesis about how CF-

FM bats perform obstacle avoidance when tracking an insect in presence of multiple reflectors

(e.g. foliage, tree branches, etc.). He suggests that CF-FM bats use an acoustic flow analog

to optic flow in which Doppler shift and echo amplitude constitute two perceptual dimensions

which bats may employ for the extraction of two-dimensional spatial information.

A hot topic in current biosonar research and in the audition research community in general

is binaurality, i.e. how the different perceptual information provided by each ear is combined

at higher levels of the auditory system and how this data fusion affects behaviour. A relevant

example can be given with acoustic flow: Since Doppler shifts and echo amplitude are monau-

ral cues, what role does binaurality play in acoustic flow as described by Müller? In other

words, how do bats combine this monaural perceptual information? In the next section we will
7The tau function of a variable x is x divided by the rate of change of x.
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see how this and other scientific questions can be investigated with synthetic models such as

robots.

2.4 The biomimetic approach

2.4.1 Introduction

With the arrival of the technological era, computers started playing an essential role in the de-

velopment of science. People like Marr [1982] advocated the use of computational theory as a

tool for empirical investigation, giving emphasis to the importance of the levels of description

idea for studying perception. Perception, in his opinion, can not be understood without expla-

nations of a system at three different levels of abstraction: computational (why?), algorithmic

(what?) and implementational (how?). Marr’s levels idea forms the base of new emerging

methodologies such as the biomimetic approach.

An early definition of biomimetic was given by Walter [1950] as “synthetic Biology”. In

fact, biomimetic comes from biomimesis, i.e. to mimic life, the imitation of biological sys-

tems. In such terms, biomimetic sensing systems are man-made systems which implement

functional principles of their biological counterparts, either as a research tool for biology or

as an engineering application. Moreover, biomimetic systems do not violate any of the known

constraints on biological function. However they do forgo replicating any detail of biological

structure irrelevant to the problem under study [Peremans et al., 2000].

The biomimetic approach arises as an alternative to more traditional approaches to the

study of perceptual mechanisms in animals such as direct investigation, via psycho-physical

and neuro-ethological experiments, and theoretical investigation, via mathematical and com-

putational simulation of aspects of those mechanisms described in the biological literature.

Horiuchi [2000], in an attempt to define neuromorphic engineering, differentiates between

biomimetic and biomorphic, the latter being “the engineering or scientific effort to copy and

utilise what we understand about the functional benefits of physical bodies of creatures, such

as the utility of arms, hands, fingers, legs, and feet”. As a result, Horiuchi sees the synergy

of biomimetic and biomorphic as neuromorphic engineering, defining it as “the construction

of computational devices that utilise the physical structure and/or representations found in bio-

logical nervous systems”. In such terms, we define Biorobotics as the biomimetic approach to

Robotics, which will be followed as a methodology for this work.
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2.4.2 Biorobotics as a methodology

The analysis and modelling of natural sensorimotor systems, as a biological approach to robotics,

has been gaining momentum during recent years. This multi-disciplinary field of research aims

at both a better understanding of how these mechanisms actually work in nature as well as im-

provements in the design of mobile robot controllers. In addition, biologists are becoming

interested in the implementation of sensorimotor systems in hardware as such physical models

complement the more traditional mathematical models. These new tools, i.e. a robotics ap-

proach to biology, allow them to explore the sensory world of animals with synthetic observers

and test hypotheses for adaptive sensing behaviour in real-world conditions. From the merger

of these two disciplines, biology and robotics, biorobotics arises.

A point suitable for discussion is whether the use of a computer-based simulation instead

of a physical (robotic) implementation of the animal as the model to work with, is sufficient

or not. Computer simulations tend to simplify the interactions between the animal and its

environment while focusing on particular aspects of behaviour. These disembodied models

often fail to replicate the essential details of an agent-environment interaction. On the other

hand, the construction of a robotic model requires the formation of a complete and explicit

hypothesis about the mechanisms underlying the generation and use of cues in the perception

task, but at the same time offers a cost-effective way of exploring a biological feedback and

control system without the need to simulate complex interactions with the environment [Kuc,

1996; Walker, 1997; Lund et al., 1998]. Hallam [1997] extends this argument:

“for experiments of certain kinds, robotics models offer advantages that outweigh
the difficulty of working with them. There is no question of the completeness or
validity of a simulation in such experiments, as the real world is being used”.

In the same way, Rucci believes that since perceptual processes have evolved to adaptively

control interactions with the environment, they must be studied in conjunction with motor

behavior and learning. In his research, Rucci uses robotic systems to expose neural models to

the non-idealized characteristics of real environments [Rucci et al., 1999].

This argument can be summarised in the diagram of figure 2.9 given by Webb [1993] who

is, together with Hallam, one of the pioneers in this field. In such diagram we can see a

system S (e.g. an animal) producing a behaviour B which is studied by an experimenter. This

experimenter has an hypothesis (step 1) about how this system works (SH ) and by a formal

method demonstrates that it produces a behaviour BH . These, the hypothesised system and

behaviour, are considered equivalent to the real system and behaviour by the experimenter.

Now (step 2), the experimenter builds an artificial model (e.g. a real or a simulated robot)

to investigate the hypothesis practically. This new system is called S
�

H and the behaviour it
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produces B
�

H . At this point (step 3), the experimenter claims that the artificial model S
�

H is

a valid representation of the formal model of the system (SH ) and therefore the same for the

behaviour B
�

H produced by the artificial model. Finally, the experimenter concludes that this

behaviour (B
�

H ) is equivalent to that in the real world (B).

S

B B

S S

BH H

H H
*

*

Real world Artificial model

Formal model

(step 1)

(step 3)

(step 2)

Figure 2.9: From the real world to an artificial model and back to the real world. (Adapted
from [Webb, 1993].)

Hence, because of the physical interaction of the real system (S) with the world, a real robot

instead of a simulated robot is needed as the artificial agent to work with since a simulated robot

will need to simulate all the relevant physics of the real world, which is impractical because of

both the ignorance of all relevant factors and the computational cost.

Webb [1993] proposes a methodology for investigating perception which was later adopted

by Walker [1997] and which will be adopted in this dissertation as well. Such a methodology

can be summarised in the following points.

� Target system. Choose a particular biological sensory system as a target.

� Physical characterisation. Characterise the relevant physics of the biological sensor

and sensor motion in sufficient detail to facilitate the generation of hypotheses about the

perceptual mechanisms underlying the animal’s behaviour.

� Implementation. Build a model of the sensory mechanism in which to test behavioural

hypotheses. Such a model must capture, realistically, the problems of interacting with

the real world.

� Evaluation. Carry out experimental tests to evaluate the performance of the model sys-

tem and examine the hypotheses embedded therein.

As a result of her work, Walker [1997] pointed out an interesting conclusion:
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“building models of the evolved perceptual mechanisms of particular animals is
a fruitful way to approach the difficult robot design problem of identifying the
task and environmental factors which act to constrain and simplify this process of
sense-information extraction”.

This is exactly the motivation of our work, in which as a target system we have chosen the

bat’s echolocation ability for navigation and prey capture tasks. This is based on Walker’s et

al. physical characterisation of the CF-FM bat and in its implementation (robotic model).

Webb’s contribution towards a biorobotic methodology has continued since then. In [Webb,

1999] and [Webb, 2000], a framework for describing the process of modelling is presented.

Webb explains how models of biological systems can vary along a number of different dimen-

sions and how controversy about the ‘correct’ way to model is often simply confusion among

these dimensions.

Webb describes eight dimensions on which models of biological behaviour can differ in

what they represent and how they represent it, arguing that any model has a position in a

multidimensional space, in which the origin for all dimensions is the system itself. These

dimensions are: realism (can the target system be identified?), level (what are the base units of

the model?), generality (how many systems has the model targeted?), abstraction (how many

elements and processes are in the model, compared to the target?), accuracy (does the model

represent the true mechanisms of behaviour in the target?), medium (what is the simulation

built from?), match (in what way does the model behave like the target?) and utility (is our

understanding improved by the model?).

2.4.3 Examples of biorobotic research

Many people have built robot “animals” with greater or lesser faithfulness to the underlying

Biology. Many more have built robots which use a sometimes vague form of “biological in-

spiration”. Robots which are truly biomimetic are much more rare and generally very recent.

Some examples from the biorobotics literature are summarised below:

� The cricket robot. At Edinburgh University, Webb [1993, 1995] and Lund et al. [1998]

built a robotic model of the Grillus bimaculatus auditory system. The model imple-

mented a simple neural controller which performs phonotaxis using songs of real male

crickets. The cricket robot behaved as female crickets do in identical experimental con-

ditions. The authors claim that the cricket robot could be used for further exploration of

the mechanisms controlling recognition and choice behaviour in real female crickets.
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� The cockroach robot. At Case Western Reserve University, Beer, Quinn and colleagues

built an hexapod robot that can successfully walk, turn, run and climb in a cockroach-like

manner [Beer et al., 1998; Quinn and Ritzmann, 1998]. This project aims benefits for

Robotics — investigating the advantages of biological emulation of cockroach kinemat-

ics and applying it to hexapod robots— and Biology — providing a platform on which

biologists can test hypotheses about cockroach posture and locomotion.

� Shabot. Möller and his colleagues at Zurich investigated visual homing strategies in the

desert ant using a mobile robot [Möller et al., 1998]. Their navigation behaviour strate-

gies were reproduced by a “snapshot model” based on the assumption that insects store

a visual snapshot of the surroundings at the target location, deriving a home direction

from a comparison of the current image with this snapshot. Their results confirm that the

snapshot model is a plausible model of insect navigation which can provide new ideas in

mobile robots research.

� Robolobster. Grasso’s research at Northeastern University in chemo-orientation in ma-

rine environments [Grasso et al., 1999] involved understanding how lobsters locate odour

sources in turbulence. In their experiments, the underwater robot approaches an odour

source under turbulent conditions which disperse the odour similarly to turbulence in the

real world.

� The barn owl robot. Rucci adapted a computer model of the auditory and visual stim-

ulation of the barn owl to the control of the orienting behaviour of a robotic system

equipped with a camera and two lateral microphones [Rucci et al., 1999]. The results

showed that an architecture specifically designed to account for biological phenomena

can improve the motor control of a mobile robot performing in the real world.

� VLSI fly motion sensor. Harrison and Koch [1999] built a hardware model of the fly

optomotor control system which uses visual flow information to estimate self-rotation

as flies do. The model was implemented on a chip that receives input directly from the

real world via on-board photoreceptors and generates motor commands in real time.The

silicon system exhibited stable control sufficiently analogous to the biological system to

allow for quantitative comparisons.

� Honeybee navigation. Srinivasan and colleagues at the Australian National University

investigate different aspects of insect vision and navigation, such as how honeybees com-

municate optic flow measured distances by dancing, and how can the arising principles

be embodied in autonomously navigating robots [Srinivasan et al., 2000].
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2.4.4 Biomimetic ultrasound

Animal acoustic sensorimotor systems, like the ones found in bats or crickets, have the potential

to become model systems for studying the principles of biological sensing and sensorimotor

integration starting from clearly defined behavioural tasks.

Having seen different examples of biorobotic applications we will focus on those more di-

rectly related to this work — which will be introduced in chapter 3. For example Walker et al.

[1998b]’s research on biomimetic sonar resulted in successful single target tracking in clutter.

They also investigated the spatio-temporal acoustic cues generated by scanning the receivers of

the biomimetic sonarhead described in chapter 3 and used in my work also, using a simplified

version of the opposing pinna movements (arc scanning) employed by R. ferrumequinum. As

described in section 2.3, sweeping the sonarhead receivers through opposite vertical arcs cre-

ates dynamic cues in the form of amplitude modulations which vary systematically with target

elevation, suggesting at least one possible source of information the bats could use. Walker’s

motivation was that “if neurons exist to represent moving targets — as measured by stationary

pinnae — then the apparent motion of a stationary target — as measured by moving pinnae —

may be similarly encoded” [Walker, 1997].

Walker also investigated the possibility addressed by [Pye et al., 1962] of Rhinolophids and

Hipposiderids moving their ears in order to exploit the cosine-law dependence of the Doppler

effect, whose continuous change in echo frequency encodes target angle, to create frequency

modulations whose magnitude will depend systematically upon relative target bearing [Walker,

1997].

The results of this research gave insights for understanding how a dynamic sensory device

can perform accurate target localisation in a cluttered environment using both binaural and

monaural sensor mechanisms. They also experimented with simulation, building a software

model of an echolocation system [Walker et al., 1998a]. This simulation was used for investi-

gating behaviours for localising moving targets in the presence of strong stationary reflectors.

The simulator was also used together with a genetic algorithm to investigate the role of pinna

shape during target localisation in broad-band bats, particularly for determining the target’s

elevation [Peremans et al., 1998b]. The genetic algorithm was used to evolve different pinna

shapes which were tested on the simulator afterwards. They also proposed building the pinnae

and attaching them to the sonarhead to improve target localisation. This artificial pinna project

has been extended by us as part of the RoBat project as we will see in chapter 7.

Other examples of biomimetic sonar follow. Teimoorzadeh [1995]’s model of bat obstacle

avoidance and prey recognition behaviours is another example of work done in simulation. He

investigated bat mental representation of acoustic images by modelling a memorisation circuit
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of sensory expressions based on feedback and association of sensory phenomena. However,

despite the results of this work there is no evidence of further work done with this simulator

nor of a robotic implementation of it.

Barshan and Kuc [1992] present an active wide-beam Sonar system that mimics the sensor

configuration of echolocating bats is presented. This system provides 2D (range and azimuth)

estimation of an object, located along the system line-of-sight, which improves with decreasing

range. This work is continued in [Kuc, 1993] in which ROBAT 3D, a robot driven by four air

jets and provided with a Sonar system consisting of five transducers configured in the form of a

cross, is used for tracking moving objects in the space using qualitative interpretation of sonar

signals. Kuc’s system, instead of using TOF measurements for computing the location of the

object by triangulation, extracts qualitative information from a sequence of pulses, basically

determining which receiver detected the echo first using ITDs.

As we saw earlier in this chapter, intelligent ultrasonic sensors for mobile robotics can

be built by combining TOF and triangulation. Using these two principles, Kuc [1996] imple-

mented an active Sonar system capable of changing its configuration in response to observed

echoes as biological systems do. This approach calculates the true range and bearing angle

of a target assuming it is on the same elevation plane as the transmitter and receivers. Then,

each of the receivers defines with the transmitter an ellipse of possible locations of the target.

The target is assumed to be located at the intersection of these two ellipses. The method uses

ellipses assuming a target at 0 � in elevation instead of ellipsoids, hence being valid for large

and specular objects such as walls and posts but not for tracking smaller objects in the space.

In chapter 6 we will go back to Barshan and Kuc [1992] and Kuc [1996] works.

More recently, Kuc extended his work to object identification. In [Kuc, 1997], a biomimetic

sonar system consisting of a central transmitter with two rotating receivers on each side is

situated at the end of a 5 DOF robot arm. This configuration maximises the SNR of the echoes,

whose bandwidth extends from 20 to 130 kHz, allowing better performance of the learning

module. The system learns to identify small objects (smaller than 2.5 cm) by extracting vectors

of 32 envelope values at different bearing angles and forming a data base. The whole process

consists of two different phases: first the system approaches the object using TOF information

to focus the system as in [Kuc, 1996]. Then, the evolution of the echo energy with time is used

for object identification. Also, Kuc [1994] proposes a sensorimotor model for prey capture

in the big brown FM bat Eptesicus fuscus. The model shows (in computer simulation) how

successful non-predictive tracking of an ideal prey can be performed with a simple system

using a pair of controllers that apply yaw and pitch corrections to alter the bat’s heading while

pursuing a prey. Kuc’s model is continued by Erwin et al. [2000] who disagree with Kuc’s
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claim that only azimuth and elevation are necessary for non-predictive tracking. According to

Erwin and colleagues, the use of distance (range) information is crucial for a complete model

of prey hunting by bats. Moreover, their results suggest that realistic aerodynamics constrain

the bat’s behaviour more than was suggested by Kuc.

2.4.4.1 Discussion

As McKerrow [1991] said a decade ago, “we have a long way to go before our sensors will

even approach the echolocation ability of a bat”. Since then, the small but active biomimetic

Sonar community has achieved some important issues, heading towards the development of a

bionic bat.

Despite the different examples of work following a biomimetic approach seen in this sec-

tion, it is important to notice its scarcity in the scientific community. Müller, a relevant example

in the use of biomimetic ultrasound technology for scientific purposes [Müller and Schnitzler,

1999, 2000; Müller and Kuc, 2000], gives the following illustrative example: “If research is like

a multi-player jigsaw puzzle, biomimetic ultrasound is a small research area which requires an

agreement in the shape of the pieces and the regions of the image to be used among the scarce

players in order to get fruitful results”. By contrast, in big research businesses such as Human

Genome, Aids, Alzheimer’s, etc, random synergy is sufficient because of the large number of

research groups involved. Müller [2000] proposes focusing on, among others, binaurality in

active Sonar, stimulus ensembles and where they come from, adaptive mobility, neural and

signal representations and an inventory of ultrasonic tasks in Biology.

2.5 Summary

This chapter has given an overview of the two disciplines relevant to this work, the use of

ultrasound in robotics and bat biosonar, as well as introduced the biomimetic approach as the

methodology to follow in this work.

After explaining the physics of the Polaroid transducer and the problems arising when using

it as a simple range sensor, two different approaches — the grid-map approach and the feature-

based approach — to the use of ultrasound for localisation and sensing in mobile robots were

introduced. Next, other ways of using the ultrasonic transducer with respect to sensor config-

uration, structure of the call and the processing of the received echoes were presented, as well

as our interest in how bats exploit the physics of echolocation. An overview of some aspects

of the CF-FM bat neurophysiology and ethology was given, pointing out ideas suitable for ap-

plication to ultrasound-based navigation in mobile robotics. Finally, the biomimetic approach
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to Robotics was introduced followed by some examples of biomimetic work. At this point we

are ready to present RoBat, the biomimetic platform used in the experiments described in this

work.



Chapter 3

The RoBat system

3.1 Introduction

The RoBat1 project aims to investigate bat biosonar as a biomimetic approach to mobile robot

navigation, i.e. it tries to understand how echolocating bats perform navigation tasks such as

obstacle avoidance and prey capture, and how this can be applied to ultrasonic-based navigation

in mobile robots.

Thus the motivation for creating a tool such as RoBat is twofold:

� to help engineers to better understand the relationships existing between environment

features and their corresponding acoustic images in a dynamic context.

� to help biologists studying echolocation in bats to better understand what type of infor-

mation is available to the bat while performing particular tasks.

This chapter is structured in two main parts: section 3.2 describes RoBat and shows exam-

ples of performance under different configurations (as a FM bat and a CF-FM bat). Section 3.3

describes the topics of interest investigated in this work as part of the RoBat project.

3.2 RoBat: a biomimetic platform to study perception in bats and

robots

RoBat consists of three main components: a biomimetic sonarhead (described below); a 3

DOF mobile platform (described in section 3.2.2); and a modular architecture (described in

section 3.2.3) which integrates a processing module and several behaviours in a reactive way
1The name RoBat was previously used by R. Kuc as ROBAT 3D in [Kuc, 1993].

38
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Figure 3.1: The robotic platform. Front view of the sonarhead consisting of the central trans-
mitter fixed to the head and the two receivers each independently orientable (left). RoBat, a
biomimetic sonarhead mounted on a mobile base (right).

(see figure 3.4). These three components are all controlled and integrated into a single system

by software running on a 1 GHz Athlon PC computer under Linux. In addition to this hardware

platform there is also a software model of the biomimetic sonarhead, for testing signal process-

ing algorithms, which incorporates the physics necessary to simulate realistic experiments.

3.2.1 The biomimetic sonarhead

The biomimetic sonarhead used in this research was originally devised by Peremans et al.

[1997]. As indicated in figure 3.1 (left), the sonarhead allows panning and tilting of the neck,

and independent panning and tilting of each of the two ears (receivers). The ultrasonic trans-

ducers are Polaroid electrostatic transducers. The motors driving the different axes are standard

radio-control servomotors2 .

This setup, when mounted on the mobile platform as in figure 3.1 (right), allows insonifi-

cation of arbitrary points in space independent of the orientation of the mobile platform. Taken

together with the capability of the sonarhead to independently orient the ears as well it allows

us to model different strategies that might be used by bats to actively explore their environment

[Peremans et al., 2000]. An example of such an active exploration strategy used by real CF-FM

bats is the arc scanning behaviour described in chapter 2.
2These kind of motors do not provide position encoders and therefore it is not possible to know the position

of the servo at a time along its trajectory. A model of the servo (described in chapter 6) was devised to solve this
constraint.
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Figure 3.2: Power spectral density of the transfer function describing the transmitter-
transducer-transducer-receiver system.

The transmitter is mounted at the centre of the head, moving along with the pan and tilt

movements of the neck. The transmitter electronics allows the transmission of waveforms

generated by the D/A converter board at 1 Msample/s (Gage CG1100 2 channel/12 bit/80

Msample/s D/A card) in the control computer. The D/A converter noise floor is 1/4096 of the

peak signal, i.e. 72dB below the maximum signal amplitude. This noise floor is low enough for

the measurements taken in this work. The output voltage of the transmitter consists of a bias

voltage of 150V upon which the transmit waveform, amplitude 150V, is superposed. We have

chosen this transducer because its large bandwidth (figure 3.2), after removal of the protection

grid, allows the modelling of both broadband echolocation and narrowband echolocation.

Detection and amplification of the reflected echoes is performed by the receiver electronics,

which is mounted, together with the transducers, on pan/tilt servos. As above, the output signals

from the receivers are sampled at 1 Msample/s by the A/D converter board (Gage CS512 2

channel/12 bit/5 Msample/s) in the control computer. All further processing of the received

data is performed on the control computer which communicates with the robot through a 18

meter long coaxial umbilical.

3.2.1.1 Noise

The electronics of the sonarhead are susceptible to different noise sources such as electronic

pick-up from the transmitter, a low frequency component from the mains, the DC/DC converter

and some noise because of the umbilical. These noise sources are reduced by a pre-filtering

module (described in section C.1 of appendix C) applied to every echo before entering the

filterbank.
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In further versions of the sonarhead, and providing that the echo processing could be im-

plemented in hardware, the noise sources could be dramatically decreased using an integrated

system in which acquisition and processing would be integrated in the same insulated box as

in e.g. Heale and Kleeman [2000].

3.2.2 The mobile platform

During different stages of the RoBat project, different mobile platforms have been used for

providing the required mobility to the sonarhead.

The current platform is “Bill”, a 12 inch diameter off-the-shelf mobile platform from Real

World Interface (RWI), model B12 [RWI, 1994]. Bill (figure 3.1 (right)) has three wheel steer-

ing and three wheel drive. The three wheels are driven synchronously and remain parallel at

all times. Good positional accuracy is achieved due to the separation of the steering system

from the drive system.3 Since all wheels are driven, the B12 has excellent traction. This 3

DOF platform has an on-board controller that receives motion-commands from and sends back

status information to a control computer through its serial port.

The mobility offered by this robot base is used to generate dynamically varying acoustic

images, i.e. the acoustic flow mentioned in chapter 2, that correspond, at least in principle, with

the images bats get while flying through their environments.

3.2.2.1 Previous mobile platforms

The main difference between the current platform and the previous ones resides in the way the

echoes coming from the sonarhead are processed. The previous platforms used a network of

transputers whereas the current platform uses a state of the art microprocessor under Linux.

“Ben Hope” In previous work [Walker, 1997; Walker et al., 1998b,a], the sonarhead was

mounted on “Ben Hope”, a mobile robot made of a RWI-B12 base (similar to Bill’s) and an

enclosure which hosted a transputer-based computer on which all the echo processing was

carried out (see figure 3.3 (left)). Control of the sonarhead’s servomotors was performed by

the transputer server, installed in a desktop PC, which communicated with Ben Hope through

an umbilical. Ben Hope was 50 cm tall, providing the sonarhead with a different perspective

of the world than Bill’s or the LEGO platform described below.
3This platform provided the motion required for Doppler-shift estimation. True-Doppler (see chapter 4), was

calculated from the readings of the wheel encoders without previous calibration of the platform.
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Figure 3.3: Front view of previous robotic platforms. Ben Hope (left) and the LEGO robot
(right).

LEGO robot. A mobile robot was built from scratch using LEGO pieces and some electronics

developed at the Division of Informatics for controlling the actuators. The reason for using

LEGO was because of its flexibility and modularity as a design and implementation medium,

as well as familiarity from using it in previous work [Carmena, 1998; Carmena and Hallam,

1999].

The robot was a simple and flat platform as seen in figure 3.3 (right), strong enough to carry

the sonarhead on board. It was 12 cm tall and consisted of 3 wheels (2 driven wheels and 1 free

wheel) with a gear reduction big enough to provide the robot with a fast response despite the

sonarhead’s weight. The robot’s brain-brick hosted a simple program which drove the motors

according to the commands sent by a desktop PC. The transputer network was installed on

this PC, carrying out all the processing tasks of the sonarhead and communicating with the

robot through an umbilical. Despite the inaccuracy of the LEGO driving mechanisms, lack of

speed and torque, and unrepeatability of the whole platform, fairly good preliminary results on

estimating Doppler-shift were obtained as reported in [Carmena and Hallam, 2000].

