292 research outputs found

    Feature selection for EEG Based biometrics

    Get PDF
    Department of Human Factors EngineeringEEG-based biometrics identify individuals by using personal and distinctive information in human brain. This thesis aims to evaluate the electroencephalography (EEG) features and channels for biometrics and to propose methodology that identifies individuals. In my research, I recorded fourteen EEG channel signals from thirty subjects. While record EEG signal, subjects were asked to relax and keep eyes closed for 2 minutes. In addition, to evaluate intra-individual variability, we recorded EEG ten times for each subject, and every recording conducted on different days to reduce within-day effects. After acquisition of data, for each channel, I calculated eight features: alpha/beta power ratio, alpha/theta power ratio, beta/theta power ratio, median frequency, PSD entropy, permutation entropy, sample entropy, and maximum Lyapunov exponents. Then, I scored 112 features with three feature selection algorithms: Fisher score, reliefF, and information gain. Finally, I classified EEG data using a linear discriminant analysis (LDA) with a leave-one-out cross validation method. As a result, the best feature set was composed of 23 features that highly ranked on Fisher score and yielded a 18.56% half total error rate. In addition, according to scores calculated by feature selection, EEG channels located on occipital and right temporal areas most contributed to identify individuals. Thus, with suggested methodologies and channels, implementation of efficient EEG-based biometrics is possible.ope

    Identity Recognition Using Biological Electroencephalogram Sensors

    Get PDF
    Brain wave signal is a bioelectric phenomenon reflecting activities in human brain. In this paper, we firstly introduce brain wave-based identity recognition techniques and the state-of-the-art work. We then analyze important features of brain wave and present challenges confronted by its applications. Further, we evaluate the security and practicality of using brain wave in identity recognition and anticounterfeiting authentication and describe use cases of several machine learning methods in brain wave signal processing. Afterwards, we survey the critical issues of characteristic extraction, classification, and selection involved in brain wave signal processing. Finally, we propose several brain wave-based identity recognition techniques for further studies and conclude this paper

    Signal Processing of Electroencephalogram for the Detection of Attentiveness towards Short Training Videos

    Get PDF
    This research has developed a novel method which uses an easy to deploy single dry electrode wireless electroencephalogram (EEG) collection device as an input to an automated system that measures indicators of a participant’s attentiveness while they are watching a short training video. The results are promising, including 85% or better accuracy in identifying whether a participant is watching a segment of video from a boring scene or lecture, versus a segment of video from an attentiveness inducing active lesson or memory quiz. In addition, the final system produces an ensemble average of attentiveness across many participants, pinpointing areas in the training videos that induce peak attentiveness. Qualitative analysis of the results of this research is also very promising. The system produces attentiveness graphs for individual participants and these triangulate well with the thoughts and feelings those participants had during different parts of the videos, as described in their own words. As distance learning and computer based training become more popular, it is of great interest to measure if students are attentive to recorded lessons and short training videos. This research was motivated by this interest, as well as recent advances in electronic and computer engineering’s use of biometric signal analysis for the detection of affective (emotional) response. Signal processing of EEG has proven useful in measuring alertness, emotional state, and even towards very specific applications such as whether or not participants will recall television commercials days after they have seen them. This research extended these advances by creating an automated system which measures attentiveness towards short training videos. The bulk of the research was focused on electrical and computer engineering, specifically the optimization of signal processing algorithms for this particular application. A review of existing methods of EEG signal processing and feature extraction methods shows that there is a common subdivision of the steps that are used in different EEG applications. These steps include hardware sensing filtering and digitizing, noise removal, chopping the continuous EEG data into windows for processing, normalization, transformation to extract frequency or scale information, treatment of phase or shift information, and additional post-transformation noise reduction techniques. A large degree of variation exists in most of these steps within the currently documented state of the art. This research connected these varied methods into a single holistic model that allows for comparison and selection of optimal algorithms for this application. The research described herein provided for such a structured and orderly comparison of individual signal analysis and feature extraction methods. This study created a concise algorithmic approach in examining all the aforementioned steps. In doing so, the study provided the framework for a systematic approach which followed a rigorous participant cross validation so that options could be tested, compared and optimized. Novel signal analysis methods were also developed, using new techniques to choose parameters, which greatly improved performance. The research also utilizes machine learning to automatically categorize extracted features into measures of attentiveness. The research improved existing machine learning with novel methods, including a method of using per-participant baselines with kNN machine learning. This provided an optimal solution to extend current EEG signal analysis methods that were used in other applications, and refined them for use in the measurement of attentiveness towards short training videos. These algorithms are proven to be best via selection of optimal signal analysis and optimal machine learning steps identified through both n-fold and participant cross validation. The creation of this new system which uses signal processing of EEG for the detection of attentiveness towards short training videos has created a significant advance in the field of attentiveness measuring towards short training videos