3.2.3 RoBat’s modular architecture

A block diagram of the modular architecture can be seen in figure 3.4. As seen in the figure,

all the monaural modules, such as signal processing and cue extraction, are duplicated because

of the two receivers.

Next, some of these modules are briefly described. A full description is given in chapters

4, 5 and 6.
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Figure 3.4: Block diagram of RoBat’s modular architecture. The signal processing module
together with the TOF and Doppler estimation modules coming from each of the two receivers
are connected to a binaural module in charge of the motor and emission tasks (see text).

3.2.3.1 Signal processing module

Bats (and mammals) surely do not perform Fast Fourier Transforms (FFTs) for the frequency

discrimination of the incoming sound. Instead, their inner ear performs an approximation of an

FFT through the basilar membrane inside the cochlea.

In RoBat, the received echoes are sampled by an A/D converter and fed into a signal pro-

cessing module whose operations are based upon a filterbank model of the processing per-

formed by the mammalian cochlea [Slaney, 1993]. Two different kinds of filterbank — linear

and gammatone — were investigated in detail. Preliminary study of other models (e.g. cascade

filterbanks) was also carried out. From the output of the filterbank, two different methods —

a neural network and a weighted average — were used for extracting Doppler-shifts which,

together with the TOF, form the monaural cues extracted from each individual echo.

The RoBat system can be configured for being phase coherent. However, since there is no

evidence of bats having a coherent detector implemented in their auditory system, we decided

not to make use of phase information.
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3.2.3.2 Behaviours

The processed data coming from each of the monaural modules is then integrated by the binau-

ral module, resulting in behaviours such as obstacle avoidance, motion detection, Doppler-shift

compensation and target tracking. These behaviours will be described in chapters 5 and 6.

Also, the length and call-frequency of the emitted pulses are recalculated at the end of each

loop depending on the behaviour being performed by the robot. During most of the experiments

performed in this work the length of the pulses was kept constant. However, the call-frequency

was modified during the Doppler-shift compensation experiments described in chapter 5.

All processing and interpretation of the received data is performed on the control computer.

The operating speed of this computer is 12 Hz, i.e. 12 complete sense-and-act loops per second

including a spectrogram-like display of the received echo at each ear was normally obtained4 .

This performance makes it possible to investigate the dynamics of a number of acoustical

phenomena in real-time conditions.

3.2.3.3 Visualisation module

A visualisation module5 allows interactive exploration of echoes from echolocation scenarios,

and seeing them through a model of the auditory base representation of bats. This provides

quick, intuitive access to biosonar problems [Peremans et al., 2000].

This module takes the logarithms of the outputs of the different channels of the filterbank

which are shown in a spectrogram-like display on the screen of the control computer. Figure

3.5 shows an example of the output of the visualisation module when processing the echo of a

frequency swept transmit pulse (from 120kHz down to 40kHz) reflected from a stationary flat

surface oriented towards the sonarhead. The white lines in the figure are two mobile cursors

which allow visualisation of arbitrary slices of the display parallel to the time or frequency

(filterbank channel) axes.

Other examples of the type of echolocating scenarios that can be seen with the visualisation

module will be presented in section 3.2.5 and in chapter 5.

3.2.4 Software model of the sonarhead

The 3D Echolocation Simulator, a software model of the sonarhead, was developed by Herbert

Peremans and Ashley Walker (see Appendix C in [Walker, 1997] for a detailed description) as
4This depends, among other factors, on the number of channels in the filterbank and on the number of acquired

samples, as we will see in chapter 4.
5This module, described in [Peremans et al., 2000], was mainly developed by Müller with contributions from

Peremans and myself.
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Figure 3.5: The output of the wideband cochlear model as displayed on the screen of the
control computer. The source is a frequency swept from 120kHz down to 40kHz reflected on
a stationary flat surface (one ear only).

a tool for simulating signal processing algorithms before implementing them in the sonarhead.

Moreover, the simulator can host experiments that can not be carried out with the existing hard-

ware e.g. those using different sensor morphology or transducer size. It also incorporates the

physics necessary to simulate realistic experiments, for instance allowing the use of oscillating

targets with different geometries and motions.

With respect to the RoBat project, the 3D Echolocation Simulator was used for testing

and evaluating the pinna-like reflector configurations and finite element surfaces evolved by a

genetic algorithm, as will be seen in chapter 7. For such work, the simulator was modified as

needed to suit the requirements of the different experiments.

3.2.5 Examples of broadband echoes

As we saw in chapter 2, CF-FM bats have both a narrowband, i.e. constant frequency component

as well as a broadband, downward frequency sweep component in their call. Furthermore, they

vary the importance of each component dynamically depending on the task, by varying the

energy in each of them. Due to our interest in the constant frequency component of the call

— which, according to the literature, is the component relevant to the sort of tasks we are

interested in such as obstacle avoidance — we do not include FM tails at the end of RoBat’s

calls in the experiments presented in this work.

By contrast, in this section we will show pilot data obtained with the biomimetic platform

exploring examples of broadband echolocation tasks faced by FM bats. It is clear that every-

thing said about these examples applies equally well to the FM portion of the call of CF-FM

bats. The following content of this section is extracted from [Peremans et al., 2000].
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Figure 3.6: The echo from a small object (cylinder Ø=1.5 cm) in front of a flat reflecting
surface: (a) 10 cm separation; (b) 4 cm separation; (c) 2 cm separation. The first two echoes
correspond to the reflections from the cylinder and the surface respectively. Subsequent echoes
are generated by multiple bounces between the transducers and the targets.

Resolution versus system-identification. Resolution is hardly ever a critical constraint in

natural biosonar tasks performed on FM signals. Even with the incoherent, low-pass filtered

time-frequency representations, which bats have at their disposal and which were modelled

here, resolving echoes from reflectors separated by a few centimeters or even less is a fairly

simple task. Such a resolution should suffice for the survival of a bat. The ease of achiev-

ing centimetre resolution is illustrated by the following examples: A biomimetic broadband

echolocation system, i.e. a transmit pulse with frequency sweeping down from 120 kHz to 40

kHz in 3 ms analysed with the broadband cochlear model, was used to examine the echoes

generated by a cylinder (with 1.5 cm diameter) placed in front of a flat surface. Distances from

the sensor were 10, 4 and 2 cm. The echoes generated by these two objects are clearly distin-

guishable (figure 3.6), even with the significant overlap which occurs at the smallest separation

(plot c).

It should be noted that the total bandwidth of the echolocation system is not the relevant

factor in determining whether we can visually discern the two echoes in the spectrogram. It is

the bandwidth of the individual bandpass filters that make up the cochlea that determines the

minimal duration of the response, i.e. the smearing, in each frequency channel.

When FM bats hunt in a cluttered environment the sonar problem is not a problem of re-

solving different scatterers, but it is a problem of target identification. For example, if certain

species of FM bats were indeed capable of finding arthropods on foliage with sonar, the prob-

lem would not be to tell that there are two scatterers close to each other, but to tell that the first

one is a prey item and the second one a leaf, rather then just two leaves or a small branch in
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Figure 3.7: The echoes reflected off two different types of foliage (see text for explanation).

front of a leaf [Peremans et al., 2000]. As we will see in chapter 5, this point is nicely illustrated

by the case of CF-FM bats where resolution, by virtue of the long CF components, is very poor

indeed but the target identification task can be solved nevertheless.

Echoes from extended, natural targets. Many species of echolocating bats encounter not

only isolated “point” scatterers (e.g. when tracking a prey some distance away from clutter-

producing obstacles), but frequently receive echoes generated by extended targets consisting

of anything ranging from a few to a great many reflecting facets. Their sensing capabilities, as

well as the behaviours which may be enabled by these capabilities, remain largely unexplored.

Müller believes that echoes composed of contributions from many scatterers are best treated as

random processes in the sense that the resulting waveforms are prohibitively hard to predict as

a function of position and orientation of the sonarhead. This is for instance true for ubiquitous

natural textures like foliage [Müller and Kuc, 2000]. It is therefore important to characterise

how the statistical properties of echoes from such targets change as a function of position and

orientation. A first impression of the behaviour of such echoes is readily gained using an

interactive tool like the one described in this chapter.

Examples of echoes from foliage insonified with a broadband call, i.e. a pulse with fre-

quency sweeping down from 120 kHz to 40 kHz with a duration of 3 ms, are shown in figure

3.7. Obvious properties of these echoes are a fairly long duration ( � 3 � 4ms), compared

with the duration of the echo from the flat reflecting surface shown in figure 3.5, as well as

a random pattern of peaks and notches in the time-frequency plane. Furthermore realistic fil-

terbank parameters result in a considerable smearing of the echoes. However, the loss in fine

structure information that is associated with this smearing does not seem to prohibit obtaining
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biologically meaningful information, e.g. target class, from these echoes, since bats seem to

be capable of distinguishing between different types of foliage. Müller conjectures that this is

so because most of the fine structure present in the echo is likely to reflect irrelevant structural

detail, e.g., the current properties and placement of all leaves within the sonar footprint, which

is likely to change with the next gust of wind anyway [Peremans et al., 2000].

3.3 Research topics

Now that the biomimetic platform has been described, the research topics addressed in this

work can be introduced. From all the interesting topics suitable for being investigated with a

synthetic tool such as RoBat, this dissertation contains investigations in the estimation and use

of Doppler-shifts for echolocating tasks, in 3D tracking methods exploiting the dynamics of

the sonarhead, and in artificial pinna design.

3.3.1 Estimation and use of Doppler-shifts.

As mentioned in the literature review of chapter 2, CF-FM bats use Doppler-shifts for several

tasks such as obstacle avoidance and prey capture. Moreover, this rich source of information

is not exploited by commercial ultrasonic range sensors for robots, hence our motivation for

incorporating the use of Doppler-shifts in mobile robot navigation.

The literature on Doppler-shift estimation using Sonar, for engineering applications, is very

scarce. With respect to biosonar, it is even more scarce. Müller [1998] contributes with an

acoustic flow for obstacle avoidance hypothesis in the CF-FM bat. Müller’s work, a good ex-

ample of a scientific contribution using synthetic tools, gave us the motivation for investigating

the use of Doppler-shifts in mobile robotics.

Thus, as a starting point towards Doppler-based navigation, we are interested in imple-

menting and comparing models of the signal processing performed by the bat’s cochlea with

methods for extracting Doppler information from echoes. The cochlear models — named filter-

banks — are based on sets of bandpass filters followed by full-wave rectification and low-pass

filtering. This will be seen in chapter 4.

In chapter 5, some Doppler-based behaviours — such as Doppler-shift compensation, con-

voy navigation and acoustic flow — will be implemented, discussing to what extent they can

be useful in sonar-based mobile robotics.
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3.3.2 3D tracking methods.

As we saw in chapter 2, Walker [1997] investigated, by means of static and dynamic cues,

different ways in which pinna movements may be used for 3D target localisation in CF-FM

bats. She hypothesised a dynamic approach based on temporal cues. By sweeping their pinnae

through vertical elevation arcs, CF-FM bats may create dynamic cues in the form of amplitude

modulations which vary systematically with target elevation in the form of:

1. IID rates of change: obtained by measuring variations in IID over time while the ears

perform arc scanning. However, this will fail for 0 � elevation since IIDs are constant

throughout the duration of the measurement.

2. Peak delays: the delay between echo arrival time and peak time in each ear (i.e. monau-

ral timing cues) encode target elevation. It is possible to determine the target’s elevation

position by measuring the separation of these measured peak delays between the two

ears (i.e. binaural timing cues).

With respect to the bearing angle and true range of the target, we are interested in the

method devised by Barshan and Kuc [1992]. This method considers the target to be located

in the intersection of the two ellipses defined by each of the receivers with the transmitter,

assuming the target is in the same elevation plane as the co-linear emitter and receivers. Our

intention, as we will see in chapter 6, is to implement and test both methods in RoBat, and to

integrate them afterwards in a bat-inspired 3D tracking system.

3.3.3 Design of artificial pinnae.

The inspiration for evolving artificial ears comes from our belief of the important role the large

size and mobility of the pinnae — compared to the size of their head — plays in Rhinolophus

ferrumequinum. As seen in chapter 2, large pinnae can maximise the perceptual volume gain

(the ratio of sound pressure when a pinna is present as opposed to its absence) by increasing the

sound pressure arriving at the inner ear. Even more, the pinna mobility of CF-FM bats suggests

the important role the pinna plays during specific behaviours such as arc scanning.

In fact, one of the long-term goals of the RoBat project is to build and attach artificial

pinnae to the sonarhead. The motivation for this is twofold:

� to improve the directional sensitivity of the sonarhead’s receivers (i.e. maximise the

angular resolution of the receiving transducers) and the perceptual volume gain.
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� to get insights on the role that dynamic reorientation of the head and pinnae may play in

the creation of cues essential for sound source/reflector localisation.

In addition, the fact of being an unexplored field makes it more interesting. Papadopoulos

[1997] and Peremans et al. [1998b] were the only references relevant to evolving bat pinna

morphology available in the literature at the begining of this work, as far as the author is aware.

3.4 Summary

In this chapter we have presented RoBat, a biomimetic platform that allows the study of ul-

trasonic perception in realistic dynamic environments. This tool makes visible a biologically

plausible representation, i.e. the outputs of the cochlear model, of the acoustic flow field in real-

time as the biomimetic platform moves through its environment, thereby making it much easier

for human experimenters to detect the salient features in these acoustic images and investigate

their relationship with environmental features. The usefulness of the biomimetic platform is

related to four essential features: its mobility allows the study of sequences of echoes in the

context of different behaviours; the active sonarhead allows the study of active sensing strate-

gies; the biologically plausible representation of the echoes allows the cross-fertilisation of

biology and robotics; and real-time operation allows the study of acoustic flow fields.

In order to demonstrate the capabilities of the system, we also explored example issues of

biosonar tasks faced by FM bats. The ease with which range resolution on the scale of a few

centimeters can be achieved was demonstrated, thereby highlighting that much of the difficulty

of biosonar tasks lies in system identification rather than in resolution. For extended scatterers

target identification has to be carried out under the constraint of a strong ill-posedness of the

inverse problem and hence is best treated as a random process classification task [Peremans

et al., 2000].

Finally, following the description of RoBat, the three research topics covered in this work

— estimation and use of Doppler-shifts, 3D tracking methods and design of artificial pinnae—

were introduced. These topics have two things in common: the exploitation of the physics

of echolocation and the fact of not being deeply explored before — except for some of the

tracking methods — in the mobile robotics community.
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Inner ear: Cochlear models and

Doppler-shift estimation methods

4.1 Introduction

This chapter explores how continuous estimates of Doppler-shifts can be derived from physical

echoes seen through two different models of a cochlear representation of the CF-FM bat.

Why Doppler? As we already saw in chapters 2 and 3, the Doppler effect plays a very

important role in the echolocating behaviours of the CF-FM bat. Moreover, this rich source

of information is not exploited by commercial ultrasonic range sensors for robots, hence our

motivation for investigating the use of Doppler to mobile robot navigation.

At this point, the importance of both a biologically plausible — to keep our biomimetic

approach — and computationally reliable — to perform real time processing in RoBat —

model of the bat cochlea is clear. Also, such a model will also facilitate future analysis of the

involved biological sensing problems faced by bats.

The chapter is structured in the following way: after giving a short overview of Doppler

theory and applications, we compare two parsimonious models of the auditory fovea of the

CF-FM bat — a linear and a gammatone filterbank — and two methods — an artificial neu-

ral network and a weighted average — for estimating Doppler-shift from the output of these

models. Finally, a discussion supported by simulated data on how realistic our system is for

dealing with real world scenarios, including more than one dominant frequency in the echoes,

will close the chapter.

51
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4.2 Doppler overview

In the nineteenth century Christian Doppler described how the observed frequency of light and

sound waves was affected by the relative motion of the source and the detector. Since then many

applications of this so-called Doppler effect have arisen. Common examples are meteorology

— in which a Doppler radar is used as a forecasting tool (see, for example [Snyder et al., 1989])

— and biomedical applications (see, for example [Bøe and Kristoffersen, 1995]).

In mobile robotics, the Doppler-effect has not been extensively used, perhaps because of

a lack of sensors in the market that allow this physical effect to be estimated. An exception

are microwave radar sensors used for reducing errors commonly found in dead reckoning nav-

igation due to factors such as wheel slippage and tread wear. Most implementations of these

sensors employ a single forward-looking transducer to measure ground speed in the direction

of travel [Borenstein et al., 1996].

There is not much work in the literature on Doppler-shift estimation using narrowband

Sonar signals. One of the few references available is the work done by Dooley and Nandi

[1999] in which a computationally cheap adaptive algorithm for estimating pure time delays

is used for both time delay and Doppler-shift estimation, considering the latter as a linearly

time-varying delay and so reducing the problem of Doppler estimation to a linear regression

problem. Even though it is an interesting and apparently efficient method for Doppler-shift

estimation, we did not take this or a similar engineering approach because of its not being

biologically plausible. The same applies to fast Fourier transforms (FFTs); obviously bats do

not perform FFTs per se but an approximation of it in the form of a filterbank as will be seen

in section 4.3.

To the author’s knowledge, there is no previous work on the use of Doppler-shifts from

ultrasonic sensors in robotic applications. The context in which these Doppler-shifts are esti-

mated and used in this work will be introduced next.

4.2.1 Doppler-shifts in a robotic context

Doppler-shifts can be very well estimated when the emitted call is a monochromatic tone —

i.e. a CF signal — of a fairly long duration. However, it is not trivial to estimate Doppler-shift

from a chirped call — like the one emitted by FM bats — because of the more complex echoes

with multiple frequency components varying over time. In fact, as we saw in the literature in

chapter 2, there is evidence of the use of Doppler only in CF-FM bats. These bats can reach up

to 2500 Hz Doppler-shift when flying at speeds of 5 ms
� 1 as in the case of R. ferrumequinum

whose call frequency is 83 kHz. However, in the robotics domain, assuming a call frequency
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Figure 4.1: Example of Doppler-shift in a robotic context. Emitted Doppler-shifted call by R1
(left) and reflected Doppler-shifted echo by R2 (right).

of 50 kHz and a static reflector, Doppler-shifts will be below 300 Hz for maximum robot speed

of 1 ms
� 1 as we will see in this chapter.

From physics theory we know that Doppler-shift is produced when sound waves are squeezed

or stretched depending on the relative velocity between the sound emitter and an observer. In

our case this is translated to the emitter and observer being located at the same place (i.e.

the robot) and the sound source (ultrasonic pulse) being reflected by a static object — waves

stretching — or a moving object — waves stretching or squeezing depending on the relative

velocity between both emitter and reflector. Next we will define the concept of Doppler-shift

in the context of our work using the example of figure 4.1.

Let’s consider two robots, R1 and R2, approaching each other in a straight line (relative

angle � 0) at speeds VR1 and VR2. If f is the frequency emitted by R11, c the speed of sound

in air (approx. 345 m/s) and ϕ the angle between the relative velocities of R1 and R2, we can

define the Doppler-shifted f because of VR1 as

fR1
�

f � 1 � VR1

c
cosα �

with cos α � 1 because of α � 0. Hence the frequency arriving at R2, because of VR2, will be

f � 1 � VR1

c
� � 1 � VR2

c
� � f � 1 � VR1

�
VR2

c
� VR1 � VR2

c2 � � f � 1 � VR1
�

VR2

c
�

and therefore, the Doppler-shifted frequency of the reflected echo will be

fR2
�

f � 1 � VR1
�

VR2

c
� � 1 � VR2

c
� � 1 � VR1

c
� � f � 1 � VR1

�
VR2

c
� 2 � f � 1 �

2 � VR1
�

VR2

c
���

Defining the relative velocity between R1 and R2 as v
�

VR1 � ��� VR2 � � VR1
�

VR2, the

Doppler-shift (δ f ) is then defined as

δ f
�

2 f
v
c

cosα 
 (4.1)

1We consider R2 not emitting, or emitting at a different frequency which will not interfere with the call emitted
by R1 (our system allows this).
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In the case of R2 moving in the same direction as R1, the relative velocity will be then

v
�

VR1 � VR2. The sign of the relative velocity will determine the sign of the Doppler-shift, i.e.

positive Doppler if above the call frequency or negative Doppler if below.

4.3 Cochlear models

As stated by Lyon and Mead [1988], “a good cochlear model should take real sound as input,

in real time, and product output that resembles the signals on the cochlear nerve”. In our case,

real time is a determinant factor which will affect the cochlear design dramatically as we will

see in this chapter.

As we saw in chapter 2, the bat’s auditory system is structured in the same way as that

of other mammals. Incident sound is directed towards the ear canal by the pinna. After an

impedance matching between the middle and inner ear, the transduction stage located in the

cochlea performs a joint time-frequency analysis of the incoming signal. A simple model

of this analysis is a bandpass filterbank with subsequent demodulation in each channel by

a combination of full-wave rectification and lowpass filtering. This model assumes roughly

between 10 and 30 hair cells in the bat per channel in the filterbank. In the FM bats the layout of

the auditory filterbank follows the general mammalian pattern of keeping filter quality constant

as center frequency varies. CF-FM bats deviate considerably from this pattern by forming an

auditory fovea in the frequency range where the carrier frequencies of the echoes are kept by

the Doppler-shift compensation behavior of these animals [Behrend et al., 1999]. Towards

the center of the fovea, filter qualities rise steeply to the highest values known (maximum

Q10dB
� 400 in Rhinolophus ferrumequinum). Outside this frequency band the CF-FM bats

follow the general mammalian pattern.

In this work, the cochlear models investigated are conventional digital analysis filterbanks

whose frequency response characteristic splits, by a set of parallel bandpass filters following

a particular distribution, the incoming signal into a corresponding number of sub-bands. The

transduction of the movement of the basilar membrane into neural activity, implemented bio-

logically by the hair cells of the cochlea, is modelled fairly well by processing the outputs of

these sub-bands (or channels) with a full-wave rectifier and a low-pass filter [Schroeder and

Hall, 1974]. These last two steps are equivalent to a simple amplitude demodulation scheme

that approximately recovers the envelope of the outputs of the bandpass filters in the filter-

bank. This scheme gives the experimenter complete control over the parameters, i.e. central

frequencies and Q-factors, defining the behaviour of the filters in the filterbank.

A diagram of a generic cochlear model is shown in figure 4.2. Next we will describe the
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Figure 4.2: Diagram of RoBat’s “auditory system” consisting of the ultrasonic transducer
connected to an A/D card the output of which is fed to a software model of the bat cochlea.

two filterbanks assessed in this work together with some preliminary investigation of other

models.

4.3.1 Linear (Butterworth) filterbank

The linear filterbank has a uniform distribution of the center frequencies of the channels. These

channels are located at center frequencies d Hz apart across the band from f � n
2 d to f

� n
2 d

Hz, f being the frequency of the center of the “acoustic fovea” (50kHz for our system), n the

number of channels and d half of the single channel 3dB bandwidth. Thus the larger the d is,

the smaller the n of the filterbank. The frequency range determined by n suffices for the range

of Doppler-shifts received by RoBat. Three different configurations of 4, 7 and 16 channels,

with filter-band widths for 3dB loss of 200, 100 and 40Hz respectively, were investigated.

Because of the real time performance constraint, the type of filters chosen need to be cheap

computationally and provide a good response. The bandpass and low-pass filters are 2nd and 1st

order Butterworth respectively. The reasons for using this type of filter are a flat pass band —

needed for estimating Doppler-shift — and a moderate group delay2[Proakis and Manolakis,

1996]. Figure 4.3 shows the filter response and the distribution of the center frequencies for a

linear filterbank with 16 channel for filter-band widths for 3dB loss of 40Hz.

4.3.2 Gammatone filterbank

This filterbank has a gammatone (i.e. non-uniform) distribution of the center frequencies of the

channels as seen in the right plot of figure 4.4. It can be designed to facilitate the extraction of

particular features of the echoes as testified by the presence of the fovea in CF-FM bats which

greatly enhances those bats’ capability to accurately estimate Doppler-shifts around the central

frequency of the fovea [Peremans et al., 2000]. The filterbank consists of a user-specified set
2The group delay of a filter at a particular frequency is the time that such frequency component of the signal is

delayed by filtering.
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Figure 4.3: Linear filterbank: configuration with 16 channels for filter band-widths for 3dB loss
of 40Hz (left); linear distribution of the center frequencies of the 16 channels (right).

of gammatone filters, 9 and 29 being the size of the two different configurations investigated in

this work (see section 4.5).

For modelling the narrowband fovea of the cochlea of the CF-FM bats we have concentrated

the central frequencies of the bandpass filters symmetrically around the call frequency of 50

kHz. In order to provide a simple, tractable model rather than a detailed copy of the biological

system, the relationship between the quality factor Q of the bandpass filter and its central

frequency f is chosen to be

Q
� Qmax

�
f � f f ovea

�

Wf ovea

�
1 � (4.2)

with f f ovea and Wf ovea denoting respectively the central frequency of the fovea and its width

(see section A.1 of appendix A for more details).

Filters are also spaced for equal overlap between neighbouring filters which results in a

wider spacing of filters as bandwidth increases, thereby mirroring the over-representation prop-

erty of the biological fovea [Slaney, 1993]. Figure 4.4 shows the quality factor as a function of

the central frequency in the fovea (left) and the distribution of these center frequencies (right)

for a 29 channel configuration.

4.3.3 Other models

For the purpose of exploring alternative faster methods of cochlear processing, an undergrad-

uate project was proposed and supervised simultaneously with this work. The results [Mc-

Cormick, 2000] are summarised below.
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Figure 4.4: Gammatone filterbank: Quality factor as a function of the central frequency in a 29
channel gammatone filterbank (left); non-linear gammatone distribution of the center frequen-
cies along the 29 channels (right).

Bessel filterbank

The first alternative method replaced each of the bandpass filters of a generic linear filterbank

with two low-pass filters as in [Cavaco and Hallam, 1999]. The difference between two low-

pass filtered signals was used in place of the output of a bandpass filter. It was hoped that this

would reduce the computational cost: low-pass filters are about half as expensive to compute

as bandpass filters and, to gain the equivalent of N bands, only N+1 low-pass filters are needed.

Bessel filters were used due to their group delay properties. In Butterworth filters, the group

delay changes dramatically over the frequency range whereas in Bessel filters, the group-delay

is fairly flat as seen in figure 4.5 (left). However, while the group-delay is fairly constant for

a single filter, that constant is dependent on the cut-off frequency. This resulted in the output

from one filter being delayed slightly longer than that from the other. To correct this problem,

both signals were delayed after filtering trying to give them both the same net delay at the point

where they were subtracted. This is illustrated in figure 4.6.

It was found that, with large differences in filter cut-off frequency such as those used in

[Cavaco and Hallam, 1999], the variation in the group-delays had no significant effect and

could be eliminated as in figure 4.6. However, with smaller differences such as those used in

our work, serious problems remain. As can be seen in figure 4.5 (right), the group-delays do

not have a constant difference and in fact the 60kHz curve crosses the 50kHz, so a constant

post-filtering delay only moves the problem a little and does not solve it. Hence the Bessel

approach was rejected.
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Figure 4.5: Group delays. Left plot: Group-delay of Butterworth (solid) vs. Bessel (dotted)
low-pass filters with cut-off frequency 50kHz. Right plot: Group-delays of two Bessel low-pass
filters with 50 kHz (solid) and 60 kHz (dotted) cut-off frequencies (adapted from [McCormick,
2000]).

Cascade filterbank

An alternative to the parallel filterbank model is the model devised by Lyon and Mead [1988].

This configuration consists of N low-pass filters in series, the output of the first filter being

fed to the next filter and so on. After every N filters a “tap” allows the output so far to be

measured. This corresponds more directly to the physical organisation of the cochlea and the

basilar membrane: the cascade of filters equates to the membrane while each tap corresponds

to a hair cell on the membrane. Figure 4.7 outlines the operation of this model.

Lyon and Mead [1988] used analogue electronics to make the filter cascade. Watts et al.

[1992] and van Schaik et al. [1995] improved the model while remaining within the domains of

f- 2δ

f- δ sub

subf

  f

delay

delay

delay

f-

f- 2δ

δ

Figure 4.6: Bessel filterbank in which a delay is being applied to each filter output before
subtraction (adapted from [McCormick, 2000]).
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Figure 4.7: Cascade filterbank with 2 taps and N filters per tap (adapted from McCormick
[2000]).

solid-state circuits and analogue filters. The implementation here attempted to create the same

model of the cochlea but in a digital framework using software filters.

Implementing the actual filters used by Lyon and Mead [1988] in the digital domain caused

problems. However, it proved possible to replace them with digital low-pass Butterworth filters

while allowed the main features of this cochlear model to be preserved, namely the cascaded

nature of the filterbank, with the output of one tap being affected by the outputs of the previous

taps.

The operation of the filterbank was analysed calculating the transfer function of the whole

cascade together with the frequency response for each tap. The results reported in [McCormick,

2000] showed that while the cascade can accurately identify pure tone signals, its performance

is much reduced by real (noisy) signals. Thus, for an application which does not require much

accuracy, the cascade is a computationally cheap model. However, when a highly tuned fovea

is required — as in our case — the reduction in performance for real signals is too great.

4.4 Doppler-shift estimation methods

For Doppler-shift estimation, we need a higher frequency resolution than that provided by a

single channel of a normal n channel filterbank. This is analogous to the sub-pixel resolution

problem in machine vision [Marr, 1982]. Two different methods for increasing resolution by

extracting the carrier frequency from the output of the filterbank models: an artificial neural

network (ANN) and a weighted average (WA); are described next. It is important to clarify

that in both methods we are assuming Doppler-shifted echoes comprising a single dominant

frequency component.
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Figure 4.8: Linear filterbank output for a 150 Hz shifted echo (left). Sliding ANN for fre-
quency estimation (right).

4.4.1 Artificial Neural Network

To perform frequency discrimination using the filterbank outputs we need to interpolate the

frequency of the echo. An ANN which will determine the value of the principal harmonic of

the echo is therefore applied to the output of the filterbank as shown in the example of figure 4.8.

The left plot shows a 150 Hz Doppler-shifted echo (made using a 50150 Hz noisy sinusoid)

coming out from a linear filterbank (only selected channels plotted) before being fed to the

ANN. Then (right plot), the ANN performs as a sliding window containing channels centered

on the two channels of the filterbank that bracket the frequency of the echo (50140 and 50160

Hz in this case) and therefore have the highest energy. The energy of these 2 channels (at centre

frequencies f and f
�

d in the right plot) feed the 2 black-filled input units of the ANN. The

interpolated frequency fo will be somewhere between the centres of these 2 channels.

Two different topologies of backpropagation ANNs, chosen after pilot experiments look-

ing for the minimum number of input and hidden units3 needed, were tested: 6–3–1 for the

linear filterbank and 9–4–1 for the gammatone filterbank. In the latter case, there was no “slid-

ing” behaviour since the number of inputs of the ANN matched the number of channels of

the gammatone filterbank and the intrinsic symmetries of the linear filterbank, which permit

sliding, do not obtain for the gammatone. No ANN was used with the 29 channel gammatone

filterbank because of being too computationally expensive and therefore too slow for real time

applications.
3After several attempts it was found impossible for the ANN to learn the whole set of data without a hidden

layer.
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Figure 4.9: ANN fit along the acoustic fovea for different noise levels. Whole acoustic fovea
(left), magnification of part of the fovea (right).

The ANNs were trained using simulated noisy signals, a learning rate of 0.1 or smaller and

no momentum (see Appendix B for a complete parameter list). The signals were made of a

sinusoid of given frequency – the frequency to be estimated – added to uniformly distributed

random noise. Figure 4.9 (left) shows a comparison of the ANN’s performance along the

acoustic fovea with an ideal fit for simulated noisy data (SNR=11.3dB). As can be seen, the

ANN’s output fits the line quite satisfactorily, with an estimated error of
�

2 Hz. In figure 4.9

(right), a comparison among different levels of noise is shown. As can be seen there, the ANN

is quite robust to high levels of noise (SNR=-10dB).

4.4.2 Weighted average

The other method used was a weighted average (WA) of the filterbank’s output, with each

channel’s center frequency receiving a weight proportional to that channel’s output level.

Thus in this method Doppler-shifts are calculated as follows:

fd
� ∑n

i � 1 � ai � fi �
∑n

i � 1 ai � (4.3)

where ai is the output of the filterbank’s ith channel, fi the carrier frequency for that channel

and n the number of channels of the filterbank.

Apart from its simplicity, this method has the a priori advantage — compared with the

ANN — of not requiring any training at all and being independent of the number of channels

in the filterbank. This method was suggested by Müller who previously used it for Doppler-

shift estimation in Müller [1998].
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4.5 Comparison of Doppler-shift estimation methods

4.5.1 Design of the experiments

Four different kinds of experiment were designed for each of the methods under test. The first

three experiments consisted in moving RoBat orthogonally towards a smooth wall as in figure

4.10 (left) under the following conditions:

� Constant velocity — since the Doppler-shift depends on the cosine of the bearing angle,

it is comparatively insensitive to small fluctuations in bearing around zero. Therefore,

Doppler-shift in this scenario should be fairly constant once the desired speed has been

reached.

� Acceleration — the Doppler-shift should increase as the velocity of the robot increases.

� Deceleration — opposite behaviour, i.e. the Doppler-shift should decrease along with

the robot’s velocity.

In the fourth experiment, RoBat was moving at constant velocity through an uncluttered

environment containing a 5 cm diameter post positioned to one side of its path, as in figure 4.10

(right). As the mobile base moves, a tracking behaviour makes the sonarhead point always at

the post hence guaranteeing its insonification. When the robot is far from the post, a maximal

Doppler-shift is obtained since the bearing angle between the robot and the post is close to 0 �
(α1 in the figure). However, as the robot nears the post, this Doppler-shift starts decreasing.

Each of the experiments was run 10 times. Different configurations were tested during the

above experiments for the gammatone filterbank and the ANN. For the linear filterbank a fixed

configuration was used. All these configurations are summarised in table 4.1. Configuration 2

was the same as configuration 1 but with the ANN trained in increments of 0 
 5 Hz instead of

1 Hz as in the rest of the configurations. In total, 40 experiments were performed in 400 trials.

The experimental conditions, such as the starting position of the robot and the position of

the wall and post, were kept constant among trials. This resulted in a very good repeatability,

as proven by the very low error bars of the robot’s velocity when averaging all the data points

among the 10 trials of a single experiment. Figures 4.11, 4.12, 4.13 and 4.14 show a single trial

of each of the four different cases from the whole set of experiments which will be discussed

in section 4.5.3. For each plot, the Doppler-shift estimated by the method under test vs. the

true Doppler-shift is plotted.

As in equation 4.1, true Doppler-shifts ( ft d) are calculated by the following equation:

ft d
�

2 fs
v
c

cosα
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Figure 4.10: The measurement setup: (a) RoBat driving straight up to the wall; (b) RoBat
driving by a post.

Config. Description

1 40 Hz, linear, ANN
2 same as (1) but 0.5 Hz inc.
3 100 Hz, linear, ANN
4 200 Hz, linear, ANN
5 40 Hz, linear, WA
6 100 Hz, linear, WA
7 200 Hz, linear, WA
8 9 channels, γ-tone, ANN
9 9 channels, γ-tone, WA

10 29 channels, γ-tone, WA

Table 4.1: Experimental configurations testing linear and gammatone filterbanks with ANN
and weighted average (WA) estimation methods.

where fs the source frequency (50 kHz), v the relative velocity between the robot (estimated

from the readings of the wheel encoders) and the reflector, c the speed of sound in air (ap-

proximately 345 m/s) and α the relative bearing angle. In the experiments with the wall α � 0

whereas with the post α is estimated by trigonometry given that the positions of both the post

and the robot are known (the latter through the TOF of each echo) and knowledge of the robot

path for each of the data points of a single trial.
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Figure 4.11: Doppler-shift estimation while RoBat moves at constant velocity orthogonal
to a wall (configuration 1).

4.5.2 Analysis of the results

For assessing performance in each experiment, the following four measures were calculated:

1. Accuracy — mean difference between the Doppler value calculated by the method being

tested and the value calculated from the measured robot speed (Hz).

2. Standard deviation of the accuracy differences (Hz).

3. RMS standard deviation of the Doppler calculated by the method under test (Hz).

4. Ratio of the standard deviations calculated above, 2 divided by 3, expressed as a relative

percentage. This measure indicates the extent to which the method amplifies or reduces

the measurement noise (%).

To see the utility of this last measure, consider a situation where the true Doppler is con-

stant. In that case, the variation in the difference measure 1 is due solely to the measurement

variation in the Doppler values produced by the method being tested, and the relative standard

deviation measure will be 0. In the real experiment, the true Doppler varies somewhat in re-

sponse to robot velocity errors caused by bumps in the floor (for example). If the method is

good, the computed Doppler and the true Doppler should co-vary, and the variance of the ac-

curacy differences may thus be less than the variance of the computed Doppler itself; measure
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Figure 4.12: Doppler-shift estimation while RoBat accelerates orthogonal to a wall (con-
figuration 6).

4 will then be negative. On the other hand, if the method being tested de-correlates the vari-

ations or suffers from a substantial and varying fit error between computed and true Doppler,

the accuracy difference variation will be bigger than that in the computed Doppler alone and

the relative variation measure, 4, will be positive.

Tables 4.2, 4.3, 4.4 and 4.5 show the values of the four measures in the order given as above

for each of the experiments. The numbers in parentheses in the first column of the table are

the experimental configurations from table 4.1. Measures 1 and 4 for all the experiments are

plotted in figures 4.15 and 4.16.

4.5.3 Discussion

From the analysis of the results some interesting things can be seen. In figure 4.15 the ANN

has consistently good noise performance on both filterbanks with worst case in configuration

4 (linear filterbank) reaching roughly double the noise level in the Doppler accuracy data. The

weighted average method performed worse than the ANN, configuration 7 being the worst

case because of the small number of channels (4). Figure 4.16 shows fairly good accuracy in

all cases except for configurations 2, 7, 9 and 10.

It was interesting to find overall good performance in most of the cases of the post as a

reflector, despite being a much weaker reflector compared to a wall. This can be seen in, for

example, figure 4.14, in which the performance is quite good despite some small fitting errors
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Figure 4.13: Doppler-shift estimation while RoBat decelerates orthogonal to a wall (con-
figuration 6).

WALL POST
Config. Const. vel. Acceleration Deceleration Const. vel.

(1) -0.44 Hz 1.36 Hz -1.19 Hz 3.36 Hz
1.43 Hz 2.57 Hz 2.47 Hz 4.69 Hz
2.70 Hz 4.91 Hz 3.66 Hz 9.07 Hz

-47.08 % -47.55 % -32.52 % -48.31 %
(2) 1.93 Hz 4.37 Hz 1.86 Hz 4.73 Hz

2.58 Hz 3.02 Hz 3.41 Hz 3.53 Hz
2.92 Hz 3.31 Hz 3.17 Hz 6.19 Hz

-11.65 % -8.91 % 7.18 % -42.87 %
(3) 3.45 Hz 2.74 Hz 0.03 Hz 1.36 Hz

1.64 Hz 2.55 Hz 2.27 Hz 2.11 Hz
1.59 Hz 2.35 Hz 3.69 Hz 2.23 Hz
3.28 % 8.87 % -38.54 % -5.69 %

(4) -0.23 Hz 2.88 Hz 1.47 Hz 0.66 Hz
3.53 Hz 4.92 Hz 3.95 Hz 2.33 Hz
2.26 Hz 2.63 Hz 4.12 Hz 2.78 Hz
56.85 % 86.92 % -4.22 % -16.17 %

Table 4.2: Experiments with linear filterbank and ANN. The first column indicates the exper-
imental configuration under test (see table 4.1). The four measures inside each cell are (top
to bottom): accuracy; standard deviation of the accuracy differences; RMS standard deviation;
relative variance ratio (see text).
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Figure 4.14: Doppler-shift estimation while RoBat drives by a post at constant velocity
(configuration 9).

WALL POST
Config. Const. vel. Acceleration Deceleration Const. vel.

(5) 1.92 Hz 3.64 Hz 3.18 Hz 3.19 Hz
2.24 Hz 2.95 Hz 3.74 Hz 3.29 Hz
1.65 Hz 2.01 Hz 2.37 Hz 4.53 Hz
35.53 % 46.55 % 58.19 % -27.42 %

(6) 1.41 Hz 3.37 Hz 1.69 Hz 3.06 Hz
1.54 Hz 2.37 Hz 1.99 Hz 2.82 Hz
1.64 Hz 1.96 Hz 2.76 Hz 3.88 Hz
-5.62 % 20.98 % -28.14 % -27.12 %

(7) 2.86 Hz 3.99 Hz 5.76 Hz 0.16 Hz
3.89 Hz 4.37 Hz 4.04 Hz 4.47 Hz
1.45 Hz 1.99 Hz 2.28 Hz 2.70 Hz

168.19 % 119.17% 77.31 % 65.26 %

Table 4.3: Experiments with linear filterbank and weighted average. The first column indi-
cates the experimental configuration under test (see table 4.1). The four measures inside each
cell are (top to bottom): accuracy; standard deviation of the accuracy differences; RMS standard
deviation; relative variance ratio (see text).

at the begining of the Doppler-shift curve and close to the end (almost at 90 � relative position).

The former are due to the long distance (i.e. lower SNR) from the post during that period

whereas the latter are due to the fact that, at that point, the robot is about to pass by the post

having reached the maximum turning angle of the sonarhead’s pan servomotor. Overall, the
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WALL POST
Config. Const. vel. Acceleration Deceleration Const. vel.

(8) 0.46 Hz 2.81 Hz -0.99 Hz 0.79 Hz
2.28 Hz 3.71 Hz 3.34 Hz 2.63 Hz
2.47 Hz 3.03 Hz 3.26 Hz 4.12 Hz
-7.77 % 22.34 % 2.66 % -36.11 %

Table 4.4: Experiments with gammatone filterbank and ANN. The first column indicates the
experimental configuration under test (see table 4.1). The four measures inside each cell are
(top to bottom): accuracy; standard deviation of the accuracy differences; RMS standard devia-
tion; relative variance ratio (see text).

WALL POST
Config. Const. vel. Acceleration Deceleration Const. vel.

(9) 3.37 Hz 5.54 Hz 4.59 Hz 1.42 Hz
1.89 Hz 3.51 Hz 2.54 Hz 2.54 Hz
1.85 Hz 1.89 Hz 2.46 Hz 2.30 Hz
2.53 % 86.02 % 3.19 % 10.58 %

(10) 4.49 Hz 6.22 Hz 7.51 Hz 0.83 Hz
2.02 Hz 3.17 Hz 4.17 Hz 5.33 Hz
1.59 Hz 2.13 Hz 2.32 Hz 2.72 Hz
26.46 % 49.28 % 79.72 % 96.25 %

Table 4.5: Experiments with gammatone filterbank and weighted average. The first column
indicates the experimental configuration under test (see table 4.1). The four measures inside
each cell are (top to bottom): accuracy; standard deviation of the accuracy differences; RMS
standard deviation; relative variance ratio (see text).

performance of the linear filterbank is more consistent than the gammatone. Similarly, the

ANN gave consistently better noise performance than the weighted average.

It is important to mention that, during the pilot experiments, we found a strange behaviour

in the Doppler-shift estimate when gammatone filterbanks and specular reflectors (such as

walls) were used. This behaviour resulted in substantial varying fit errors — Doppler-shifts

decreasing dramatically instead of keeping constant — as the robot got closer to the wall (see

figure 4.17). The fact that moving the robot orthogonally towards a post did not result in this

behaviour suggested a dynamic range problem. Since the electronics of the sonarhead do not

include a time-varying gain (as the commercial Polaroid sensor does), we need to adjust the

output amplitude of the D/A card to maximise dynamic range without saturating the input chan-

nels of the A/D card. This saturation occurs when the combination of sound pressure and D/A

card output voltage is higher than the voltage range of the A/D card. When an echo saturates,

the portions of it that are above the input range of the A/D card are clipped resulting in a square
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Figure 4.15: Relative variance ratio measure for each experimental configuration (see table
4.1).
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Figure 4.16: Accuracy estimation for each experimental configuration (see table 4.1).

wave-like pulse. This can be seen in the left plot of figure 4.18, in which the envelope of a weak

(normal) echo has the amplitude modulation characteristic of a Doppler-shifted echo whereas

the saturated (dodgy) echo looks like a pure simulated signal because of the A/D clipping (grey

echo in the figure). The square wave-like behaviour as a result of this clipping appears in the

spectrum as a significant aliased 3rd harmonic of the echo, the 49 
 8 kHz peak of figure 4.18
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Figure 4.17: Varying fit errors found in γ-tone filterbanks when RoBat was driving towards
a wall (configuration 10).
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Figure 4.18: ‘Dodgy’ performance. Left plot: amplitude comparison between dodgy (grey)
and normal (black) echos. Right plot: frequency spectra of both echos.

(right).

The reason why this affects gammatone filterbanks only is because of the length of the

acoustic fovea, which is larger than in the linear filterbank. Thus the energy of the echo’s

3rd harmonic — which is aliased below the carrier frequency but still within the fovea— is

being combined with the echo’s fundamental and therefore pulling down the computed Doppler

estimate. To eliminate this behaviour in the experiments performed in this chapter, two different
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D/A output values — 5V and 1V — were chosen for the post and the wall respectively.

However, since it is more practical to use a fixed configuration (RoBat is not supposed to

know a priori which type of feature it will encounter), a linear filterbank was used for the rest

of the experiments reported in this dissertation. Possible long-term solutions to this dynamic

range problem are: implementing a time-varying gain as in the Polaroid sensor, dropping the

noise floor by improving the sonarhead electronics, or including some form of automatic gain

control.

4.6 Echoes from multiple reflectors

So far we have successfully achieved a system capable of estimating Doppler-shifts in the

echoes received by RoBat. However, these echoes, despite coming from real reflectors within

a real environment, are made of a single dominant Doppler-shifted frequency hence implying a

single significantly reflecting target moving at some relative velocity4 with respect to the robot.

Thus, the next step is to assess our system in a more realistic environment with more than

one dominant frequency in the echoes. This is a much more severe test which might cause the

model fail. But, how could this happen? This is addressed in the following section.

4.6.1 The problem of the cross-modulation term

According to Martin [1995], there are several approaches for extracting the envelope of a band-

pass signal such as the Hilbert transform method, rectification-and-smoothing and squaring-

and-smoothing. The cochlear models used in our system perform rectification-and-smoothing

because of the biological properties described in section 4.3.

By definition rectification is a non-linear process and, as a result, cross-modulation terms

will be introduced when more than one signal is simultaneously fed into the filterbank. These

terms will make the system not satisfy the superposition principle [Proakis and Manolakis,

1996], which would require the response of the filterbank to a weighted sum of signals to

be equal to the corresponding weighted sum of the outputs of the filterbank to each of the

individual input signals.

Let us illustrate this with an example. Given a periodic signal Y with amplitude A and

frequency ω, and assuming the signal has been bandpass filtered through one of the filterbank’s

channels, the expression obtained after full-wave (by squaring) rectification (Yr) will be:

Yr
� � Acosωt � 2 � A2cos2ωt

� 1
2

A2 � 1 �
cos2ωt � � A2

2
� A2

2
cos2ωt

4Obviously, this also applies to the case of a static target and a moving robot, or both moving simultaneously.
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Next, applying the low-pass filter (Yl p) with a cut-off frequency fc
��� ω, the following

output is obtained:

Yl p
� A2

2

Considering now two signals with different amplitude (A � B) and frequency (ω1 � ω2), and

the signal Y the sum of A and B, the rectification after the bandpass filtering will be:

Yr
� � Acosω1t

�
Bcosω2t � 2 � A2cos2ω1t

�
B2cos2ω2t

�
2ABcosω1t cosω2t

� 1
2
� A2 �

B2 � � 1
2

A2cos2ω1t
� 1

2
B2cos2ω2t

�
ABcos � ω1

� ω2 � t �
ABcos � ω1 � ω2 � t

Finally, after low-pass filtering, the obtained signal will be

Yl p
� 1

2
� A2 �

B2 � �
ABcos � ω1 � ω2 � t

which, as expected, contains a cross-modulation term not eliminated by the low-pass filtering

if ω1 � ω2
��� ω1ω2.

Considering the possibility of getting rid of this term, a non-biologically plausible way of

doing it could be by low-pass filtering with a very small cut-off frequency (e.g. 1 Hz or 0.1

Hz). The problem then, however, would then be the huge group delay of such a low-pass filter,

which would need at least 500000 samples ( f s
�

1MHz) worth of echo5 to being useful. This

would not be practical because of the huge size of the time window needed for both the call —

which will affect the number of pulses sent per second — and the echo processing along the

filterbank channels.

4.6.2 Sensing the world through single dominant frequency echoes

Having seen the cross-modulation problem introduced by other signals in the echo, the follow-

ing questions arise: How likely is this situation to happen in our system? If common, how will

this affect Doppler-shift estimation? In order to try to answer these questions, a set of rules of

thumb about the coupling between our system (RoBat) and the world sensed will be presented

next.

1. Doppler depends on call frequency, speed of sound, relative velocity and bearing angle.

The last two play an important role since
5This is a rough estimation after pilot experiments with simulated data.
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� at small bearing angles (e.g.
�

15 � ), because of the cosine dependency of Doppler,

and the relatively low velocity of the robot, the frequency separation between dif-

ferent reflectors decreases dramatically. In other words, the other frequency com-

ponents (if any), will be almost overlapping with the control frequency.