    Person authentication using electroencephalogram (EEG) brainwaves signals

    Get PDF
    This chapter starts with the introduction to various types of authentication modalities, before discussing on the implementation of electroencephalogram (EEG) signals for person authentication task in more details. In general, the EEG signals are unique but highly uncertain, noisy, and difficult to analyze. Event-related potentials, such as visual-evoked potentials, are commonly used in the person authentication literature work. The occipital area of the brain anatomy shows good response to the visual stimulus. Hence, a set of eight selected EEG channels located at the occipital area were used for model training. Besides, feature extraction methods, i.e., the WPD, Hjorth parameter, coherence, cross-correlation, mutual information, and mean of amplitude have been proven to be good in extracting relevant information from the EEG signals. Nevertheless, different features demonstrate varied performance on distinct subjects. Thus, the Correlation-based Feature Selection method was used to select the significant features subset to enhance the authentication performance. Finally, the Fuzzy-Rough Nearest Neighbor classifier was proposed for authentication model building. The experimental results showed that the proposed solution is able to discriminate imposter from target subjects in the person authentication task

    A robust brain pattern for brain-based authentication methods using deep breath

    Get PDF
    Security authentication involves the process of verifying a person's identity. Authentication technology has played a crucial role in data security for many years. However, existing typical biometric authentication technologies exhibit limitations related to usability, time efficiency, and notably, the long-term viability of the method. Recent technological advancements have led to the development of specific devices capable of reproducing human biometrics due to their visibility and tactile nature. Consequently, there is a demand for a new biometric method to address the limitations of current authentication systems. Human brain signals have been utilized in various Brain-Computer Interface (BCI) applications. Nevertheless, this approach also faces challenges related to usability, time efficiency, and most importantly, the stability of the method over time. Studies reveal that the stability of brain patterns poses a significant challenge in EEG-based authentication techniques. Stability refers to the capacity to withstand changes or disruptions, while permanency implies a lasting and unchanging state. Notably, stability can be temporary and subject to fluctuations, whereas permanency suggests a more enduring condition. Research demonstrates that utilizing alpha brainwaves is a superior option for authentication compared to other brainwave types. Many brain states lack stability in different situations. Interestingly, deep breathing can enhance alpha waves irrespective of the brain's current state. To explore the potential of utilizing deep breathing as a security pattern for authentication purposes, an experiment was conducted to investigate its effects on brain activity and its role in enhancing alpha brainwaves. By focusing on bolstering the permanency of brain patterns, our aim is to address the challenges associated with stability in EEG-based authentication techniques. The experimental results exhibited a high success rate of 91 % and 90 % for Support Vector Machine and Neural Network classifiers, respectively. These results suggest that deep breathing not only enhances permanency but could also serve as a suitable option for a brainwave-based authentication method

    Scalable Digital Architecture of a Liquid State Machine

    Get PDF
    Liquid State Machine (LSM) is an adaptive neural computational model with rich dynamics to process spatio-temporal inputs. These machines are extremely fast in learning because the goal-oriented training is moved to the output layer, unlike conventional recurrent neural networks. The capability to multiplex at the output layer for multiple tasks makes LSM a powerful intelligent engine. These properties are desirable in several machine learning applications such as speech recognition, anomaly detection, user identification etc. Scalable hardware architectures for spatio-temporal signal processing algorithms like LSMs are energy efficient compared to the software implementations. These designs can also naturally adapt to dierent temporal streams of inputs. Early literature shows few behavioral models of LSM. However, they cannot process real time data either due to their hardware complexity or xed design approach. In this thesis, a scalable digital architecture of an LSM is proposed. A key feature of the architecture is a digital liquid that exploits spatial locality and is capable of processing real time data. The quality of the proposed LSM is analyzed using kernel quality, separation property of the liquid and Lyapunov exponent. When realized using TSMC 65nm technology node, the total power dissipation of the liquid layer, with 60 neurons, is 55.7 mW with an area requirement of 2 mm^2. The proposed model is validated for two benchmark. In the case of an epileptic seizure detection an average accuracy of 84% is observed. For user identification/authentication using gait an average accuracy of 98.65% is achieved
    • 

    corecore