� at larger bearing angles the frequency separation increases but the importance of

the target decreases since the robot is about to pass it already.

2. Long echos are needed for Doppler-shift estimation, therefore the time domain scenario

in which non-overlapping echoes from different reflectors can be detected is not valid.

3. If the control reflector is situated in the middle of the robot’s path (i.e. maximum

Doppler-shift), any other static reflector nearby the control will reflect an echo with a

lower Doppler-shift.

Hence, the natural question here is whether it possible to sense the world in terms of a

single main frequency component at a time or not. The relatively narrow main lobe given by

the radiation pattern of the Polaroid transducer — approximately 25 � at � 20 dB (see figure

2.5) compared to the 100 � of R. ferrumequinum [Schnitzler and Grinell, 1977] — does not

leave much room for other reflectors to be fitted within the lobe. This results in either a single

reflector or a small number of reflectors so close together that can be ‘seen’ as a single larger

reflector.

This 25 � beam width has been a common problem with the Polaroid sensor when determin-

ing the true range of an object, as discussed in the literature reviewed in chapter 2. However,

with respect to Doppler-shifts, rather than being too big, the 25 � lobe is too small for discrimi-

nating other frequencies in a single echo. Even more, this is worsened by the small velocity of

robots in indoor environments (approx. 0 
 5 ms
� 1 or even lower) compared to real bats which

can fly up to 5 ms
� 1.

In addition, the echo generated by any reflector situated at a bigger range than the control

reflector (i.e. behind) will be weaker than this one because of atmospheric attenuation. Some of

the facts addressed above can be seen in figure 4.19 in which the evolution of Doppler-shift in

300 ms simulated echoes containing two signals — control and interference — is shown. The

frequency of the interference signal is separated 5 Hz (left plot) and 25 Hz (right plot) from the

50145 Hz of the control signal. The control frequency is the maximum expected Doppler-shift

when RoBat moves at 0 
 5 ms
� 1 towards a reflector at bearing angle α

�
0 � . The amplitude A of

the interference signal is increased from 0.25 to 1 to see the effect in the compound signal. For

all the curves, the compound signal is fed through a 16 channel linear filterbank and Doppler-

shifts are estimated at every echo sample ( fs
�

1 MHz), i.e. 300000 estimations per echo.
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Figure 4.19: Evolution of estimated Doppler-shift along 300 ms echoes with 2 signals sepa-
rated by 5 Hz (left) and 25 Hz (right) for different amplitudes.

As seen in figure 4.19, the effect of the interference signal is a modulation in the Doppler

curve which increases in peak-to-peak amplitude as A increases. This modulation shows a

periodic behaviour with frequency equal to the separation frequency between the two signals,

i.e. 5 Hz in the left plot and a 25 Hz in the right plot. Also, the mean value of the Doppler curve

decreases from the control frequency because of the interference signal, this effect being much

more significant in the right plot because of the bigger frequency separation. The question now

is: How much is the mean Doppler-shift value affected by the interference signal?

During the experiments described in this chapter, Doppler-shifts were estimated as the

mean of several estimations along an echo. Hence, this final estimation should be the one to

consider, i.e. to investigate how much the Doppler-shift value estimated from the mean of

the 300000 estimations along an echo is affected by the interference signal. On such terms,

the experiments shown in figure 4.20 were designed, measuring the error as the variation in

Hz of the Doppler-shift estimations with respect to the control signal. The scenario simulates

RoBat sending 50 kHz calls, 50 ms long, while moving at 0 
 5 ms
� 1 towards two reflectors —

control and interference — under different situations. In the top plots, the control reflector is

positioned at α
�

15 � hence generating a 50140 Hz Doppler-shifted echo, whose amplitude is

assumed to be constant (A
�

1). The interference reflector’s position is changed
�

15 � with

respect to the control, i.e. generating Doppler-shifted echoes from 50145 to 50126 Hz. In

the bottom plots, the control reflector is positioned at a α
�

45 � (50102 Hz Doppler-shifted

echo), whereas the interference reflector position varies
�

15 � as above, generating Doppler-

shifted echoes from 50126 to 50073 Hz. The left column plots show the frequency variations
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described before versus amplitude variations ranging from 0.05 to 1 in 0.05 increments. The

right column plots show the same frequency variations versus relative signal phase along a

whole period (20 samples at fs
�

1MHz).

As seen in the top plots of figure 4.20, for small bearing angles (control reflector at α
�

15 � )
the maximum error occurs when the interference reflector is located at α

�
30 � (frequency

50126 Hz) with maximum amplitude and is phase-shifted 180 � , as expected. In the rest of the

cases, the Doppler-shift estimation fluctuates around values close to the control signal (error

0). With respect to the bottom plots (control reflector at α
�

45 � ), the error follows similar

behaviour as in the top plots although in this case, due to the larger frequency separation —

because of the cosine behaviour — the error range is slightly larger (see table 4.6).

The results shown in figure 4.21 are from experiments identical to the ones in figure 4.20

except for the echo length which in this case is 300 ms. Despite the unrealistic length of these

echoes — too long for real time robotic applications — the experiment was carried out to

investigate whether there are significant differences with respect to smaller echo lengths such

as the 50 ms of figure 4.20. A summary of the maximum error in Doppler-shift estimation of

figures 4.20 and 4.21 is shown in table 4.6. As can be seen, there are no significant differences

in the error between 50 and 300 ms, which validates the assumption of using 50 ms as a realistic

call length.

Experiment 50 ms 300 ms

α
�

15 � , freq. vs. amp. 5.59 Hz 5.94 Hz
α
�

15 � , freq. vs. phase 9.44 Hz 6.44 Hz
α
�

45 � , freq. vs. amp. 12.99 Hz 13.20 Hz
α
�

45 � , freq. vs. phase 15.16 Hz 13.48 Hz

Table 4.6: Summary of maximum error in Doppler-shift estimation.

4.6.3 Discussion

In the top plots of figures 4.20 and 4.21 the error is consistently smaller than in the bottom plots.

This was expected, since the frequency separation — due to Doppler being cosine dependent —

is larger in the latter case than in the former. Nevertheless, except for very specific situations in

which the interference signal is phase-shifted 180 � and has the same amplitude as the control

signal, the error is fairly small and therefore it may be reasonable to consider only a single

reflector when there is more than one and they are very close to each other. Otherwise, reflectors

separated by more than the 25 � of the main lobe width will not produce significant error and

we could consider them as separated reflectors. A scanning behaviour along the robot’s path



Chapter 4. Inner ear: Cochlear models and Doppler-shift estimation methods 76

5.0125

5.013

5.0135

5.014

5.0145

x 10
4

0

0.2

0.4

0.6

0.8

1
−6

−5

−4

−3

−2

−1

0

1

2

3

Frequency range (Hz)Amplitude

E
rr

o
r 

(H
z
)

5.0125

5.013

5.0135

5.014

5.0145

x 10
4

0

90

180

270

360
−10

−8

−6

−4

−2

0

2

4

Frequency range (Hz)Phase (deg.)

E
rr

o
r 

(H
z
)

5.007
5.008

5.009
5.01

5.011
5.012

5.013

x 10
4

0

0.2

0.4

0.6

0.8

1
−15

−10

−5

0

5

10

Frequency range (Hz)Amplitude

E
rr

o
r 

(H
z
)

5.007
5.008

5.009
5.01

5.011
5.012

5.013

x 10
4

0

90

180

270

360
−20

−15

−10

−5

0

5

10

15

Frequency range (Hz)Phase (deg.)

E
rr

o
r 

(H
z
)

Figure 4.20: Doppler-shift estimation error in 50 ms echoes made of 2 signals (simulated
data); top plots show a 50140 Hz control signal with interference signal varying from 50145 to
50126 Hz; bottom plots show a 50102 Hz control signal with interference signal varying from
50126 to 50073 Hz; left column plots show amplitude vs. frequency variations; right column
plots show phase vs. frequency variations.
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Figure 4.21: Doppler-shift estimation error in 300 ms echoes made of 2 signals (simulated
data); top plots show a 50140 Hz control signal with interference signal varying from 50145 to
50126 Hz; bottom plots show a 50102 Hz control signal with interference signal varying from
50126 to 50073 Hz; left column plots show amplitude vs. frequency variations; right column
plots show phase vs. frequency variations.



Chapter 4. Inner ear: Cochlear models and Doppler-shift estimation methods 78

could also improve this close-but-not-overlapped reflector assumption.

An interesting topic for taking this work further would be to investigate the variation in the

Doppler-shift estimation error from two or more reflectors as the robot passes by, searching

for patterns in the evolution of the error as the bearing angle — and thus the separation among

frequencies — increases.

4.7 Summary

This chapter showed how continuous estimates of Doppler-shifts can be derived from physical

echoes seen through two different models of a cochlear representation of the CF-FM bat. Two

parsimonious models of the auditory fovea of these bats — a linear and a gammatone filterbank

— and two methods for estimating Doppler-shift from the output of these models — an artificial

neural network and a weighted average — were tested under different experimental conditions.

It was interesting to see how Doppler-shift can be reliably estimated despite the limita-

tions of the robotics domain — specifically robot velocity and transducer characteristics —

compared to real bats in their own domain, i.e. nature.

The problem of multiple reflectors when estimating Doppler-shift was addressed in a qual-

itative way, i.e. how much our Doppler-shift estimation deteriorates when another signal was

introduced in the echo, investigating how likely the problem applies to robotics provided with

Polaroid electrostatic transducers and up to what extent the problem can be ignored when as-

suming a single dominant frequency echoes in indoor environments.



Chapter 5

Doppler-based behaviours

5.1 Introduction

Müller’s work on the hypothesis of CF-FM bats using acoustic flow for obstacle avoidance

[Müller, 1998] motivated the author to investigate the utility of Doppler-shifts for ultrasound-

based robotic navigation which, to the author’s knowledge, has not been explored yet. This

is not surprising given that the ultrasonic sensors used in robotics (like the Polaroid) do not

provide this Doppler information nor permit extracting it by means of further processing. Thus

extra hardware, which currently is quite expensive, is needed as seen in the description of

RoBat in chapter 3.

In the previous chapter it was shown how Doppler-shifts can be reliably estimated from the

echoes. What sort of Doppler-based applications can then be implemented in mobile robots

provided with ultrasonic sensors? Furthermore, what can be learnt from Biology regarding

the use of Doppler? These questions are addressed in this chapter, in which Doppler-based

behaviours found in bats such as target recognition through frequency signatures, Doppler-

shift compensation, and obstacle avoidance by means of acoustic flow will be implemented in

RoBat and their performance discussed. Moreover, a convoy navigation controller inspired by

Doppler-shift compensation is devised and performance results presented.

5.2 Target recognition through frequency signatures

CF-FM bats can hunt insects in clutter, although the spatial resolution achievable with the

narrow-band portions of their biosonar pulses is poor. This clutter is mainly composed of

dense foliage, trees, other bats and also other preys flying around which will interfere with the

pursued prey. So, how can they recognise their preys in such clutter? They do so by utilising

79
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Figure 5.1: Echo from a rotating fan. Time domain plot (left); spectrum analysis of such echo
vs. an echo from a post (right).

the distinctive patterns of amplitude peaks and spectral broadenings introduced by the insects’

wing-beat, which are known as glints [Schnitzler and Ostwald, 1981; Kober and Schnitzler,

1990]. It has been noted before that the echoes generated by echolocating off a small computer

fan resemble those generated by flying, i.e. wing flapping, insects quite closely, in fact, so

much so that bats have been known to actually attack these fans.

These patterns introduced by a computer fan are illustrated in figure 5.1. The left plot

shows the amplitude modulations introduced by the reflection off the blades of the rotating fan.

The right plot shows the spectrum analysis (FFT) of such echo versus an echo from a post. As

seen in the figure, the fan introduces frequency patterns beside the 50kHz component that are

missing in the echo from the post.

Putting the fan in front of a flat reflecting surface — such as wall — separated by � 4 cm,

can be used as a model for a flying insect in front of a large reflecting structure. The echo,

when analysed with a narrowband cochlea, f f ovea
�

80 kHz, W f ovea
�

5 kHz, fmin
�

78 kHz

and fmax
�

82 kHz, and visualised with the interactive display tool described in chapter 3,

results in the spectrogram shown in figure 5.2.

The spectral broadening and the amplitude peak of the glint can be seen by comparing

the left and right plots of figure 5.2. Here the frequency and the amplitude modulations are

introduced by the reflection off the rotating blades of the fan. The amplitude modulations are

due to the periodically changing orientations of the reflecting surfaces of the blades whereas

the frequency modulations are due to the periodic movement of the blades producing Doppler

shifts.
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Figure 5.2: Spectrogram comparison: echo from a flat reflecting surface (left); echo from a
rotating fan held in front of the flat reflecting surface (right).

Based on these spectrograms one can easily distinguish between the two experimental se-

tups, therefore it seems to us that bats also will have no difficulty in distinguishing between

the two cases. Hence, this result indicates that correctly interpreting the scene, i.e. a flying

insect in front of a large reflecting structure, is not so much a resolution problem, i.e. dis-

tinguish two closely spaced echoes, as it is a pattern recognition problem, i.e. classify the

‘glint-spectrogram’ as a ‘prey-in-front-of-large-reflector’ situation [Peremans et al., 2000].

Walker et al. [1998a] successfully implemented this behaviour in a previous version of

RoBat (Ben Hope, described in chapter 3), in which the robot was set to track a target fan in

a cluttered environment — a robotics lab — in presence of other clutter fans. However, the

tracking behaviour was performed with the robot halted, i.e., Ben Hope was moved a pre-set

distance, echo measurements and processing were performed and, following by a control law

depending on the echo spectrum signatures, Ben Hope turned to one side and moved again.

Real bats often perform this ‘pattern recognition through frequency signatures’ on the wing,

resulting in Doppler-shifts being introduced when there is relative velocity between the bat and

the prey. An interesting question arises: How the bat manages to recognise the spectral glints

in its narrowly tuned acoustic fovea if the echo is Doppler-shifted? This is addressed in the

next section.
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5.3 Doppler-shift compensation

As we saw in chapter 2, the CF-FM bat modifies — increasing or decreasing — the carrier

frequency of its own calls, compensating the Doppler-shift produced when the bat, the reflector

or both are moving. This echolocating behaviour, called Doppler-shift compensation, has been

deeply investigated.

Keating et al. [1994] collected quantitative data in the mustached bat moving at veloci-

ties ranging from 0.1 to 5 m/s while compensating Doppler-shift. Interesting results showed

bats holding the value of the reference frequency (the echo) between the resting frequency

and the cochlear resonance value, the mean frequency reference being always an undercom-

pensation, in other words, compensation in echolocating bats is not perfect. According to the

data in Gaioni et al. [1990], mustached bats compensate for an average of 80% of the echo

Doppler-shift, i.e. 20% undercompensation, whereas Keating et al. [1994] found 15.8% under-

compensation for the same bats.

From [Kobler et al., 1985] we know that Pteronotus parnellii compensates simultaneously

for Doppler and echo intensity during forward swings of a pendulum. Surprisingly, they only

compensate for Doppler during backward swings. Perhaps, this might be due to the lesser im-

portance of a target which is getting away — negative Doppler-shift — from the bat. Moreover,

by behaving in this way, a saving in energy can be made.

Roverud and Grinnell [1985] showed evidence of joint frequency tracking and Doppler-

shift compensation behaviours in the CF-FM bat Noctilio albiventris when flying towards an

artificial CF-FM sound. The reason for the bat performing frequency tracking is so far unknown.

However, the fact that N. albiventris hunts in groups suggests a frequency shift in their call

relative to surrounding bats in order to avoid jamming in the identification of individual echoes

[Roverud and Grinnell, 1985].

Also, from [Behrend et al., 1999] we know that for Doppler-shift compensation bats de-

pend on binaural cues. They arrive at this conclusion after experimenting with healthy and

impaired (deaf) bats, reporting better performance for the former. This is an interesting fact

given the monaural nature of Doppler. In other words, after Doppler-shifts are calculated in the

lower auditory system of each ear, the information is presumably combined at higher levels in

the auditory cortex before action is taken.

From all these interesting findings it can be argued that Doppler-shift compensation is an

important behaviour from which bats benefit in several ways some of them summarised below:

� Accurate target recognition, as described in section 5.2, allowing the echo to fall closer
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Figure 5.3: The measurement setup: a ball swinging back and forth in front of the sonarhead.

to the middle of the fovea.

� Smaller size of the fovea, as a consequence of the above, since less high-quality filters

are needed.

� Faster sense-and-act cycle, again as a consequence of the above, allowing realistic per-

formance when operating in high duty cycle mode.

5.3.1 Implementation in RoBat

The aim of the following experiment was to see to what extent the RoBat system allows ac-

curate Doppler-shift compensation like that performed by bats. In order to introduce relative

movement between RoBat and a reflecting target, a swinging ball experiment was designed.

The chosen object was a plastic ball of 8 cm diameter suspended from a 50 cm long thin nylon

wire, putting the ball to swing back and forth in front of RoBat as illustrated in the cartoon of

figure 5.3.

Figure 5.4 (left) shows a time domain plot consisting of 20 consecutive echoes correspond-

ing to half of a swinging cycle, i.e. the ball starts far from the robot at zero velocity, swings

towards RoBat, reaches its maximum Doppler-shift at the lowest point of the trajectory and

ends up at the closest position but with low amplitude because of an unfavourable directivity

gain for this position, and then swings back. Figure 5.4 (right) shows the spectrogram, i.e. the

output of the fovea-part of the cochlea, of a whole experiment. The constant frequency at 50

kHz is due to the crosstalk during pulse emission. In the figure, a sinusoidal change in the

received carrier frequency over time is clearly visible. The extrema of this curve represent the
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ball swinging forward or backward at maximum speed, resulting in maximal Doppler-shifts of

positive and negative sign, respectively.
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Figure 5.4: Echoes reflected off the ball swinging back and forth: time domain plot (left);
spectrogram (right).

Having seen how Doppler-shift can be extracted fast enough from a swinging ball, the

experiment is now extended. Figure 5.5 shows experiments in which the ball was put to swing

back and forth in front of RoBat, starting at a pre-set height and recording data until the swing

attenuated almost completely. The left column plots show Doppler-shift estimation throughout

the experiment whereas the right column plots show a zoomed call frequency versus Doppler-

shifted echo comparison.

In the experiment shown in the upper plots of figure 5.5, no Doppler-shift compensation

was applied, as can be inferred from the harmonic simple oscillatory movement envelope of

the left plot. In the right plot, the call remains at the resting frequency (50 kHz) whereas the

frequency of the echo is Doppler-shifted according to the swinging ball. The middle plots

show half compensation, i.e. compensating only for positive Doppler-shifts — ball swinging

forward — as P. parnellii does [Kobler et al., 1985]. This is clearly seen in the right plot,

in which the call remains at the resting frequency during negative Doppler-shift whereas it

changes its frequency to compensate for positive Doppler-shifts. Finally, the lower plots show

full (positive and negative) compensation. The compensation effect can intuitively be seen by

comparing top-left with bottom-left plots (note that all the left column plots are equally scaled).

The phase-shift between the echo and call curves seen in the bottom-right plot is due to the a

posteriori compensation, i.e. the call frequency being modified according to the last Doppler-

shift estimation, which introduces underdamping for a gain K
�

1. This also applies to the half
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compensation case (middle plots). In both cases, RoBat undercompensates by approximately

30% as a result of this underdamping. This is close to the 20% undercompensation reported by

Gaioni et al. [1990].

Figure 5.6 shows the same experiment as figure 5.5 but with different gain values. For the

upper plots, the gain was set to 0.25, resulting in a highly underdamped behaviour with very

low compensation (approx. 15%). Also, because of the underdamping, the phase-shift worsens

as seen in the right plot. In the middle plots, increasing the gain to 1.25 starts worsening perfor-

mance due to overshoot in earlier stages of the trial. Nevertheless there are small improvements

with respect to K
�

1 at the final stage of the trial as seen in the left plot. Finally, the lower

plots show unstable performance because of the overshoot introduced by a K
�

1 
 75 gain. The

phase-shift between the call and echo curves (right plot) is significantly decreased although at

the cost of overshoot.

5.3.2 Discussion

We have seen how the Doppler-shift of the echoes reflected by a swinging ball in front of

RoBat can be successfully compensated by adapting the frequency of the call using the last

Doppler-shift estimation. Different gain values have been tried, the best being K
�

1 for a

70% compensation as shown in the middle plots of figure 5.5. This compensation factor is

constrained by the computational time required for a complete sense-and-act cycle. By imple-

menting this behaviour, the size of the acoustic fovea could be reduced and therefore higher

duty cycles could be achieved as previously discussed in section 5.3.

In order to see the effect of varying the Doppler-shift compensation gain in different scenar-

ios, experiments in which RoBat was moving orthogonally towards a wall as in chapter 4 were

performed. The plots in figure 5.7 show the behaviour of the call frequency while compensat-

ing for Doppler-shift when RoBat was moving at constant velocity (left plot) and accelerating

(right plot). As can be seen in the figure, optimal values for K are found between 0.75 and 1.

Below this range, the response of the system is too underdamped whereas above this range it

becomes unstable because of overshoot as in the swinging ball experiment. This overshoot is

very clearly seen in the constant velocity experiment for K
�

1 
 75.
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Figure 5.5: Doppler-shift estimation while swinging a ball without compensation (top), half
compensation, K

�
1 (middle) and full compensation, K

�
1 (bottom). Left plots (equally scaled)

show Doppler-shift estimation along the whole experiment. Right plots show zoomed call vs.
echo curves.
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Figure 5.6: Full Doppler-shift compensation with different gains: 0.25 (top), 1.25 (middle)
and 1.75 (bottom). Left plots (equally scaled) show Doppler-shift estimation along the whole
experiment. Right plots show zoomed call vs. echo curves.
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Figure 5.7: Comparison of call-frequency estimations during Doppler-shift compensation
for different gain (K) values while RoBat moved towards a wall at constant velocity (left) and
accelerating (right).

5.4 Convoy navigation controller

In dynamic environments where several physical mobile agents can be found such as labora-

tories, automated factories, and also in travelling group applications such as [Melhuish et al.,

1999], situations in which convoy navigation is required are commonly found.

In such terms, Han et al. [2001] recently showed how using a pair of ultrasonic sensors, a

moving object can be tracked by estimating its relative velocity from the trajectory followed by

the robot. Despite successfully achieving its task, the method does not exploits the physics of

echolocation, e.g. by taking advantage of the monaural characteristic of Doppler which allows

the relative velocity of an object to be estimated with a single transducer and from a single echo

under certain conditions as we shall see below.

In a real robotic environment, we can find at least three different Doppler-dependent situa-

tions while navigating. In this context, maximum Doppler refers to the maximum Doppler-shift

the robot could observe for a given velocity assuming a static reflector at 0 � bearing angle.

� Doppler
�

0 There is no reflector in the way or there is a moving reflector whose relative

velocity with respect to our robot is zero or negative. In this case the robot can navigate

safely within its perceptual range1.

� 0 � Doppler � Max. Doppler There is either a static reflector in the way or a moving
1The maximum range from which the robot can accurately sense the environment. In RoBat this range is 3 m.
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Figure 5.8: Block diagram of the convoy navigation controller.

reflector with a positive relative velocity with respect our robot but with a bearing angle

sufficient to avoid a collision.

� Doppler
�

Max. Doppler There is a moving reflector in the way with a positive relative

velocity with respect our robot and its bearing angle is 0 or close to 0. In this case the

robot should change its path immediately for avoiding collision.

Inspired by the Doppler-shift compensation behaviour, and applying these Doppler-dependent

rules, a simple controller suitable for use in convoy navigation is devised. The main difference

with respect to Doppler-shift compensation is that it is the velocity of the robot, instead of the

call frequency, that is the variable altered by the controller to keep the Doppler-shift close to

0. The controller assumes a moving reflector (e.g. another robot) within the robot’s perceptual

range and at a small bearing angle (close to 0). A block diagram of this controller is shown in

figure 5.8.

As seen in the figure, the average Doppler-shift (D) from the individual Doppler-shifts

received by each of the transducers is estimated, i.e. a binaural estimation as suggested in

[Behrend et al., 1999]. Then the velocity of the robot (VD) is estimated acording to the sign and

value of D. In case where D is greater than the maximum Doppler (Dmax), i.e. reflector moving

towards the robot, an immediate escape maneuver such as turning to one side would be adopted

for avoiding collision. Next, the velocity is set to its new value (Vs) which is limited by a preset

value (60 cm/s). Finally, from the readings of the wheel encoders, the current velocity (Ve),

which is used for both calculating the new velocity and the maximum Doppler, is estimated.

The experiment designed for assessing the performance of this controller consisted in Ro-

Bat moving along a corridor right behind “Gillespie”, a RWI-B21 robot moving in the same

direction (figure 5.9 (upper-left)). Three different cases were tested: In the first case, Gillespie

starts moving keeping its velocity constant at 35 cm/s (upper-right graph). In the second case,

Gillespie starts moving and keeps accelerating until reaching the maximum allowed velocity of

60 cm/s (lower-left graph). Finally, in the last case, Gillespie starts moving with high acceler-

ation until reaching the maximum speed of 60 cm/s and then decelerates smoothly to 30 cm/s

before stopping (lower-right graph).
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Figure 5.9: Convoy navigation experiment. Measurement setup for the motion detection task
(upper-left). Doppler-shifts and velocity values estimated by RoBat while Gillespie was moving
at constant velocity (upper-right), accelerating (lower-left) and decelerating (lower-right).
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The controller performed satisfactorily well. For each of the three cases, the Doppler-shift,

maximum Doppler and RoBat’s velocity were estimated for every echo, as shown in the graphs

of figure 5.9. Because of the large size and weight of Gillespie, the irregularities of the floor

affect its velocity more drastically. Interestingly, the system is sensitive enough to pick up these

irregularities resulting in a small ripple in the velocity curves. This can be clearly seen in the

Doppler-shift and maximum Doppler curves.

5.4.1 Discussion

The real world is dynamic: things move and change their position. We believe that for efficient

navigation, an agent must take into account other agents moving around in the same environ-

ment, and likewise this should be done at the lowest level and, therefore, in the simplest way,

before going to higher levels of abstraction.

In this section we have seen how a simple and efficient controller for smooth convoy navi-

gation and collision detection can be devised taking advantage of Doppler. Since Doppler-shifts

depend on the cosine of the bearing angle between the robot and the reflector, and given the

flatter portion of the cosine curve at small bearing angles as seen in figure 5.12, an angle close

to 0 � for situations in which a moving reflector — e.g. another robot — is moving in the same

direction within its perceptual range can be assumed. In such situations, the controller showed

how the relative velocity of the other agent can be estimated, resulting in smooth navigation

while keeping the relative velocity close to 0, as seen in the results of the experiments using

RoBat and Gillespie.

5.5 Acoustic flow

In their work, Müller and Schnitzler [1999, 2000] present an acoustic flow hypothesis for ob-

stacle avoidance in the CF-FM bat. This type of acoustic flow provides crude localisation infor-

mation which suffices for tasks like obstacle avoidance in which as high accuracy is not needed

as in other tasks, e.g. prey capture.

Müller bases his acoustic flow hypothesis on two perceptual dimensions: Ψ (changes in

Doppler shift) and Θ (changes in sound pressure amplitude) which CF-FM bats may employ

for the extraction of two-dimensional spatial information. For obtaining such perceptual di-

mensions, Müller considers translational movements — in Cartesian coordinates (d,h) with the

heading (h) always aligned with the bat’s velocity — as shown in figure 5.10. Ψ and Θ are

calculated from the following equations [Müller, 1998]:
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Ψ � d � h �
� ∂ fd

∂h
	 fd

� d2

h � d2 �
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In equation 5.1, the Doppler effect is modeled as a frequency shift

fd
�

2 fe
v
c

h

c
�

d2 �
h2 �

whereas in equation 5.2, m � f � �
dB 	 m � is the absorption coefficient, P is the pressure amplitude

obtained from a simplified scene model of the animal and Φ is the directivity of emitter and

receiver calculated from the model proposed in [Schnitzler and Grinell, 1977].

:  bat’s velocityv

Ψ
(d,h): changes in log. sound pressure amplitudeΘ

(d,h): changes in log. Doppler shift
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d

h

v

h

PERCEPTUAL VARIABLES

Figure 5.10: Müller’s geometrical definition for an obstacle avoidance task by means of
acoustic flow (adapted from [Müller, 1998]).

As seen in equation 5.1, Müller skips the calculation of the velocity, assuming that bats

do not calculate it. In this work, for the sake of simplicity and utility — as an extra source of

information — the velocity of the robot, estimated from the readings of the wheel encoders,

will be used. Thus, the bearing angle will be estimated from equation 4.1. In addition, TOF

will be used instead of changes in sound pressure amplitude because of being more reliable and

easy to calculate in our system.

We aim to investigate whether the accuracy of this crude estimation suffices for an obstacle

avoidance task in a robotic context. Acoustic flow is monaural, i.e. intensity differences (TOFs
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Figure 5.11: Acoustic flow experiment. Estimated Doppler-shifts of the two posts (left). Posts
position estimations along RoBat’s trajectory through acoustic flow (right).

in our system) and Doppler-shifts can be extracted independently by each of RoBat’s ears. The

way this information is combined at higher levels of the bat’s auditory system (binaurality) is

currently a matter of investigation by biologists, as seen in [Behrend et al., 1999]. In our system

we simply take the averages of the two TOF and Doppler estimations.

An experiment in which RoBat had to avoid two obstacles (posts) on its path was per-

formed, obtaining a crude estimation of the cartesian position of the two posts as shown in

figure 5.11. In the left plot we can see the Doppler-shift estimations of the two posts from the

cochlear model. The first wiggling part of the plot is due to noisy estimations when the robot is

not moving yet, having the first post in front of it. As soon as RoBat starts moving, the post is

detected and RoBat starts turning until the bearing angle increases — Doppler-shift decreases

— up to a desired value (in our system this was set to 50 � ) when the second post was detected,

making the avoiding process start again. The 0 Hz Doppler-shifts between posts and after the

second post are due to the lack of echoes at that particular moment. A crude position estimation

of the two posts along the robot’s trajectory is shown on the right plot of figure 5.11.

5.5.1 Discussion

The aim of this section was to investigate whether the crude position estimation provided by

the acoustic flow suffices for an obstacle avoidance task in a robotic context. RoBat was set

to perform such task by means of acoustic flow, i.e. estimating the Cartesian coordinates of

the obstacles from the TOF and bearing angle — calculated from the Doppler-shifts — of the

received echoes along its trajectory.
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The results suggest a Doppler-shift resolution problem from the rather small velocities of

the robot compared with real bats. This is illustrated in figure 5.12, in which the angular

dependency of Doppler is plotted for different velocities for the same call frequency of 50

kHz and assuming a reflector target located at bearing angle ϕ
�

0 � . As seen in the figure,

a velocity of 5 ms
� 1 — perfectly reachable by bats — introduces a Doppler-shift of almost

1500 Hz2 resulting in a much steeper curve (i.e. higher resolution) than the ones resulting from

realistic velocities for indoor mobile robots3 (i.e. 0 
 25 to 1 ms
� 1 in figure 5.12).

The sensitivity to Doppler depends on the sine of the angle between passing and heading

distances to the target (as seen in figure 5.10). However, as seen in equation 4.1, the Doppler

itself has a cosine dependence. Thus there is a trade-off — the closer to zero bearing, the larger

the Doppler but the worse the sensitivity, while the closer to 90 � , the better the sensitivity but

the poorer the Doppler. This can be seen in the acoustic flow task in terms of a poor position

estimation of the reflector at small bearing angles. As a consequence, Doppler sensitivity

depends on sinθcos θ
�

sin2θ. In a point-like transducer, i.e. no beam-forming, this results in

maximum Doppler sensitivity at 45 � .
In addition, the 83 kHz carrier frequency of the CF-FM bat is higher than RoBat’s 50 kHz.

As a result, the range of Doppler-shifts obtained by RoBat is much smaller than by the real bat

and, therefore, the bearing angle estimation will be worse. The effect of this poor resolution was

shown in the non-consistent position estimation of the two posts of figure 5.11. Nevertheless, it

suffices for avoiding the posts as demonstrated by the trajectory performed by the robot. This
2Actually this will be around 2400 Hz for R. ferrumequinum because of its call frequency of 83 kHz.
3In the author’s opinion, velocities higher than 1 ms

� 1 for indoor environments would be highly dangerous.
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is not very far from Müller’s acoustic flow hypothesis in that it provides crude localisation

information in tasks demanding low accuracy such as obstacle avoidance.

5.6 Summary

In this chapter we have seen how Doppler-shifts, a rich source of information which is not ex-

ploited by commercial robotic ultrasonic range sensors like the Polaroid, can be used in several

ways in a robotic context. The biological inspiration came from CF-FM bats, creatures that

fully exploit the physics of echolocation, some of whose behaviours, such as target recogni-

tion through frequency signatures, Doppler-shift compensation and acoustic flow, have been

implemented in Robat, demonstrated and discussed.

From Doppler-shift compensation, inspiration for a convoy navigation controller following

a set of simple Doppler-dependent rules has been successfully implemented. This controller

takes advantage of the flat portion of the cosine curve at small bearing angles which allows

small fluctuations in bearing angle around 0 � without worsening performance.

On the other hand, an implementation of Müller’s hypothesis on acoustic flow for obstacle

avoidance resulted in a poor estimation of the target’s passing distance at small bearing angles

which improved as the angle increased, nevertheless sufficing for avoiding the two reflectors

of the experiment. The reason for this poor estimation is the low resolution caused by the

relatively low velocity and call frequency of the robot.



Chapter 6

Active sensing: Towards a

narrowband 3D tracking system

6.1 Introduction

3D object localisation using sonar has normally been achieved using ultrasonic sensor systems

— made of, at least, three receivers — in which the differences in arrival times of echoes among

the receivers are used for calculating the position of the reflector in the space [Delepaut et al.,

1986; Kuc, 1993; Akbarally and Kleeman, 1995; Hong and Kleeman, 1995]. Alternatively,

Peremans et al. [1998a] presented a method based exclusively on amplitude measurements

which facilitates very small head size. This method, implemented in the biomimetic sonarhead,

used interaural amplitude differences measured at different frequencies.

Recently, Han et al. [2001] used a pair of ultrasonic sensors for tracking a moving object

by estimating its relative velocity from the trajectory followed by the robot. The position of the

target (range and azimuth) is estimated using the triangulation method [Sabatini and Benedetto,

1994]. Their method — defined as the virtual ultrasonic image — does not take into account

target elevation.

In chapter 2 we saw how Rhinolophids and Hipposiderids move their pinnae along vertical

arcs for estimating a target’s elevation. These ear movements, named ‘arc scanning’ by Walker

[1997], are highly correlated with the emitted pulses [Griffin et al., 1962; Pye et al., 1962; Pye

and Roberts, 1970]. Moreover, while performing arc scanning, the bat can simultaneously ob-

tain the amplitude of the echo, which is important for the calculating IID. Thus, arc scanning,

combined with azimuth angle estimation by means of IIDs and target range by echo delay, pro-

vides a narrow-band echolocator with a 3D estimation of an insonified target’s relative position

[Walker et al., 1998b].

96
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In this work, active sensing means

1. changing the configuration of the system in response to the observed echoes as biological

systems do, and

2. exploiting the dynamics of the sonarhead for extracting cues from the environment,

as a mean of achieving narrowband 3D object localisation. In section 6.2, Barshan and Kuc’s

[1992] method for obstacle localisation (extended afterwards in [Kuc, 1996]) is adapted and

implemented in RoBat. Then, in section 6.3, arc scanning is implemented in RoBat as a way to

provide elevation cues. Section 6.4 integrates both techniques in an attempt to obtain reliable

3D target position estimation. Finally, section 6.5 summarises the achievements of the chapter.

6.2 Range + azimuth = 2D tracking

6.2.1 Implementation of Barshan’s and Kuc’s model

As seen in chapter 2, Barshan and Kuc’s [1992] bat-like adaptive system allows 2D obstacle

localisation. The system is composed of a wide-beam Sonar sensor with a receiver-transmitter-

receiver configuration that mimics, in the same way as the sonarhead used in this work, the

echolocating system of bats. The system allows true range and azimuth estimation of an object,

located along the system line-of-sight, which improves with decreasing range.

Figure 6.1 illustrates Barshan’s and Kuc’s geometric model for obstacle localization. If

a reflector located at a range r and azimuth angle θ is inside the active region — defined by

the intersection of the radiation pattern main lobes of the emitter and receivers — two TOF

measurements will be obtained from R1 and R2. In addition, if the reflector is located in the

same elevation plane (i.e. 0 � elevation), each of these TOFs will define an ellipse of possible

object locations for which the transmitter and the respective receiver are the foci [Kuc, 1996].

From the geometric model of figure 6.1, the following equations are obtained [Barshan and

Kuc, 1992]:

�
x2 �

y2 ��� � x � D � 2 �
y2

�
cTR (6.1)

�
x2 �

y2 ��� � x �
D � 2 �

y2
�

cTL � (6.2)

in which D is the separating distance between transducers, c the speed of sound in air, and TR

and TL the round-trip distances (estimated from the TOF) from the transmitter to each receiver.

Thus, from equations 6.1 and 6.2, the range r and azimuth angle θ of the reflector can be

calculated [Barshan and Kuc, 1992]:
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reflector
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θ

L T

ellipse 1 ellipse 2

2D

R

Figure 6.1: Geometry for obstacle localization with a collinear three-transducer system.
Ellipse 1: foci at L and T; ellipse 2: foci at T and R (adapted from [Barshan and Kuc, 1992]).

r
� � cTL � 2 � � cTR � 2 � 2D2

2c � TL
�

TR � (6.3)

θ
�

sin
� 1

� � c2TLTR
�

D2 � c � TL � TR �
D � c2T 2

L
�

c2T 2
R � 2D2 ��� (6.4)

In [Kuc, 1996], the system incorporated motors in the receivers which allowed independent

receiver orientation towards the reflector by the simple relation

γL
�

tan
� 1 � r

D � � (6.5)

where γL is the steering angle of the left receiver (defining its rotation towards the transmitter

as positive). By symmetry, γR is the complement of γL. This maximises echo amplitude and

bandwidth [Kuc, 1996].

6.2.2 Adaptation to the geometry of the sonarhead

The geometry of the sonarhead is slightly different from the collinear sensor used by Barshan

and Kuc [1992]. The main difference lies in the offset of the receivers’ position with respect to

the transmitter. This is illustrated in figure 6.2.
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tr

Figure 6.2: Geometry of the sonarhead’s 2D obstacle localization model (top view). Right
(R) and left (L) receivers are located in the horizontal plane at an offset h from the transmitter’s
(T) horizontal axis and a distance d from its vertical axis. T is the origin of coordinates in
the model from which the distance r and angle α to the reflector P are calculated. S is the
sonarhead’s rotation axis from which the target’s true range tr and azimuth angle β with respect
to P are calculated.

Since the transmitter and receivers are in the same vertical plane (i.e Y axis), the equations

from the geometric model of the sonarhead are:

�
x2 �

y2 �
z2 � � � x � d � 2 �

y2 � � z � h � 2 � cTR (6.6)

�
x2 �

y2 �
z2 ��� � x �

d � 2 �
y2 � � z � h � 2 � cTL (6.7)

where h
�

3 cm and d
�

7 
 5 cm (as described in [Peremans et al., 1997]). As in Kuc [1996],

the reflector is assumed to be at 0 � elevation hence we can get rid of the y coordinate. From

figure 6.2, using polar instead of Cartesian coordinates, and given r
� �

x2 �
z2, equations 6.6

and 6.7 become

cTR
�

r
� � � r sin α � d � 2 � � r cosα �

h � 2 (6.8)

cTL
�

r
��� � r sin α �

d � 2 � � r cos α �
h � 2 (6.9)

Resolving equation 6.8 for

r
� � cTR � 2 � d2 � h2

2 � cTR � d sinα �
hcosα � � (6.10)

and substituting in equation 6.9 after calling a
�

cTR and b
�

cTL, we get

h � b2 � a2 � cos α � d � a2 �
b2 � 2d2 � 2h � sin α

� � a � b � � ab
�

d2 �
h2 �
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TL RTL R

Figure 6.3: Sketch of the sonarhead in unfocused and focused configurations. The black
shadowed area delimits the active region. Once the range and orientation of the target is de-
termined, the unfocused sonarhead (left plot) focuses on the target (right plot) by panning the
ears. This increases the active region and therefore maximises echo amplitude and bandwidth.

For the sake of clarity we will also call A
�

h � b2 � a2 � , B
�

� d � a2 �
b2 � 2d2 � 2h � , and

C
� � a � b � � ab

�
d2 �

h2 � . If R2 � A2 �
B2 we get:

Rsinθcos α �
Rcosθsin α

�
C �

and given sin � θ � α � � C 	 R, and θ
�

tan
� 1

�
A
B � , we can calculate

α
�

tan
� 1

�
A
B � � sin

� 1

�
C
R � (6.11)

Knowing r and α, we can finally obtain the expressions for the true range tr and azimuth

angle β by trigonometry (figure 6.2):

tr
� r sinα

sinβ
(6.12)

β
�

tan
� 1

�
r sin α

r cosα �
h � (6.13)

Focusing the receivers towards the reflector maximises echo amplitude, allowing estimation

of tr and β more accurately. Figure 6.3 shows a sketch of the sonarhead in unfocused and

focuses configurations. Following the same criteria as in equation 6.5, the orientation of the

left receiver with respect the reflector’s true range is given by:

γL
�

tan
� 1 � tr

d � � (6.14)

and γR is the complement of γL as in [Kuc, 1996].
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6.2.3 Methods

In the experiments reported in this chapter, the reflectors used are of two kinds: cylindrical

(4 cm diameter plastic post) and spherical (8 cm diameter plastic ball). The range interval is

between 20 to 60 cm for azimuth angles of
�

15 � with respect to the emitter axis. The pulses

emitted in the experiments of this section are made of a 4 ms long sinusoid of 50 kHz frequency

(sampling frequency fs
�

1 MHz) with rectangular envelope (i.e. no amplitude modulation as

in [Barshan and Kuc, 1992]). Echoes modulated with a Gaussian-like envelope allow TOF

estimation by applying optimal correlation detectors (i.e. matched filters). This method needs

the reception of the whole echo, resulting in a longer delay and more processing time. Even

worse, the echo could also be overlapped with other incoming echoes in which case the TOF

estimation would be more complicated. In our case we are forced to use a rectangular envelope

because of the amplitude modulation introduced by arc scanning, as we will see in section 6.3.

Prior to applying the TOF estimation methods (except for the zero-crossing method de-

scribed below), the echoes are squared for full-wave rectification followed by a low-pass filter

for envelope extraction. The reason for squaring instead of using the absolute value is to in-

crease the differences between small and large sample values. Initially, a 1st order Butterworth

low-pass filter (cut-off frequency 1 kHz) was used. However, the noise ripple was quite high

— compared to the results reported in [Barshan and Kuc, 1992] — resulting in a poor TOF

estimation (using the thresholding method described below) reaching standard deviation errors

— on a 1000 echo set of data — of up to 5 samples (sampling frequency fs
�

1 MHz) for each

receiver. Increasing to a 2nd order filter solved the problem as seen in the smooth envelope of

figure 6.4.

Three methods for TOF estimation, similar to those used in [Barshan and Kuc, 1992] and

[Kuc, 1996], described below, were implemented and tested.

Zero crossing Since the frequency of the emitted pulse and the sampling frequency are

known, a zero-crossing method can be applied. This method subtracts the number of sam-

ples of a half period (10) from the sample index given by the first zero crossing after a sample

has exceed a pre-set threshold value. This method has the a priori advantage of not requiring

either echo rectification or envelope extraction.

Thresholding A threshold value (τ) above the noise level, high enough to avoid spurious

readings, is pre-set. The first echo sample whose value is above τ will determine the TOF. This

is a common method used by most sonar ranging systems. In the case of the Polaroid sensor,

the threshold is not accurately calculated as we saw in chapter 2. However, in systems in
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Figure 6.4: Parabola fitting for TOF estimation. Left plot: Parabola fitted to an echo envelope.
Right plot: Zoom showing the estimated TOF (tTOF ) from the parabola vertex.

which the echo is acquired and post-processed, such as RoBat, the accuracy can be acceptable.

Nevertheless, as addressed by Barshan and Kuc [1992], the TOF estimation will be affected by

other factors such as the clock resolution and the different locations of the reflector within the

active region. The latter results in variations in the part of the echo envelope which exceeds the

threshold.

Parabola fitting This can be considered as an extension of the thresholding method and is

intended to remove the bias introduced by the difference between the time when the threshold

is exceeded (tx) and the time when the echo arrives (tTOF ). After tx is estimated, the next N

samples are stored in memory and the following least squared error (LSE) method for fitting a

parabola to the echo envelope is applied:

E
� N

∑
i � 1

� ax2
i

�
bxi

�
c � Yi � 2 (6.15)

where E is the pre-calculated LSE fitted parabola defined by the parameters a, b, and c, x i is

the sample index, N
�

201 is the number of samples, and Yi is the data (echo samples). For the

whole set of equations of the LSE parabola fitting see section A.3 of appendix A.

From the intrinsic properties of the parabola, the vertex, defined by

xi
� � b

2a � (6.16)

defines the arrival time (tTOF ) of the echo, i.e. the true TOF. This is illustrated in figure 6.4.
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The servomotors [Futaba, 2001] in charge of tilting the receivers of the sonarhead some-

times oscillate, especially when not in their resting position. These small oscillations are caused

by the mass of the box hosting the transducer and its electronics which is a bit heavy for ser-

vomotors designed for driving light mechanisms in hobby applications. Pilot experiments sug-

gested the need of a method for getting rid of the erroneous TOF estimations produced by these

oscillations. A controller which takes the median of the last three echos (shown and described

in the block diagram of figure 6.5) was devised. Using the median instead of the mean avoids

components of large errors being introduced as an average.

em
0.36

1

e∆

Φ
tr β,

LTOF

TOFR

e1, e2, e3
Q

Servo

kT

kT

Left ear

Right ear

e1’, e2’

K *

Figure 6.5: Echo median controller. Block diagram of the method for decreasing the noise
effect in TOF estimations produced by the servomotor oscillations. True range (tr) and azimuth
angle (β) of the last received echo are estimated (e3) and combined with the two previous
echoes (e1 � e2). The median (em) is quantised (Q) — with both gain K and 0 
 36 � servo resolution
— as a servo command (φ) and subtracted (the non-quantised part ∆e) from the two latest
echoes of the triplet which become the new previous two (e

�

1 � e
�

2).

Finally, the main sources of noise in our system are acoustic — coming from the envi-

ronment — and thermal — intrinsic to the electronics of the sonarhead. As in [Barshan and

Kuc, 1992], if we assume acoustic noise being dominated by thermal noise, the error compo-

nent in each of the receivers (e � r� θ � ), which depends on the range and azimuth angle, can be

considered uncorrelated (i.e. white Gaussian noise).

6.2.4 Experiments and results

For evaluating the three TOF estimation methods, 1000 consecutive echos from a reflector

(post) positioned at approximately1 40 cm range and 0 � azimuth were acquired and the TOF

from each of the receivers estimated. Table 6.1 shows the comparison of the three methods.

As seen in the table, zero-crossing resulted in the worst of the three methods despite being

the cheapest with respect to CPU time. Zero-crossing proved to be an effective method in [Kuc,

1996]. However, RoBat’s long umbilical (mentioned in chapter 3) incorporates extra noise
1We lack an accurate way of measuring the position of the reflectors in the space (e.g. laser pointer based

equipment).
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Method µto f � l σto f � l µto f � r σto f � r µtime

Zero-crossing 2153.31 10.46 2173.95 10.36 129.77
Thresholding 2115.39 0.77 2106.49 0.66 767.04

Parabola fitting 2117.57 0.71 2119.77 0.61 770.91

Table 6.1: Comparison of TOF estimating methods. Mean and standard deviations of TOF
estimated by the receivers (units in samples) for each method along 1000 consecutive echoes
from a reflector (post) positioned at approximately 40 cm range and 0 � azimuth. Mean of the
CPU time for each method (units in µs).

which results in an unreliable TOF estimation. Thresholding and parabola fitting performed

very similarly both in TOF estimation and CPU time although the latter performed slightly

better than the former (TOF-wise) as expected and with very little extra cost in CPU time.

The reason of this small difference in CPU time between thresholding and parabola fitting is

because of the pre-calculation of the LSE fitted parabola, i.e. a generic parabola is used for all

echoes.

Having selected parabola fitting as the method for estimating TOF, experiments comparing

the two geometric models — the collinear approximation and the real geometry model —

were performed, together with a second version of the real geometry model upgraded with the

median controller. The collinear approximation assumes a three-transducer array positioned

on the same vertical and horizontal axes, as in [Barshan and Kuc, 1992]. The real geometry

model introduces the offset of the receivers with respect to the emitter (see figure 6.2). ‘Real

+ median’ is the real model upgraded with the median controller method. The results of the

experiments are summarised in table 6.2.

Surprisingly, the real model performed slightly worse than the collinear approximation for

the angle estimation (σangle). The median method improved a bit with respect to the real model.

The range estimation was slightly better in the real model than in the collinear approximation.

Introducing a new parameter (h) in the model makes it a bit more complex, resulting in an extra

source of noise.

To see the effect of h on the true range and azimuth angle estimation in the real model,

the partial derivatives
�

∂tr
∂h �

∂β
∂h � were calculated. For details of the derivative calculations

see section A.2 of appendix A. The partial derivatives were evaluated in simulation with the

TOFs TL and TR from a reflector positioned in the different cells of a grid defined along the

transmitter-right ear semi-plane. The results are shown in figure 6.6.

In the figure, the Y axis corresponds to the heading distance (range) between the sonar-

head’s origin and the target. The X axis corresponds to the passing distance (azimuth angle).

Note the much smaller scale (10
� 3) of the azimuth angle compared to the range. For both
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Model µrange σrange µangle σangle

Collinear approx. 36.23 0.022 0.43 0.152
Real model 37.99 0.021 0.46 0.162

Real + median 37.99 0.021 0.46 0.155

Table 6.2: Comparison of the two geometric models. The table shows mean and standard
deviations of the range (units in cm) and azimuth angle (units in degrees) of 1000 consecutive
echoes from a reflector (post) positioned at approximately 40 cm range and 0 � azimuth. ‘Real +
median’ is the real model upgraded with a method for discarding erroneous measurements (see
text).
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Figure 6.6: Effect of the receivers’ offset (h) on range (left plot) and azimuth (right plot).
The plots show simulated experiments performed in the active region of the transmitter-right ear
semi-plane. (Note the 1

1000 scale of the right plot.)

cases, and within the portion of space evaluated, the derivative decreases with range and re-

mains almost constant for azimuth angle, suggesting that the error depends more on the range

than on the azimuth angle, e.g. at 60 cm range (left plot), an error in h of 1 cm will result in a

2.4 cm error in range measured.

To choose a suitable gain (K) for the servomotor in charge of panning the sonarhead (see

figure 6.5), a comparison of range and azimuth angle estimation across different K
�

s using the

real model — with and without the median controller — was done. A proper gain is neces-

sary for adjusting the response of the system to its sense-and-act requirements and also for

compensating the error introduced by quantising the azimuth angle in a servo command. The

resolution of the servos is 0 
 36 � per servo count for a 90 � range. Alternatively, as we will see in

next section, the range can be doubled to 180 � at the cost of a 0 
 72 � resolution. For the orienta-

tion angle of the receivers (γ) a gain of K
�

1 can be chosen without specific experimentation
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Figure 6.7: Effect of the servo loop gain on the target range (left plot) and target angle esti-
mation (right plot) for the real model and the real model with the median method incorporated.
(Note the 1

10 scale of the left plot.)

because its dependency with the target’s range results in small angle increments.

RoBat was set to focus on a post positioned at an arbitrary range and azimuth angle for

1000 echoes, repeating the experiment for K values ranging from 0.5 to 1.5. In figure 6.7, the

standard deviation of the true range (left plot) and azimuth angle (right plot) versus the servo

loop gain K is shown.

As seen in the figure, the performance of the real method with and without the median

controller is practically the same for the range estimation, the error being minimum for K

values between 1 and 1.5. For the azimuth angle, the median controller improves performance

significantly in almost all the cases, the error being minimum for K values between 0.5 and 1.

Thus, from the intersection of these intervals, a gain of K
�

1 is chosen. The next step is to

devise a method for estimating the elevation angle, described in the next section.

6.3 Elevation cues: Arc scanning

In chapter 2 we saw the importance in Rhinolophids and Hipposiderids of pinna motion along

vertical arcs for recovering elevation cues [Griffin et al., 1962; Pye et al., 1962; Pye and

Roberts, 1970]. This is crucial when spectral cues in the echoes are unavailable because of

emitting a narrowband call.

More recently, Walker [1997] hypothesised that by sweeping their pinnae through opposite

vertical arcs (as in figure 6.8), CF-FM bats may create dynamic cues (in the form of frequency

and amplitude modulations) which vary systematically with target elevation. As seen in chapter
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15 
Target

Figure 6.8: Arc scanning for elevation angle estimation. Sketch showing the side view of a
receiver performing arc scanning along 30 � arcs.

3, Walker proposed two methods in which the cues obtained from these pinna movements —

named ‘arc scanning’ — could be extracted: IID rates of change, and peak delays. In this work

we pay attention to the latter. Two main properties of this method are its independence of TOF,

and monaurality. The former allows us to estimate the elevation angle of a reflector providing

that the time at which the receivers start moving is known and the echo is long enough for the

receivers to point at the reflector’s elevation during the echo arrival interval. The latter allows

elevation estimation with only one receiver, i.e. using monaural peak-delays. Moreover, if two

receivers moving in opposite directions are used, elevation can be estimated from the relative

difference between the monaural peak-delays, i.e. from binaural (or inter-aural) peak-delays.

6.3.1 Methods

The receivers start moving synchronously with call emission. This guarantees peak estimation

for targets positioned in the vertical border of the sound field, whose limits (
�

12 
 5 � ) are con-

strained by the main lobe of the Polaroid’s radiation pattern. Moving asynchronously — e.g.

before call emission — could result in a receiver missing the peak of the echo, i.e. scanning

the target before being insonified. The same applies for peak estimation at the end of the scan.

This, which depends on echo length, is constrained by the angular velocity of the servos. Pilot

experiments proved echo lengths of 140 ms sufficient for a complete coverage of the frontal

sound field by a receiver scanning 30 � . To guarantee synchronisation of the receivers with call

emission, precise timing of the servos in charge of tilting the receivers is needed. This was

performed by directly reading from the servo controller through the serial port, as described in

section C.2 of appendix C.
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Figure 6.9: Peak detection process in echoes after arc scanning. Received echo shows
amplitude modulation as a result of arc scanning (top-left). Full-wave rectified echo by squar-
ing (top-right). Echo envelope after low-pass filtering and rough peak detection (bottom-left).
Parabola fitting for accurate peak detection (bottom-right).

Peak detection was performed by two different methods after full-wave squared rectifica-

tion and low-pass filtering (as in TOF estimation) of the arc scanned echo: echo peak and

parabola fitting. The former simply stores in memory the maximum sample value (i.e. the

peak) across the whole echo envelope. The latter aims to compensate the error of the echo peak

method due to noisy envelopes. The envelope of the arc scanned echo (see bottom-left plot of

figure 6.9) resembles a parabola, thus the motivation for applying a curve fitting technique —

as in TOF estimation — for accurate peak detection. After the “noisy” peak is estimated, a

number (N
� �

5000) of echo envelope samples prior and posterior to the peak are stored. For

speeding up the process, a decimation by a factor of 50 is applied, ending with a set of samples
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of size N
�

201, whose index is given by xi
� �

� 100 � 
�
�

�

100 � where 0 is the noisy peak.

Then, applying the LSE method of equation A.13, a parabola which fits the decimated data

is obtained (see bottom-right plot of figure 6.9). Finally, the vertex of the parabola given by

equation 6.16 defines the true peak, whose true sample index is then recovered by interpolation.

For calculating the monaural and binaural peak-delay versus elevation angle profiles, an

accurate method for estimating the elevation of the reflector under test is needed. Since we

lack this method, an alternative method in which the receivers’ elevation axis was tilted instead

of the sonarhead’s was used. The post reflector was put in front of the sonarhead, whose emitter

was fixed at 0 � elevation, and the receivers’ elevation axis tilted according to the elevation angle

measured. Thus the 30 � scans were performed over different elevation axes while the emitter

insonifies the post. This methods also guarantees proper target insonification for all elevations,

which is necessary for a reliable estimation of the profiles. The median controller used for the

azimuth and range experiments is also used in the arc scanning experiments.

For the arc scanning experiments, the resolution of the servos was set to 0 
 72 � per servo

count, permitting a servo range of 180 � . This is because the range of the servos went beyond the

90 � allowed by the previous 0 
 36 � resolution when performing the profile estimation method

described above. In the experiments described in the next section, the terms positive and nega-

tive arc scanning are used. We define ‘positive’ arc as earL scanning upwards while earR scans

downwards, and negative arc as the inverse case.

6.3.2 Experiments and results

A comparison between the two methods for peak-delay estimation described in the previous

section was done. The experiment consisted of the sonarhead continuously performing positive

and negative scans while insonifying a reflector (post) positioned at approximately 40 cm range

and 0 � elevation. The mean and error of the peak estimated by each ear over 100 echoes (50

echoes scanning upwards and 50 scanning downwards), and the mean of the CPU time required

for a complete scan by each method are shown in table 6.3.

Since the reflector is at 0 � elevation, the peak-delay estimated by both ears should be the

same if the servos are correctly calibrated and have the same response (i.e. behave similarly).

As seen in the table, both servos performed similarly when scanning downwards (peak-delays

of 67 ms). However, when scanning upwards, the right ear behaved quite differently with

respect to the left ear. Moreover, the latter keeps very close to the downward scans (peak-

delays of 68 ms) suggesting a decent calibration of the servos. The large variation of peak-delay

estimation of the right ear when scanning upwards is due to a malfunctioning of its servo. As

seen from the error values in the table, the parabola fitting method performed better than the
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LEFT EAR RIGHT EAR TIME
upwards downwards upwards downwards

METHOD µ
�

σ µ
�

σ µ
�

σ µ
�

σ µ

Peak 68.19
�

0.21 67.85
�

0.27 58.48
�

0.48 67.27
�

0.24 14.22
Parabola 68.63

�
0.08 67.24

�
0.19 58.28

�
0.21 67.82

�
0.13 24.62

Table 6.3: Comparison of peak-delay estimation methods. Mean and error of the peaks
estimated by the two methods while each ear scans upwards and downwards (units in ms).
Mean CPU time needed for a whole arc for each method (units in ms). Data from 50 echoes (for
each case) from a reflector (post) positioned at approximately 40 cm range and 0 � elevation.
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Figure 6.10: Monaural peak-delay profiles for the left receiver (left plot) and the right receiver
(right plot) along positive and negative arcs of 30 � . Blobs represent mean of 50 echoes, error
bars show standard deviation.

simple peak method in all the cases, as expected. The former method has an extra cost in CPU

time of roughly 40% with respect to the latter.

The next step was to estimate the peak-delay vs. elevation angle profiles for both monaural

and binaural arc scanning using the method in which the receivers’ elevation axis is tilted, as

described in the previous section. Figure 6.10 shows the monaural peak-delay profiles esti-

mated by each ear along positive and negative scans of 30 � . The blobs indicate the elevation

angle of the target given by the tilt of the receivers’ elevation axis. This axis is tilted at in-

crements of twice the resolution of the servos selected for these experiments, i.e. 1 
 44 � , from

� 12 
 24 � to 12 
 24 � .
As seen in the figure, the left ear’s profile is quite linear for both positive and negative arcs,

specially between � 11 � and 11 � . Moreover, both profiles cross the 0 � elevation coordinate

very closely (offset of 0.6 ms) as expected from the data in table 6.3. The right ear’s profiles



Chapter 6. Active sensing: Towards a narrowband 3D tracking system 111

−15 −10 −5 0 5 10 15
−100

−50

0

50

100

150

Elevation angle (deg)

In
te

ra
u

ra
l 
p

e
a

k
 d

e
la

y
 (

m
s
)

positive arc
negative arc

−25 −20 −15 −10 −5 0 5 10 15 20 25
−80

−60

−40

−20

0

20

40

60

80

Elevation angle  (ms)

IT
D

s

Figure 6.11: Binaural peak-delay profiles. Left plot: Real data obtained with the sonarhead
while scanning along 30 � arcs. Blobs represent mean of 50 echoes, error bars show standard
deviation. Right plot: Simulated data obtained with the software model of the sonarhead (only
positive arc shown).

are, as expected from table 6.3, not as good as the left ear’s. The strange behaviour of the servo

when scanning upwards (i.e. during the negative arc) is clearly seen in the figure. It has a faster

response than the other servo, reaching � 12 
 24 � elevation in roughly 8 ms whereas the right

servo takes 42 ms. This affects both linearity (specially between � 12 
 24 � and � 6 
 48 
 24 � as

indicated by the larger error bars) and the 0 � elevation crossing point.

The binaural peak-delay profiles for both positive and negative arcs are shown in the left

plot of figure 6.11. The bad performance of the right receiver’s servo can be appreciated,

although its effect is slightly compensated by the better performance of the left receiver’s servo.

The low error bars of the profiles (except for the upwards scan of the right ear) indicate good

repeatability of the servos while performing arc scanning. The right plot shows the binaural

positive arc profile obtained from simulated data using the software model of the sonarhead,

showing linear behaviour in the same interval as the real data profiles.

Once the monaural and binaural arc scanning profiles have been obtained, the next step

is to find the line which best fits them in order to obtain a peak-delay per elevation angle

linear relation. These lines are estimated applying the same LSE method as with the parabola

(described in section A.3 of appendix A), the number of points (N
�

29) given by the different

elevation angles at which the measurements were taken. Figure 6.12 shows the line fitting of

the monaural profiles. The left ear fittings suggest a better monaural arc scanning performance

than the right ear (specially when scanning upwards). Figure 6.13 shows the line fitting of the

binaural profiles for positive and negative arcs. The fitting of the positive arc is better than the
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Figure 6.12: LSE line fitting to monaural peak-delay profiles. Top plots: Left ear during
upwards (left) and downwards (right) scans. Bottom plots: Right ear during downwards (left)
and upwards (right) arcs.

negative arc as expected.

At this point, the equations of the lines fitting the different profiles can be used conveniently

depending on the location of the target with respect to the active region. This could lead to

situations in which one ear receives signal from an echo while the other does not. In such

case, the insonified ear’s monaural profile is used for estimating the elevation of the target.

Otherwise, the binaural profiles can be used. As seen in table 6.3, the CPU time required to

compute a whole binaural arc is about 25 ms. Adding this to the approximately 400 ms required

by the PC to transfer the 150 ms echo from the acquisition board to memory positions, we end

up with approximately 425 ms per binaural scan, i.e. 2.3 sense-and-act cycles per second.

In this section we have seen how Walker’s [1997] arc scanning hypothesis can be imple-
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Figure 6.13: LSE line fitting to binaural peak-delay profiles for positive (left) and negative
(right) arcs.

mented and executed in real time in RoBat. In the next section we discuss methods for inte-

grating both arc scanning and the adaptation of the 2D geometric model of Barshan and Kuc

[1992] in a 3D tracking system.

6.4 Towards a 3D tracking system

In this section we introduce and discuss the way for integrating the methods for object locali-

sation in the azimuthal and elevation planes seen in the chapter.

As we mentioned in section 6.2, Barshan and Kuc [1992] system allows true range and

azimuth estimation of an object located along the system line-of-sight, i.e. elevation 0. Hence,

the further the target is from this elevation, the less reliable is the method. However, as long

as one of the receivers gets insonified, arc scanning does not depend on azimuth. When this

is the case, monaural cues are used for estimating the elevation angle and tilting the sonarhead

to the target’s elevation. At this point, and assuming sense-and-act loops fast enough to cope

with real world situations (i.e. a moving target), the erroneous azimuth and range estimation

of the previous echo will be corrected. Conversely, the azimuth and range estimation method

— even when the target is at an elevation different than 0 � — will help to better estimate

the elevation angle by making the target fall in the active region, thereby allowing binaural

elevation estimation. This permits the choice of monaural or binaural cues.

The simplest way to integrate the azimuth and elevation estimation methods is to alternate

them one at a time. From the results in section 6.3 we chose to use the positive arc binaural
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profile. Thus, the sonarhead will start with the right receiver pointing at 15 � and the left re-

ceiver at � 15 � . A positive scan will be performed next at the same time the call is being sent (in

analogy to the correlation between pinna movements and call emission in CF-FM bats). After

estimating the elevation — either by monaural or binaural cues — and updating the sonarhead

tilting axis, the receivers return to point at the 0 � default position for azimuth and range esti-

mation. The individual orientation of the receivers (γ) is also performed. This is expected to

increase the SNR in the echoes and therefore allow more accurate peak-delay estimation. After

the sonarhead updates the new azimuth angle, the receivers return to positive scan position and

a new elevation-azimuth estimation cycle begins.

An experiment in which an 8 cm diameter plastic ball was positioned in front of RoBat at,

approximately, 35 cm range, � 1 � azimuth and 8 � elevation, was performed. The aim was to see

how the tracker performs when RoBat, starting at coordinates (0,0) in azimuth and elevation,

modifies its coordinate system (i.e. tracks) to the target’s and has to remain stable on it.

The spatial location was subject to small variations during the experiment due to a smooth

swinging of the ball, caused by its very light weight being affected by normal air flow in the

laboratory. The short range of the target (which also applies to maximum distances of 1 m

i.e. 6 ms worth of echo) and the minimum time required by the servos to reach the
�

12 
 24 �
maximum elevation from the original

�
15 � position (8 ms for the right ear scanning upwards

according to figure 6.10), guarantees echo arrival — and therefore peak-delay estimation —

even in the worst case, i.e. when the target is at
�

12 
 24 � elevation. The length of the call and

the echo reception time window are adapted according to the cue being estimated, i.e. 150 ms

call for elevation estimation and 4 ms call for azimuth and range.

Figure 6.14 shows the estimation of the ball’s elevation angle for different servomotor gains

along 45 echoes. This angle is not the elevation angle at which the sonarhead was pointing —

which is constrained by the 0 
 72 � resolution of the servos — but the angle estimated by the

tracker. Hence, the sonarhead tilt axis fluctuates between the two closest multiples of 0 
 72 �
surrounding the estimated elevation, i.e. 7.92 and 8.64 for the target’s 8 � elevation in the

experiment. These fluctuations are also due to the error in the LSE line fitting of the profiles

and to the smooth swinging of the ball. As seen in the figure, a gain of K
�

0 
 5 over-damps the

response of the tracker whereas a gain of K
�

1 
 3 produces overshooting. A compromise gain

value of K
�

0 
 9 gives a fast response (reaching 8 � elevation in 3 echoes) and remains between
�

0 
 72 � of such elevation.

One of the drawbacks of this tracker implementation is the time spent in moving the re-

ceivers to the starting position of both the azimuth and elevation estimation methods. A more

sophisticated and complex tracker would integrate range, azimuth and elevation in a single
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Figure 6.14: Target elevation angle estimated by the 3D tracker for different servomotor gains
along 42 echoes (target positioned at approximately 35 cm range, � 1 � azimuth and 8 � eleva-
tion).

scan, as CF-FM bats seem to do [Griffin et al., 1962; Pye et al., 1962; Pye and Roberts, 1970].

In such case, the arc scanning method would be no longer TOF independent, as azimuth and

range would be estimated as the ears move. Moreover, the geometric model would no longer be

valid since the y coordinate of the receivers’ origin (see figure 6.2), which will be different than

0 at the starting position, will vary along time. Hence the angle at which the receiver is pointing

when TOF is being estimated will be needed. This could be provided by more accurate motors

(e.g. stepper motors) with absolute encoders.

A pilot experiment similar to the one in figure 6.14 resulted in a severely unstable perfor-

mance. Looking at the data we found another pitfall of this tracking method: erroneous TOF

estimations arising from the adverse SNR conditions introduced by arc scanning, i.e. when the

receivers do not point at the target on echo arrival. This suggested the need of a better method

for simultaneously estimating TOF with arc scanning.

6.4.1 Discussion

At this point we have seen how arc scanning can be simply combined with a 2D object locali-

sation model which exploits the geometry of the sensor for performing 3D target tracking. In

this tracker system, temporal cues have been used for estimating the range, azimuth and eleva-

tion of a target in the space, however, it is important to note the possibilities of amplitude cues

which have not been exploited in this work. For instance, using IIDs would allow the building

of a smaller sensor whose accuracy will depend only upon the sensitivity of the receivers and
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their relative orientation. In such case, IIDs could be combined with arc scanning as the IID

rates of change proposed by Walker et al. [1998b]. For range estimation, differences in sound

pressure can be used provided that the system has a priori knowledge of the target shape and

size.

Moreover, adding artificial pinnae to the receivers can improve their directional sensitivity

— by maximising the angular resolution of the transducers — and echo amplitude. As we will

see in chapter 7, by using artificial pinnae, echolocating behaviours such as arc scanning and

IIDs could be replicated more successfully than using only bare transducers.

6.5 Summary

In this chapter we have seen how the spatial position of a target reflector can be estimated

by exploting both the physics of narrowband echolocation and the dynamics of the sensor.

Moreover, instead of using extra receivers to measure target elevation (as in e.g. [Kuc, 1993]),

we employ the sensor’s motion to create additional virtual receivers.

First, Barshan and Kuc’s [1992] active method for estimating the azimuth and range of a

target was adapted to the geometry of RoBat’s sonarhead. Different TOF estimation methods

were tested, the LSE parabola fitting being the most accurate. A comparison of the original

(collinear) geometric model with the adapted (real) model, and an upgraded version incorpo-

rating a median based controller for removing the effect of erroneous TOF estimations was

implemented. Surprisingly, the real model performed slightly worse than the collinear ap-

proximation for estimating the azimuth angle, although the differences in performance were

minimal.

Walker’s [1997] arc scanning hypothesis for elevation cue extraction in CF-FM bats was

implemented in RoBat for estimating the elevation angle of a reflector. Peak-delays were cho-

sen as the temporal cue to be extracted from the arc scanned echoes. Peaks were accurately

estimated from the vertex of an LSE fitted parabola. Monaural and binaural arc scanning pro-

files were obtained experimentally and peak-delay per degree transformations were calculated

by LSE line fitting for all of the cases.

The integration of both techniques in a 3D tracking system was performed in the simplest

way, i.e. applying both methods independently. A more sophisticated method in which the TOF

of both receivers is estimated at the same time than performing arc scanning was proposed. The

method, which needs the geometric model to be revisited and a better TOF estimation method,

would allow estimation of range, azimuth and elevation in a single scan.



Chapter 7

Outer ear: from multiple reflectors to

surfaces

7.1 Introduction

This chapter describes a joint investigation with Kim, Kämpchen, and Hallam on designing

artificial pinnae for RoBat using genetic algorithms (GAs). The aim of this investigation is

twofold: to improve the echolocating capabilities of the biomimetic sonarhead, and to obtain

insights on the role of pinnae in CF-FM bats for specific echolocating behaviours such as arc

scanning and IIDs.

Nature is full of impressive examples of how evolution has exploited new sensory channels.

Nowadays, the topic of sensor evolution, situated among biology, robotics and artificial life, is

becoming a very modern and promising field of research (see e.g. [Kortmann et al., 2001; Liese

et al., 2001]). From this new discipline, new concepts for the design of sensors for adaptive

robots can be gained. Also, it can help understanding the relationship between the information

available to an agent and the way it is processed. In animals, adding pinnae to ears creates

directional cues which enable them to do more than simply lateralise a sound source/reflector

but to “project” the source out to a well-defined location. This allows the perceiver to determine

attributes of front-back-above-below for the incoming sound. In many species, mechanisms

underlying 3D target perception are believed to employ the passive acoustic filtering properties

of the head and pinnae to provide spectral cues which encode 3D target angle [Shaw, 1974;

Obrist et al., 1993; Fay and Popper, 1996]. However, less attention has been focussed on the

role that dynamic reorientation of the head and pinnae may play in the creation of cues essential

for sound source/reflector localisation.

As we saw in chapters 2 and 6, in several narrow-band emitting microchiropteran species

117
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Figure 7.1: Drawing of Rhinolophus ferrumequinum. (Copyright by Martin Trappe)

(mainly species in the families Rhinolophidae and Hipposideridae) spectral cues are unavail-

able and systematic pinnae movements are heavily employed in the perceptual mechanisms

underlying 3D target localisation and tracking [Griffin et al., 1962; Pye et al., 1962; Pye and

Roberts, 1970]. This was investigated in chapter 6, showing — with a robotic implementa-

tion — how the elevation angle of a reflecting target insonified with a narrowband call can be

estimated.

As part of the RoBat project, we pursue improvement of the directional sensitivity of the

sonarhead’s receivers (i.e. maximise the angular resolution of the receiving transducers), as

well as the echo amplitude, by adding artificial pinnae to them. As a result of this increased

discrimination, echolocating behaviours such as arc scanning and IIDs could be replicated in

the sonarhead more successfully than using only bare transducers. Thus, as a target system, we

choose Rhinolophus ferrumequinum which has large and highly mobile pinna compared to the

size of its head as can be appreciated in figure 7.1.

This chapter is structured in two main and differentiated parts: the first, from section 7.2

to 7.5, describes joint work with Kim and myself, supervised by Hallam. The second part

(section 7.6) summarises the continuation of the first part, done by Kämpchen [2000] during

his Master’s project, which I proposed, co-supervised with Hallam, and in which I was much
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involved. The whole joint work was finally published as [Carmena et al., 2001].

7.2 Previous work on artificial pinnae

First attempts in evolving bat pinna morphology [Papadopoulos, 1997; Peremans et al., 1998b]

used genetic algorithms (GAs) to evolve simple pinna shapes for broadband echolocators be-

cause of the difficulty of designing a pinna model by an analytical approach. The evolved so-

lutions were evaluated on the 3D Echolocation Simulator, a software model of the biomimetic

sonarhead presented in chapter 3 (for a fully description of the simulator see [Walker, 1997]).

The pinna was modelled by up to three disc reflectors whose position and orientation an-

gle around the receiving transducer were determined by a GA, using a chromosome with the

following structure,

� x1 y1 z1 α1 β1 x2 y2 z2 α2 β2 
 
 
 xn yn zn αn βn �
where x,y and z are cartesian position coordinates and α � β are azimuth and elevation angles.

The GA comprised a population of candidate sets of reflector positions, whose fitness was

determined by simulating their effect on the acoustic signals transduced by the receiver. 2-

point crossover and a mutation rate of 0.03 were used with a population of 100. This was

found a suitable size given the existing computing facilities and the number of parameters to

be evolved. A tournament-selection scheme of size 8 wherein a set of genomes is randomly

selected from the population was used. The fittest genome in the set was chosen with a given

probability; if not selected, then the second best is selected with the same probability, and

so on. Experiments were run for 1000 generations. An example of the GA’s encoding for a

3-reflector configuration can be seen in section B.2 of appendix B.

The GA in [Peremans et al., 1998b] was set two tasks: first, to deploy reflectors in a monau-

ral system so as to maximise the displacement between the axes of maximal sensitivity at 30

kHz and 90 kHz (thereby allowing target elevation to be most accurately inferred from the

different amplitudes of the echo at these frequencies); and second, to deploy reflectors in a

binaural system to produce a maximally steep IID curve with respect to target angular position

(thereby maximising the angular resolution of the binaural system and allowing the target’s

position to be most accurately estimated from the IID). In the binaural case, the left ear was

symmetrical with the right ear, i.e. the two pinna configurations were derived from the single

disposition of reflectors indicated by the GA. The results for the first experiment were reason-

able, but for the second experiment no significant improvement of the IID performance could

be obtained with up to three reflectors.
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7.3 Exploiting the initial model

Such work was continued by us [Kim et al., 2000] applying similar model considerations as

[Peremans et al., 1998b], that is: disc-shaped specular reflectors were used to modify the di-

rectionality characteristics of a dynamic binaural echolocation system. The differences with

respect to [Peremans et al., 1998b] were the consideration of sound losses in the reflectors due

to absorption, instead of considering perfect reflection, and the way in which the phase cancel-

lation phenomena was calculated. An absorption rate of the reflectors of 20% of the incident

sound was assumed. Phase cancellation among different echos from the reflectors when arriv-

ing at the transducer was also considered. As in [Peremans et al., 1998b], neither the diffraction

and diffusion phenomena around the edges of the reflector discs nor multiple reflections were

taken into account, i.e. each reflector introduced one additional echo path. The reflectors’ radii

were constant and equal to that of the receiver and their orientation angles varying between -90

and +90 degrees with a resolution of 2 degrees.

In [Kim et al., 2000], two different methods were considered, a signal based method and a

region coverage method, the latter being the chosen one because of its smaller processing time.

Signal based method This method was based on the one used in [Peremans et al., 1998b]

for IID behaviour. In our case, because of the arc scanning behaviour, we were seeking a high

amplitude-modulated signal with sharp peaks for a better delay-per-degree estimation. For that

purpose, a fitness function F
�

A 	 σ, where A is the maximum amplitude value during the

arc scanning and σ is the standard deviation of the time-varying amplitude along time during

the arc scanning, was used. This fitness function would possibly guarantee clarity of target

position. The method was finally rejected because of the high amount of computational time

required.

Region coverage method This was based on the following assumption: having an ear mor-

phology whose left ear focuses on the left side of the target’s position along azimuth angle and

the right ear on the right side, a broader range of IIDs can be obtained. In this method we

also sought to evolve a reflector formation for both a good IID range and arc scanning. For

the IID case, targets at every azimuth and elevation angle were considered while for the arc

scanning case we only considered slices of the vertical plane, i.e. all elevation positions for a

fixed azimuth.

The fitness function aimed to combine this covered region method with the phase can-

cellation constraint, thus no reflector should be positioned in a location where, from any of

the possible target positions, phase cancellation happens. Based on this criterion, our fitness
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function was defined as

L
�

α
� N

∑
k � 0

e
� i

�
wt � θk � � � β � N

∑
i � 1

M

∑
k � 1

rik �

where N is the number of reflectors, M is the target position, θk is the phase of the wave coming

from reflector k and rik is set to 1 if the i-th reflector can reflect the left-sided target k on the

left transducer (otherwise it is set to 0). This will allow the reflectors around one transducer to

focus on the side of it. As a result, it should improve IID range by increasing the echo intensity

of one ear with respect to the other.

7.3.1 Results

When using this fitness function, results for IID using 10 reflectors1 were very little improved

from those in [Peremans et al., 1998b]. In figure 7.2, a reflector distribution around the trans-

ducer (a) and the region covered by these reflectors (b) is shown.

As can be seen, the middle part of the IID profiles, i.e. the part related to the main lobe

of the transducer directivity, is quite similar to the bare transducer and to the 3 reflector case

(figure 7.2(c)) in terms of steepness and linearity and therefore there is no improvement. How-

ever, there is a small improvement in the side lobe parts of the IID profile, for a target at 2

deg. elevation angle, in the form of smoothness of the peaks of such side lobes. A smoother

performance along these lobes (i.e. removing the peaks) offers an improvement of the angular

range along the horizontal plane. Arc scanning behaviour with this reflector configuration (d)

performs fairly well, that is, there is some distortion in the wave peaks (continuous line) which

is the significant part for arc scanning, but this could be resolved by a suitable curve-fitting

process, e.g. using the bare transducer curve (dotted line).

When evolving a reflector configuration for arc scanning behaviour (figure 7.3), results

were slightly more satisfactory than in figure 7.2(d)). In figure 7.3(b), there is an improvement

in amplitude (continuous line), despite some distortion at the middle part of the scan, com-

pared with bare transducer (dotted line). From these results, it is clear that there were no big

improvements in a 10 reflector configuration with respect to [Peremans et al., 1998b].

The reason why there was no big improvement in performance is the effect that phase

cancellation produces in the final wave. Because of the difficulty of finding an optimal position

for all the reflectors in all the target possible positions, final performance does not significantly

improve with respect to a bare transducer configuration, as the analysis below suggests.
1This was decided to be the maximum number of reflectors because of the high computational cost introduced

by each reflector.
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Figure 7.2: IID results: (a) reflector formation (b) region covered by reflectors (c) IID at elevation
2, 13, and 18 degrees (d) arc scanning at azimuth 0 degree (dotted: bare transducer; solid:
transducer with reflectors).

For investigating the effect of phase cancellation, a static transducer with a fixed reflec-

tor was evaluated for all the possible target positions, that is, an array of 21 � 21 positions

representing a range of � 20 to
�

20 degrees in both horizontal and vertical planes.

As seen in figure 7.4(a), the reflector is positioned beside the transducer on the right ear.

The reflector can be effective only in target positions at azimuth angle ranging from -20 to

-14. Figure 7.4(b) shows the region covered by this reflector; each cell shows a phase diagram

of how much signal of the reflector’s echo is phase-shifted from the transducers’s direct echo

signal. The reflected signal is about 235 degree phase-shifted at -20 degrees in azimuth and
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Figure 7.3: Arc scanning results: (a) reflector formation (b) arc scanning at azimuth 0 degree
(dotted: bare transducer; solid: transducer with reflectors).

-18 degrees in elevation (c), and about 180 degrees at -16 degrees in azimuth and -6 degrees

in elevation (d). The net effect of the signals into the transducer is the superposition of all the

incoming signals and we can see the result of echo interference.

Next, the reflector configuration was scaled up to three reflectors (figure 7.5(a)). The re-

gions coverage of each reflector (b), are located on the right side as expected. The echo in-

terference becomes more complex when we have more reflectors. As a matter of fact, echo

interference occurs with a large number of signals from any surface around the transducer po-

sition. In some cases the net echo signal is overwhelmed by the direct signal to the transducer

(d), and in other cases the reflected signals greatly influence the net echo becoming unpre-

dictable for a target position. Thus, it is not possible to focus on all target positions with a good

reflector formation. Even a slight movement of target position makes a phase shift signal for

one reflector as in 7.4(b). This results in our objective being a very difficult problem to solve

with a genetic algorithm.

In summary, from the results obtained in [Kim et al., 2000], we realised that increasing the

number of reflectors from three to ten did not improve performance enough, because of the

adverse effect of multipath phase cancellation phenomena. Experiments with one and three

reflector models showed how the effect of phase cancellation for a fixed reflector configuration

varies for different target positions. Our conclusion from these results were that we were

using too simple a model of the pinnae, i.e. using small reflectors instead of surfaces. Hence,

to evolve an optimal reflector configuration which will improve performance for every target
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Figure 7.4: Phase effects for 1 reflector: (a) reflector formation (b) cover region and phase
shift (c) echo signals at azimuth -20, elevation -18 (d) echo signals at azimuth -16, elevation -6
(dotted: transducer; dashed: reflector; solid: superposition of signals).

position using this simple model seemed to be a very difficult task. This suggested that a more

realistic model of the bat’s pinna would be a fruitful avenue to explore. However, the problem

with a more realistic surface-based model is the substantial increase in parameters required and

hence in the space to be searched by the GA. At this point, the necessity of a more realistic

model of wave propagation which could be applied to complex surfaces therefore arose. We

also proposed as further work to investigate good compromises for the tradeoff mentioned

above, giving parabolic surfaces, in which many small reflectors would be placed around the
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Figure 7.5: Phase effects for 3 reflectors: (a) reflector formation (b) contour of cover region
(c) echo signals at azimuth -2, elevation -20 (d) echo signals at azimuth 20, elevation 14 (dash:
transducer; dashdot: reflector 1 and 3; dot: reflector 2; solid: superposition of signals).

focus point2, an example to start with.

Thus, an acoustic model inspired by a physical model of sound diffraction and reflections

in the human concha [Lopez-Poveda and Meddis, 1996], was the next step taken [Carmena

et al., 2000]. Such a model will be described next.
2Because of the inherent properties of the parabola equation, all the reflections will direct to the focus, i.e. the

transducer.



Chapter 7. Outer ear: from multiple reflectors to surfaces 126

7.4 Computing reflections from finite reflectors

If we assume that the echo source is in the far field of the transducer and reflector system, the

incoming echo will have planar wavefronts. (The near field case can be modelled similarly, with

different assumptions about the incident waves.) The incident sound insonifies the transducer

and reflectors, generating a pressure at each point
�
r on their surfaces which is given by

p0 � �r � t �
�

p0 e j
� �
k � �r � ωt � (7.1)

where
�
k is the wave vector of the incident wave.

The total sound pressure field at the transducer is given by the direct path field, given by

the equation above, and by the contributions from the reflectors. The reflector contributions

can be calculated using Kirchhoff’s diffraction theory [Braddick, 1965] — each point on the

reflector surface is taken to be an acoustic source radiating sound in all directions. The sound

pressure on any surface element of the transducer is then the integral of the contributions from

each surface element of the reflector system. Using the diffraction theory model allows us to

take account of the finite size of the reflector.

The reflected pressure generated at a point by a surface element on a reflector depends on

the incident sound pressure, the distance to the point and the angle between the surface normal

and the direction to the point. The relationship is defined by

dPR � �p � t �
� R � d � γ0 � p0 � �r �

d
e jkd � jωt ds � (7.2)

where p0 � �r � t � is the incident sound pressure at position
�
r on the reflector surface (where the

element ds is), d is the distance from the reflector surface element ds to the transducer (that is,� �
p �
�
r
�
), k is the magnitude of the wave vector (that is, 2π

λ for a wave with wavelength λ) and

γ0 is the angle between the surface normal at
�
r and the line joining the surface element to the

point
�
p for which the pressure is being calculated.

The directional factor for reflection is given by the reflector obliquity function [Lopez-

Poveda and Meddis, 1996]:

R � r� γ0 � � cosγ0

4π
��� jk

� 1
r
� 
 (7.3)

Therefore, integrating over the whole transducer surface ST and the whole reflector surface

SR, we can obtain the total pressure contributed to the transducer which is given by the equation:

PT
�����

ST

���
SR

R � � �r �
�
p
�
� γ0 � p0 � �r �� �

r �
�
p
� e jk � �r � �p � � jωtdsrdst (7.4)

A diagram of the plane wave model used for a transducer and reflector system is shown

in Fig. 7.6. In the figure, a plane wave arriving at a surface element
�
r of the reflector (R)
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insonifies a surface element
�
p of the transducer (T) along path

�
p �
�
r. Note, however, that

each of the reflector’s surface elements will behave as an acoustic source radiating sound in all

directions, not only along
�
p �
�
r, as explained above.

r

p

p r

T

Plane wave

R

z

x

y

-

Figure 7.6: Plane wave model with a single reflector (R) and a transducer (T).

7.4.1 Results

A 2-dimensional adaptation of the model was tested first because of the simplicity of calcula-

tion. Figure 7.7 shows the curves obtained for a reflector held at different positions (0.5, 0.75

and 1 cm) and positioned along different angles (0 to 90 degrees). As expected, maximum am-

plitude is obtained at 45 degrees and with the reflector at the closest position of the transducer,

i.e. 0.5 cm.

Because of the plausible results obtained with the 2D adaptation, the next step was to scale

up to 3D. For the sake of simplicity the model was applied numerically instead of analytically.

The reflector and transducer surface pressures were calculated as the sum of contributions of

finite elements (FE) as an approximation to the surface integral. The division into elements

was calculated using polar coordinates, varying the radius and angle according to the number

of desired surface segments. Since the larger the number of divisions, the more accurate the

calculation is, 2000 vs. 800 divisions were tested, resulting in a not very significant difference

as seen in the overlapping dotted curve in Fig. 7.8. Hence for the rest of the experiments 800

divisions were used.

Also, as evidence of plausibility of the simulation work, a coarse evaluation of the acoustic

model in the real world was performed experimenting with one single reflector (Fig. 7.9 left).

The receiver to which the reflector was attached was turned 90 degrees (facing the ceiling). In
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Figure 7.7: 2D pressure vs. reflector’s effect on transducer for different angles (distances:
0.5 cm (solid), 0.75 cm (dashed), 1 cm (dashdot)).
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Figure 7.8: 3D pressure vs. 800 div. reflector’s effect on transducer for different angles
(distances: 0.5 cm (solid), 0.75 cm (dashdot), 1 cm (dashed)); 2000 div. reflector at 1 cm
(dotted).

such a position, the bare receiver is not insonified by the echo and, therefore, a better estimation

of the reflector’s effect can be obtained. Measurements were taken in increments of 7.5 degrees

(from 90 to 0 degrees) with an estimated error of
�

1 degree along yaw (α) and pitch (β) angles.

The reason for this sparse angular sampling was the difficulty for positioning the attached

reflector. With respect to Cartesian coordinates a positioning error of
�

1 mm was assumed.

For each measurement, 1000 consecutive pulses were sent by the emitter to a post located 30

cm in front of RoBat. The mean value of the echo energy was calculated for each of the pulses.
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Figure 7.9: Coarse evaluation of the acoustic model in the real world. Left plot: Experimental
set-up for one reflector. Right plot: Results comparison between simulation work (previous
model (dashed) and plane wave model (solid)) and real world (blobs).

As seen in Fig. 7.9 (left), the reflector’s vertical distance with respect to the transducer is 1 cm

because of the gap between the transducer and the grid covering it.

Figure 7.9 (right) shows a comparison between simulation and real echo amplitude. In the

figure, the solid line represents the plane wave model, the dashed line represents the previous

model [Peremans et al., 1998b] and the blobs represent the mean of 1000 echo energy values.

When the real measurements were taken, the physics of the transducer-reflector configuration

was not as simple as the model described in section 7.4. As can be seen in Fig. 3.1, each of the

transducers is inside a square box covered by a grid3. Some of the effects of this modified model

can be appreciated in the interval between 10 and 30 degrees (Fig. 7.9 (right)) as a pressure

offset value with respect to the simulated data. Another factor is the very low standard deviation

(whose maximum value is 0.0042 in the scale of Fig. 7.9) obtained from the 13 sets (from 0

to 90 degrees in increments of 7.5) of 1000 samples. Thus, despite the physical differences of

the real model, the data fitted encouragingly well for the preliminary experimental conditions

in which the measurements were taken.

It is also worth mentioning the preliminary experiments done with 2 reflectors in order to

see the sensitivity of multi-reflector echos to reflector position. Two reflectors in symmetric

positions were placed on the two rear corners of the receiver’s box at an angle α of 45 degrees.

Then, the position and orientation of one reflector, the other, and the two of them together was

slightly modified, obtaining big energy variance in the final echo as a consequence of phase
3This is to prevent accidental touching of the transducer (which is charged at 200 V) by the user’s fingers.
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cancellation and shadowing effects. This suggests that for further complex experiments with

several reflectors, an accurate way of positioning the reflectors in the space (e.g. a laser pointer

based equipment) will be vital.

In order to assess the performance of the acoustic model a comparison between this model

and the model used in [Peremans et al., 1998b] and [Kim et al., 2000] was done (figure 7.10).

The comparison was performed using some of the reflector configurations given by the GA in

[Kim et al., 2000] for 3, 5 and 10 reflectors but using the same transducer orientation as in in

figure 7.9. With this orientation, because there is no direct echo reception by the transducer,

it was much easier to distinguish the effects that each reflector introduced in the final wave.

Then, the GA was modified for optimising the current model criteria.

In any reflector system, the echo from the target will reach each reflector at a different time

and therefore the path lengths from the reflectors to the receiver will be different for each case.

Since the the position of the reflectors of figure 7.10 were evolved for the previous model,

differences in performance between the two models were expected to be found. In figure 7.10,

the solid line is the total summation of the signals from each reflector. As can be seen, for the

previous model (left column) all the reflected signals are in same phase while in the current

model (right column), because of phase cancellation, the total summation is reduced.

An evaluation of the new model was also performed. Figure 7.11 shows 5 (left) and 10

(right) reflector configurations (top) given by the GA for the current model and the final wave

(bottom) resulting from each reflector’s contribution. The important point here is the better

performance of the final wave (solid line) compared to the same cases in figure 7.10 (right

column). As seen in figure 7.11, the final wave has higher amplitude because of the lack of

phase cancellation in both cases and, therefore, improves with respect to figure 7.10.

At this point, as seen in figure 7.10, the significant differences between the current spherical

wave model and the point-like wave proposed in [Peremans et al., 1998b] are clear. Moreover,

the successful simulation results of the reflector systems evolved for the current model (figure

7.11) suggest the importance of using a more realistic model of wave propagation such as the

one proposed in this work.

7.5 Discussion and conclusions

This work started replicating and improving the results obtained in [Peremans et al., 1998b] in

which artificial pinnae in the form of three reflectors surrounding the two receiver transducers

of the biomimetic sonarhead — which spatial coordinates were evolved using a GA — were

used for improving echolocating behaviours such as arc scanning and IIDs. The solutions given
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Figure 7.10: Comparison between previous acoustic model (left columns) and current
model (right columns) for 3 (top), 5 (middle) and 10 (bottom) reflectors. Final wave (solid)
is the sum of each reflector’s (non solid) contribution.
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Figure 7.11: Evaluation of the new model. Top plots: Evolved configurations of 5 (left) and 10
(right) reflectors for the plane wave model. Bottom plots: Evaluation of the configurations. Final
wave (solid) is the sum of each reflector’s (non solid) contribution.



Chapter 7. Outer ear: from multiple reflectors to surfaces 133

by the GA were evaluated using the 3D Echolocation Simulator [Walker, 1997].

As a first step, a region coverage method was used to evolve pinna shapes of up to ten

reflectors. From the results obtained, we realised that increasing the number of reflectors from

three to ten does not improve performance enough, because of the adverse effect of multipath

phase cancellation phenomena. Experiments with one and three reflector showed how the ef-

fect of phase cancellation for a fixed reflector configuration varies for different target positions.

Our conclusion from these results was that we were using too simple a model of the pinnae, i.e.

using small reflectors instead of surfaces and, therefore, evolving an optimal reflector configu-

ration for improving performance for every target position using such a simple model seemed

to be a very difficult task.

Thus we addressed the importance of using a more realistic model of the bat’s pinna be-

fore extending the work with complex surfaces, focusing on an acoustic model inspired by a

physical model of sound diffraction and reflections in the human concha [Lopez-Poveda and

Meddis, 1996]. From the significant differences between models and, moreover, the successful

simulation results of the reflector systems evolved for the new model (figure 7.11), the impor-

tance of using a more realistic model of wave propagation, such as the one proposed in this

work, was demonstrated.

Regarding the experiments in the real world, the results showed the plausibility of the

theoretical model despite physical differences between the real transducer and the simulated

transducer as seen in figure 7.9. These differences, such as the transducer box with sharp edges

and corners as well as the grid covering the transducer may be the cause of the energy offset

found in the interval between 30 and 10 degrees.

At this point we were ready to jump from multiple reflectors to real surfaces. For fur-

ther work we proposed to design long run-time experiments evolving different surfaces such

as paraboloids (see figure 7.12) in which, because of the inherent properties of the parabola

equation, all the reflections will direct to the focus, i.e. the transducer.

7.6 Further work: From multiple reflectors to surfaces

As mentioned at the begining of the chapter, this section summarises the continuation of the

work proposed in section 7.5 by Kämpchen as a Master’s project.

First, the model described in section 7.4 was revisited. In the upgraded model, the grid

covering the receiver box was removed and the transducer was raised up to the same level as

the side of the box as suggested in section 7.24. Also, Kämpchen improved the FE model by
4These changes were implemented into the simulator. However it is also possible to apply them to RoBat.



Chapter 7. Outer ear: from multiple reflectors to surfaces 134

−5

0

5

−6
−5

−4
−3

−2
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X

Y

Z

Figure 7.12: Example of paraboloid surface with transducer at focus position.

increasing its accuracy (see figure 7.13), and reducing the number of FE by up to 50%, thus

reducing computation time.
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Figure 7.13: Comparison between old and new finite element model (transducer radius a
�

13mm) (left). Accuracy for different transducer radii and finite element sizes (right). (Reproduced
from [Kämpchen, 2000]).

During his work Kämpchen focussed in evolving conical and a paraboloid shapes, after

preliminary experiments with cylindrical shapes gave unfavourable results. Both shapes were

defined by four parameters (a fifth parameter, the displacement in x direction, was rejected for

being almost redundant). These parameters, together with the two angles of the orientation

of the receivers defined the six parameters to evolve. Three fitness functions — maximising



Chapter 7. Outer ear: from multiple reflectors to surfaces 135

the gain, vertical target localisation (arc scanning), and horizontal target localisation (IIDs) —

were used by Kämpchen. For specific details on the GA see [Kämpchen, 2000].

The gain was defined by the difference of the maximal sound pressure received with and

without the added pinna. The gain of a pinna-transducer configuration depended on two pa-

rameters: the ability of the pinna to focus the incident sound wave on the transducer surface,

and the transducer area — i.e. smaller transducers receive less sound pressure than larger ones.

In the experiments, the conical and paraboloid pinnae were evolved as well as the null

position of the bare transducer. Two receiver disc sizes were used: 4 and 13 mm radius. This

is summarised in the following table [Kämpchen, 2000]:

max pressure max pressure
with pinna (dB) without pinna (dB) gain (dB)

conical, 4 mm -12.21 -20.46 8.25
paraboloid, 4 mm 1.10 -20.46 21.56
conical, 13 mm -0.16 -0.03 -0.13

paraboloid, 13 mm 4.31 -0.03 4.34

Table 7.1: Comparison of received sound pressure with and without pinna. (Reproduced
from [Kämpchen, 2000]).

As seen in the table, though the maximal amplitude is obtained by the paraboloid with a

receiver disc radius of 13 mm, the best gain results from the combination of a paraboloid with

the smaller transducer of 4 mm radius.

The experiments were performed by both tilting the neck — the head was moved towards

the direction where the loudest echo came from and then oscillated around that direction in

order to estimate the target’s elevation — and arc scanning. In the former, the azimuth is

estimated by the IID of the loudest received echo throughout a period of head movement.

For a bare transducer without pinnae there is a tradeoff between the steepness and the

broadness of the IID. If the broadness is enlarged the maximal values of the IID decrease and

the curve becomes less steep. For the paraboloid, the results in figure 7.14 show that it is able

to produce an almost linear IID curve which is even steeper (on average) than that of the bare

transducer.

The results of arc scanning for the bare transducer and the transducer with a paraboloid

pinna configurations are shown in figures 7.15 and 7.16. In part (a) of the figures the directivity

of the pinna alone, without the emitter directivity, is shown. If the ears are rotated and not

the whole head, the elevation estimation only depends on the pinna and not the emitter direc-

tivity. The difference between the main peak and the highest side peak, when arc scanning

is performed, is shown in Fig. 7.15(b). Sub-plot (e) in the figure shows the elevation for the
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Figure 7.14: IID performance comparison between paraboloid pinna and bare trans-
ducer for the tilting-the-neck (left) and arc scanning (right) experiments. (Reproduced from
[Kämpchen, 2000]).

highest sensitivity. As the bare transducer has an axis of highest sensitivity at 0 � elevation (Fig.

7.15(e)), the IID is independent of the target’s elevation (Fig. 7.15(c)). Wider regions of one

grey level correspond to a flatter part of the IID curve (d) and the thinner a region is, the steeper

is the IID at that position. The maximal pressure for a bare transducer with the steep IID is

-0.47 dB and -23.9 dB for the 4 mm receiver configuration [Kämpchen, 2000].

Figure 7.16 shows the results of arc scanning using paraboloid pinnae. Though the steep-

ness of the IID in Fig. 7.16(d) is on average equal to that of the IID of the bare transducer

in Fig. 7.15(d), it is very linear and therefore much steeper in the center of view (resolution

of 0 
 21 � dB
� 1 in comparison to 1 
 1 � dB

� 1). Due to a slightly irregular maximum sensitivity in

elevation (see Fig. 7.16(e)) the IID map in shows some divergences from the linear pattern

for high elevations. The maximal pressure which is received with this pinna shape is -8.9 dB

[Kämpchen, 2000].

Improvement with paraboloid pinnae Kämpchen’s results suggest that paraboloid reflector

shapes are able to improve the directivity of the receiver configuration. For echolocation tasks

where the target’s elevation is estimated by sweeping the head or only the pinnae, the IID and

the elevation directivity were enhanced. Conical reflectors, however, exhibited a lower gain

and therefore a flatter IID. Kämpchen also points out the necessity of proving that the results

obtained in the simulations coincide with measurements on real reflector shapes mounted on

RoBat. Figure 7.17 shows one of the paraboloid shapes evolved for maximising the gain.



Chapter 7. Outer ear: from multiple reflectors to surfaces 137

(a) (b)

−10 0 10
−30

−20

−10

0

10

20

30

Azimuth

E
le

va
tio

n

−30 −20 −10 0
0

10

20

30

40

50

Azimuth

P
ea

k 
D

iff
er

en
ce

 (
dB

)
−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

Azimuth

E
le

va
tio

n

−15 −10 −5 0 5 10 15
−50

0

50

Azimuth

P
re

ss
ur

e 
(d

B
)

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
−15

−10

−5

0

5

10

15

Azimuth

E
le

va
tio

n

(c)

(d)

(e)

Figure 7.15: Performance of arc scanning applied to the bare transducer configuration. Emitter
radius of 4 mm and receiver radius of 13 mm. (a) Directivity of pinna (only receiver). White
3 dB acceptance region. All other regions cover 10 dB. (b) Difference between main and side
peak. (c) IID map. (scaling as in (a)). (d) IID curve at 0 � elevation. (e) Elevations of maximal
amplitude. (Reproduced from [Kämpchen, 2000]).
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Figure 7.16: Performance of arc scanning using paraboloid pinnae. Emitter and receiver
radius of 4 mm. (a) Directivity of pinna (only receiver). White 3 dB acceptance region. All
other regions cover 10 dB. (b) Difference between main and side peak. (c) IID map. (scaling
as in (a)). (d) IID curve at 0 � elevation. (e) Elevations of maximal amplitude. (Reproduced from
[Kämpchen, 2000]).
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Figure 7.17: Paraboloid shape which maximises the gain to 21.56 dB. (Reproduced from
[Kämpchen, 2000]).

Comparison with bat pinnae The big differences of the IID maps among bats make it dif-

ficult to make comparison. However, as pointed out by Kämpchen [2000], some common fea-

tures were observed: “The model bat Rhinolophus ferrumequinum has a HIID (highest IID) of

40 dB, therefore slightly lower than the HIIDs of the paraboloid pinnae of 42 — 55 dB, depend-

ing on the IID range. The maximal steepness of the bat’s IIDs (0 
 6 � dB
� 1 in one study, in others

0 
 1 � dB
� 1 [Obrist et al., 1993]) is comparable to that of the evolved reflectors (0 
 21 � 0 
 8 � dB

� 1,

depending on the scope of view). However the gain of bats’ pinnae tend to be much higher (e.g.

24 dB in Rhinolophus rouxi). A maximal gain of 21.6 dB with a paraboloid pinna was only

achieved if the fitness function had no other optimisation criterium. The gain of evolved shapes

which were useful for the echolocation task did not exceed 11.6 dB. This could be caused by

an inappropriate acoustic model. Other models approximate the cavity of the bat’s pinna with

an acoustic horn which has a circular or elliptic entrance [Walker, 1997]. The absolute gain

and the changes of gain with frequency for those models coincides well with the observations

on bat’s pinnae [Obrist et al., 1993]”. This suggests that evolving horn-like pinnae could be a
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fruitful avenue to explore.



Chapter 8

Conclusions

In this last chapter, the final conclusions of the different issues seen in the course of the disser-

tation are presented. These conclusions are structured in three main parts: first, in section 8.1,

the thesis is summarised. This is followed, in section 8.2, by the achievements and contribu-

tions of the thesis. Finally, in section 8.3, ideas on further directions of this work are given and

discussed.

8.1 Thesis summary

This dissertation has presented biologically inspired engineering on the use of narrowband

Sonar in mobile robotics. We have replicated, using robotics as a modelling medium, several

aspects of echolocation in bats aiming to improve the design and use of narrowband ultrasonic

sensors for mobile robot navigation.

As seen in chapter 2, most research on ultrasonic sensors for mobile robots has suffered

from the ‘ultrasonic sensor = Polaroid range sensor’ fallacy. As a result, the use of ultrasonic

sensors for mobile robot navigation has been under-rated for many years. Even worse, as these

sensors operate only on the first echo whose amplitude exceeds a threshold value, most of the

information present in the echo signal, such as Doppler shifts and incoming echoes from further

reflectors, is discarded.

Hence, an obvious natural system worth looking at was bat biosonar. So-called CF-FM

bats are highly mobile creatures that emit long calls in which much of the energy is concen-

trated in a single frequency. It is our belief that these bats face sensor interpretation problems

very similar to those of mobile robots provided with ultrasonic sensors, while navigating in

cluttered environments: forests for bats and laboratories for robots. A better understanding of

such biosonar systems can provide helpful insights for the design of Sonar sensors for mobile

141
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robots if biological tasks are analysed carefully and the underlying principles are tested for

their applicability to the engineering problems of mobile robots.

To that effect, we followed the biomimetic approach to Robotics — i.e. implementing in

a robotic model ideas taken from Biology — focusing on how the constant frequency part of

the call emitted by CF-FM bats is used for several tasks which depend on temporal (e.g. TOF),

frequency (e.g. Doppler-shift) and dynamic (e.g. arc scanning) cues.

The robotic model used as the experimental platform for this work is RoBat, described in

chapter 3. RoBat is the biomimetic sonarhead designed by Peremans and Hallam, mounted

on a commercial 3 DOF mobile platform. System integration, including signal processing

capabilities inspired by the bat’s auditory system and closed loop control of both sonarhead and

mobile base movements, was designed and implemented. RoBat allows the study of ultrasonic

perception in realistic dynamic environments. This tool visualises a biologically plausible

representation, i.e. the outputs of the cochlear model, of the acoustic flow field in real-time

as the biomimetic platform moves through its environment, thereby making it much easier for

human experimenters to detect the salient features in these acoustic images and investigate

their relationship with the environmental features. The usefulness of RoBat as a biomimetic

platform is related to four essential features: its mobility allows the study of sequences of

echoes in the context of different behaviours; the active sonarhead allows the study of active

sensing strategies; the biologically plausible representation of the echoes allows the cross-

fertilisation of biology and robotics; and real-time operation allows the study of acoustic flow

fields.

In chapter 4 we investigated how continuous estimates of Doppler-shifts can be derived

from physical echoes seen through two different models of a cochlear representation of the CF-

FM bat. Doppler-shifts are a rich source of information not exploited by the robotics community

(partially because the commercial ultrasonic range sensors do not provide Doppler estimates),

hence our interest in addressing its utility for robotics. Two parsimonious models of the audi-

tory fovea of these bats based on filterbanks — sets of bandpass filters followed by full-wave

rectification and low-pass filtering — were implemented. One filterbank used Butterworth

filters whose centre frequencies vary linearly across the set. The alternative filterbank used

gammatone filters, with centre frequencies varying non-linearly across the set. Two methods

for estimating Doppler-shift from the output of these models were implemented: a novel neural

network-based technique and a simple energy-weighted average of filter centre frequencies.

Each method was tested with each of the cochlear models, and evaluated in the context

of several dynamic tasks in which RoBat was moved at different velocities towards stationary

echo sources such as walls and posts. Overall, the performance of the linear filterbank was
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more consistent than the gammatone. The same applies to the ANN, which had consistently

better noise performance than the weighted average. It was interesting to see how Doppler-shift

can be reliably estimated despite the low velocity of the robot compared to real bats.

The effect of multiple reflections contained in a single echo was also analysed in terms of

error in Doppler-shift estimation assuming a single wider reflector, i.e. how much our Doppler-

shift estimation deteriorates when another signal is introduced in the echo, investigating how

likely the problem applies to robotics provided with Polaroid electrostatic transducers and up

to what extent the problem can be ignored when assuming a single dominant frequency echoes

in indoor environments.

In chapter 5 we saw how Doppler-shifts can be used in several ways in a robotic context.

Bat behaviours such as target recognition through frequency signatures, Doppler-shift com-

pensation, and acoustic flow were implemented in Robat and discussed. From Doppler-shift

compensation, inspiration for a convoy navigation controller following a set of simple Doppler

dependent rules was successfully implemented. This controller takes advantage of the flat por-

tion of the cosine curve at small bearing angles which allows small fluctuations in bearing angle

around 0 � without worsening performance. The performance of the controller was satisfactory

despite low Doppler-shift resolution caused by lower velocity of the robot when compared to

real bats. On the other hand, an implementation of Müller’s hypothesis on acoustic flow for

obstacle avoidance resulted, as expected, in a crude estimation of the target’s passing distance

at small bearing angles which improved as this increased, nevertheless sufficing for avoiding

the obstacles of the experiment. The reason for this crude estimation was the low resolution

introduced by the large difference in navigating velocities between the robot and the bat.

In chapter 6 we implemented in RoBat a simple and preliminary 3D tracker through the

integration of two different methods for object localisation in the horizontal and vertical planes.

These methods exploit the physics of narrowband echolocation and the dynamics of the sensor.

The first method [Barshan and Kuc, 1992] estimates the azimuth and range of a target located

at the intersection of the two ellipses defined by each of the receiver-transmitter TOF, assuming

the target is in the same elevation plane as the collinear emitter and receivers. This model was

adapted to the sonarhead’s geometry which introduces an offset in the z axis. Different TOF

estimation methods were tested, the LSE parabola fitting being the most accurate. Then, instead

of using a sensor with extra receivers to measure target elevation (as in e.g. [Kuc, 1993]), we

employed the sensor’s motion to create additional virtual receivers. This method, named arc

scanning by Walker [1997], was successfully implemented in RoBat using temporal (i.e. peak-

delay) cues instead of IIDs rates of change. A so-called “echo median” controller was devised

for removing spurious TOF and peak-delays estimates. The 3D tracking was performed in
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the simplest way, i.e. applying both methods independently. A more sophisticated method in

which the TOF of both receivers is estimated at the same time as performing arc scanning was

proposed. The method, which needs the geometric model to be revisited and a better TOF

estimation method, would allow to estimate range, azimuth and elevation in a single scan.

Finally, a joint investigation with Kim, Kämpchen and Hallam on designing optimal ear

morphology using genetic algorithms was presented in chapter 7. The long term goal of this

investigation, inspired by the CF-FM bat’s large pinnae, was twofold: to improve the echolo-

cating capabilities of the biomimetic sonarhead by attaching real pinnae to it, and to obtain

insights on the role of pinnae in CF-FM bats for specific echolocating behaviours such as arc

scanning and IIDs. As a first step, a simple ray light-like model of sound propagation was

used to evolve pinna shapes of up to ten reflectors. From the results obtained, we realised that

increasing the number of reflectors did not improve performance because of the adverse effect

of multipath phase cancellation phenomena. Thus a more complete acoustic model inspired

by a physical model of sound diffraction and reflections in the human concha [Lopez-Poveda

and Meddis, 1996] was devised. Results showed significant differences in performance be-

tween models. The results of an experiments in the real world, showed the plausibility of

the theoretical model despite physical differences between the real transducer and the simu-

lated transducer. At this point we were ready to jump from multiple reflectors to real surfaces,

proposing paraboloids as interesting surfaces to investigate because — from the inherent prop-

erties of the parabola equation — all the reflections will direct to the focus, i.e. the transducer.

In the last stage of this work, some interesting paraboloid shapes were obtained [Kämpchen,

2000], improving performance significantly with respect to the bare transducer.

8.2 Achievements and contributions

The main contribution of this thesis, in a high level of abstraction, is the demonstration of how

biologically inspired engineering results in an alternative and useful approach to the use of

ultrasound in mobile robots.

More specifically, the achievements and contributions of this thesis can be summarised as:

� RoBat’s system integration, including signal processing capabilities inspired by the bat’s

auditory system and closed loop control of both sonarhead and mobile base movements.

The result is a versatile tool for studying the relationship between environmental features,

their acoustic correlates and the cues computable from them, in the context of both static,

and dynamic real-time closed loop, behaviour [Peremans et al., 2000].
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� A comparative study of two models of the signal processing performed by the bat’s

cochlea — a Butterworth and a gammatone filterbank — with two frequency discrim-

ination methods — a simple energy-weighted average of filter centre frequencies, and

a novel neural network-based technique — for Doppler-shift estimation tasks [Carmena

and Hallam, 2000, 2001a].

� The design and implementation of Doppler-based behaviours such as Doppler-shift com-

pensation (typical of CF-FM bats), and a controller suitable for collision detection and

convoy navigation in mobile robots [Carmena and Hallam, 2001b,c].

� The implementation and testing of Barshan’s and Kuc’s 2D object localisation method

adapted to the geometry of the sonarhead, including different TOF estimation methods.

The implementation of arc scanning as a mean of recovering elevation cues, and the

integration of both methods in a preliminary narrowband 3D tracker.

� A joint investigation with Kim, Kämpchen and Hallam [Kim et al., 2000; Carmena et al.,

2000, 2001] on designing optimal ear morphology for improving the echolocating ca-

pabilities of the sonarhead. Genetic algorithms were used for evolving configurations

of multiple reflectors around the transducer and for improving in arc scanning and IID

behaviours. A simple ray light-like model of sound propagation was used before a more

complete acoustic model, inspired by a physical model of sound diffraction and reflec-

tions in the human concha [Lopez-Poveda and Meddis, 1996] was devised and used to

evolve pinnae surfaces made of finite elements.

8.3 Discussion and future work

In most of the existing robotic sonar systems, the target’s azimuth is estimated from the differ-

ences in arrival times of the echoes. With respect to binaural systems, such as the biomimetic

sonarhead, this method would not be useful for further scaled down versions because the shorter

inter-aural separation would be unsuitable for accurate localisation. The approach started by

Peremans et al. [1998a] advocates gleaning this information from inter-aural intensity com-

parisons instead. This will allow us to build arbitrarily small sensors — with inter-aural di-

mensions and transducer radii corresponding better with those of the bat — whose accuracy

depends only upon the sensitivity of the receivers and their relative orientation. These scaled

down sensors might be employed in the near future aboard many real-world systems such as

automobile cruise control and collision avoidance systems [Jones, 2001].
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Also, a smaller, faster robotic sonarhead provided with faster and more accurate motors

will allow modelling the movements of the pinnae and the head in CF-FM bats more precisely

thereby addressing questions such as how horizontal (i.e. panning) movements of the pin-

nae are combined with the vertical (arc scanning) movements, and how these movements are

synchronised with the movements of the head and body while tracking a target. In addition, be-

cause it is important to study animal perceptual mechanisms within a feedback control system

capable of real-time behaviour, RoBat’s signal processing speed must be extended. Neuromor-

phic cochlear chips can be used for this purpose; however, the main problem lies in how to

digitise the n analog output channels of the chip so the system can work in close-loop.

To free the system from the dependence of the host computer and the umbilical is another

important issue to be achieved in further versions of RoBat. This will require on-board signal

acquisition and processing, as well as power supply. A good example of such self-contained

systems can be seen in [Heale and Kleeman, 2000].

Regarding ear morphology design, building and attaching real pinnae to the sonarhead is

the next step. Also, it would be interesting to evolve emitter reflector shapes e.g., the nostrils

of Rhinolophus ferrumequinum. These complex surfaces modify the acoustic properties of

echolocation calls to optimize retrieval of information about the environment. By the time this

thesis was about to finish, Cook, a Master’s student co-supervised with Hallam, was assess-

ing the role of emitter morphology in echolocation cue extraction, providing a parallel object

model suitable to be used on Beowulf-class cluster machines [Cook, 2001]. This platform will

facilitate further experimental optimisation of acoustic reflecting structures such as pinnae and

nostrils.

Finally, an ideal scenario in the future of ultrasonic sensors for robots would be the com-

mercialization of more sophisticated sensors capable of estimating Doppler-shift in addition to

TOF. Perhaps this could be done by on-chip signal processing and electronic circuitry avoiding

digitisation and therefore the need of expensive and space consuming equipment (e.g. acqui-

sition boards). Taking advantage of monaural Doppler properties, this could be imagined as a

single sensor outputting two parameters (TOF, Doppler) per return echo instead of one. In such

case, a robot provided with a sensor-ring made of these sensors would provide not only range

but also motion information of the environment around its body. Also, if new cochlear models

are devised so they can improve current Doppler-shift estimates in robots moving at realistic

(i.e. slow) speeds, the 30 � uncertainty introduced by the main lobe of these sensors may be

decreased significantly.



Appendix A

Mathematical formulas

A.1 Design of acoustic foveas with variable Q values

Formulas related to acoustic fovea design (NF is the number of filters, ∆ f f ov the width of the

fovea, s f the step factor and ERB being the equivalent rectangular bandwidth [Müller, 1998]):

NF
�

Qmax � ∆ f f ov
�
N f 1

�
N f 2

� (A.1)
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� f

Q
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Applying partial integration we obtain:
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For the broadband examples of chapter 3, a wideband filterbank modelling the portion of

the cochlea of the CF-FM bats outside the fovea was devised. In such configuration, the filter

quality is constant (Q
�

20) over center frequency, which ranges from 35kHz-160kHz in our

experiments. Keeping filter quality constant implies that bandwidth ( fbw) is a linear function of

center frequency ( fc): fbw
�

fc 	 Q. Additionally, overlap between neighbouring filters is kept

constant [Slaney, 1993], which results in a wider spacing of filters as bandwidth increases.

A.2 Derivatives of h with respect to tr and β

Given equations 6.11, 6.10, 6.13, and 6.12 their derivatives with respect to h are:
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A.3 LSE parabola fitting
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where E is the LSE fitted parabola defined by the parameters a, b, and c, x is the sample index

given by xi
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�
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The following are the parameters used to train the different configurations of backpropagation

ANNs used in chapter 4. The parameters were obtained using rbp, applying the sigmoidal

function in all the cases.

B.1 ANN parameters

B.1.1 Linear filterbank (6-3-1)

Filterband Seed Learning rate Momentum Iterations Error/unit

40 Hz 38 0.0005 0.0 17106 0.02382
40 Hz, .5 inc 40 0.0058 0.1 25638 0.02650

100 Hz 40 0.005 0.42 9738 0.01951
200 Hz 69 0.0072 0.25 19254 0.01959

Table B.1: ANN parameters for linear filterbank for different configurations.

B.1.2 Gammatone filterbank (9-4-1)

Fovea Seed Learning rate Momentum Iterations Error/unit

400 Hz 38 0.0005 0.0 286 0.02541

Table B.2: ANN parameters for gammatone filterbank.

B.2 Example of the GA’s encoding for a 3-reflector configuration

Table B.3 shows the data of a 3-reflector configuration after runing the GA for 1000 gen-

erations. The 15 genes of the chromosome (5 genes per reflector) are transformed into the

reflector’s spatial coordinates and normal vector.
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SPATIAL COORDINATES NORMAL VECTOR
Reflector X Y Z

�
nx

�
ny

�
nz

0 0.077500 0.000000 -0.030000 0.000000 1.000000 0.000000
1 0.064000 0.014000 -0.008000 0.261445 -0.913546 0.311578
2 0.088000 0.036000 -0.026000 0.000000 -0.743145 0.669131
3 0.078000 0.022000 0.010000 0.000000 -0.970296 0.241922

Table B.3: GA encoding for a 3-reflector configuration. (Reflector 0 is the transducer.)
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C.1 Noise removal

Figure C.1 shows an example of a 50 kHz echo reflected upon a stationary flat surface oriented

towards the sonarhead with the mobile platform halted, i.e. no Doppler-shift expected, before

pre-filtering (top), after band-pass filtering (middle) and after pick-up removal (bottom). The

left column shows the time domain plot of the echo acquired by one of the receivers. The right

column shows the frequency analysis (via FFT) of the echo.

The origin of the big glitch in the top-left plot was unknown during a certain amount of

time. This glitch generates frequency components at 12.35 kHz and lower frequencies as seen

in the top-right plot. The possibility of the 12.35 kHz being a sub-harmonic of the call fre-

quency (due to its close value to 12.5 kHz) was discarded after the transmitter was set to send

a higher frequency (55 kHz) with no shift in the noise frequency.

The source of noise was located in the DC/DC converter of the sonarhead’s power supply.

When powering off the sonarhead (except for the bias voltage), the frequency analysis of the

acquired weak signal sent by the D/A card showed no energy at 12.35 kHz nor at lower fre-

quencies. For removing this noise component, a 2nd order Butterworth band-pass filter with

cut-off frequencies at 45 and 55 kHz was used. This can be seen in the middle plots of fig-

ure C.1. Later on, it was discovered that the origin of this noise was in the commuting power

supply. Replacing this unit by a linear power supply eliminated the noise and therefore the

bandpass filter was of no further use.

The signal pick-up is purely electronic, i.e. the acoustic pick-up due to the proximity of

the receivers to the emitter is minimum or inexistent. To arrive at this conclusion we acquired

samples from the receivers while the transmitter was emitting and RoBat was moving. If the

cause of the noise was acoustic pick-up, its echo should be Doppler-shifted because of the robot

motion. The frequency analysis of the acquired samples showed all the energy located at the

call frequency discarding any possible acoustic pick-up.
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This pick-up is harmless if no frequency information from the echoes is needed. However,

because of our interest in Doppler, it was impossible to obtain meaningful data from Doppler-

shifted echoes in which the estimated Doppler-shift value has been pulled down by the 50 kHz

pick-up. Taking advantage of the high speed of the processor (AMD Athlon 1GHz), and given

the known frequency of the pickup (50 kHz), a software strategy for getting rid of it without

introducing a critical delay in the sense-and-act loop was implemented as follows.

Every time RoBat is switched on, a calibration process obtains the amplitude of the pick-up

for each of the receivers. Next, a synthetic signal with this amplitude and length equal to the

length of the call is created and stored in memory. As soon as the echoes are converted into

the digital domain (e.g. the echo in figure C.1 (middle)), a phase-lock routine finds the phase

of the pick-up, which is invariant along the length of the echo. Finally, the synthetic signal is

subtracted to the echo resulting in decrease of the noise as seen in the bottom plots of figure

C.1. The amplitude of the noisy part of the bottom-left plot is clearly smaller than the middle-

left. Likewise, the 50 kHz component of the bottom-right plot is greater than the middle-right.

This is because of the pick-up interfering (no phase coherence) with the echo.

C.2 Servomotor synchronisation

The servomotors of the sonarhead are controlled by the Mini SSC II Serial Servo Controller

[Jameco, 1999]. This electronic module controls eight pulse-proportional servos according to

instructions received through the serial port of a PC at 2400 or 9600 baud.

These servos [Futaba, 2001] are pulse-proportional. They receive pulses ranging from 1 to

2 ms long, repeated 60 times a second. The servo positions its output shaft in proportion to

the width of the pulse [Jameco, 1999]. The servos can operate at 90 � or 180 � range of motion

modes. In the former, a 1-unit change in position value produces a 4-µs change in pulse width.

Positioning resolution is 0 
 36 � 	 unit � 90 � 	 250 � . In the latter, a 1-unit change in position value

produces a 8-µs change in pulse width. Positioning resolution is 0 
 72 � 	 unit � 180 � 	 250 � .
Servos are not provided with shaft encoders for indicating the position of the servo at a

specific time. This results in the servos operating in open-loop, which is an inconvenience for

tasks such as arc scanning in which the ears move synchronously with call emission.

In order to solve this problem, the receiver’s tilting servos were connected from the con-

troller board to the Data Carrier Detect (DCD) and Clear To Send (CTS) lines of the serial

port previous voltage conversion to RS232 standard and disabling the handshake protocol in-

terruption flag. Since DCD and CTS are input lines the status of each servo can be monitored

as convenient, it is possible to write a simple routine for synchronising the servos with call
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Figure C.1: Example of noise removal in a single echo in time (left column) and frequency
(right column) domains. Noisy echo (top), after band-pass filtering (middle) and after pick-up
subtraction (bottom).
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emission. See [Sweet, 1999] for more details on serial programming for POSIX operating

systems.
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