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Abstract

This research has developed a novel method which uses an easy to deploy single dry
electrode wireless electroencephalogram (EEG) collection device as an input to an automated
system that measures indicators of a participant’s attentiveness while they are watching a short
training video. The results are promising, including 85% or better accuracy in identifying
whether a participant is watching a segment of video from a boring scene or lecture, versus a
segment of video from an attentiveness inducing active lesson or memory quiz. In addition, the
final system produces an ensemble average of attentiveness across many participants,
pinpointing areas in the training videos that induce peak attentiveness. Qualitative analysis of the
results of this research is also very promising. The system produces attentiveness graphs for
individual participants and these triangulate well with the thoughts and feelings those
participants had during different parts of the videos, as described in their own words.

As distance learning and computer based training become more popular, it is of great
interest to measure if students are attentive to recorded lessons and short training videos. This
research was motivated by this interest, as well as recent advances in electronic and computer
engineering’s use of biometric signal analysis for the detection of affective (emotional) response.
Signal processing of EEG has proven useful in measuring alertness, emotional state, and even
towards very specific applications such as whether or not participants will recall television
commercials days after they have seen them. This research extended these advances by creating
an automated system which measures attentiveness towards short training videos.

The bulk of the research was focused on electrical and computer engineering, specifically

the optimization of signal processing algorithms for this particular application. A review of



existing methods of EEG signal processing and feature extraction methods shows that there is a
common subdivision of the steps that are used in different EEG applications. These steps include
hardware sensing filtering and digitizing, noise removal, chopping the continuous EEG data into
windows for processing, normalization, transformation to extract frequency or scale information,
treatment of phase or shift information, and additional post-transformation noise reduction
techniques. A large degree of variation exists in most of these steps within the currently
documented state of the art. This research connected these varied methods into a single holistic
model that allows for comparison and selection of optimal algorithms for this application.

The research described herein provided for such a structured and orderly comparison of
individual signal analysis and feature extraction methods. This study created a concise
algorithmic approach in examining all the aforementioned steps. In doing so, the study provided
the framework for a systematic approach which followed a rigorous participant cross validation
so that options could be tested, compared and optimized. Novel signal analysis methods were
also developed, using new techniques to choose parameters, which greatly improved
performance.

The research also utilizes machine learning to automatically categorize extracted features
into measures of attentiveness. The research improved existing machine learning with novel
methods, including a method of using per-participant baselines with KNN machine learning. This
provided an optimal solution to extend current EEG signal analysis methods that were used in
other applications, and refined them for use in the measurement of attentiveness towards short
training videos.

These algorithms are proven to be best via selection of optimal signal analysis and

optimal machine learning steps identified through both n-fold and participant cross validation.



The creation of this new system which uses signal processing of EEG for the detection of
attentiveness towards short training videos has created a significant advance in the field of

attentiveness measuring towards short training videos.



Novelty and Contribution

The research has led to a number of novel signal analysis and machine learning methods
which are described in detail in the Methods chapter of this dissertation. The contribution of
these methods to the final system, both quantitative and qualitative, is described in detail in the

Results chapter of this dissertation. A brief summary of these novel methods are described here.
1. Creation of a signal analysis method specifically for this application

This is as a result of collecting data from a comparatively large number of participants
and then using participant cross validation to compare a number of signal analysis parameters as
well as noise removal processing algorithms. This resulted in the creation of a system and
method for the use of EEG to detect attentiveness towards short training videos achieving an
85% and better rate of accuracy.

2. Ensemble Averaging of Attentiveness Indicators across Participants

The system created in this research calculates a numerical attentiveness indicator based
on EEG data, and can graph that attentiveness information as it changes over time. On a per-
participant basis, this can be triangulated with qualitative data such as participant self-reporting
of what they were thinking and feeling at different parts of the video, or a specific time when a
cellphone vibrated in the middle of a video. The research goes beyond this to also produce an
ensemble average attentiveness graph, using data from all the participants who watched the same
video. This is ensemble average can show the operator which specific parts of the video are
generating greater attentiveness than other parts. In one video, for example, the ensemble
average attentiveness goes up at a specific point in the video where the camera switches from a

shot of the instructor’s face, to a shot of the instructor’s hands as he shows how the piece of



paper is to be folded. This hands-on demonstration, or modeling, is well known in education to
be important in student learning, and this research has provided biometric analysis that shows
this with great precision. This novelty shows great promise for the use of this in future
educational research.

3. Noise interval method of selection of thresholds for optimal muscle and ocular noise

removal

Certain algorithms for muscular and ocular noise removal from EEG signals require
threshold values to be selected. The threshold is used to identify spikes of voltage to be removed,
and the current methods for selecting levels for these thresholds are not numerically based on the
desired end result, that of removing infrequently occurring noise events. The proposed method is
based on the expected average interval between these infrequent events by visually displaying
amplitude levels of spikes that appear on average once per second, once per half second, etc...
The selection of the average rate of noise occurrence is left to the operator, based on the fact that
the operator is purposely trying to remove relatively infrequently occurring noise. Nevertheless,
the novel method produces consistent results across a range of selected rates, and also is able to
solve other issues of calibration over many experiments, as well as solve issues related to DC
bias (differences between positive and negative threshold values).

4. Baseline Setting

Machine learning algorithms require training, or at least a fixed exemplary set of data
points from which distance or linear transformation algorithms are based. Once the entire system
has been developed, no further training is possible, because the system will be used by an
operator who wishes to determine if a participant is attentive towards a short training video. The

operator does not perform manual classification of the participant’s EEG data, and therefore
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needs the automated system to provide this information. Nevertheless, as with other biometric
data (such as taking your blood pressure consistently at the same time of day), it is possible for
the operator to set a baseline for a particular participant. For example, if the participant is asked
to sit still and look at a boring video, then the automated system can use this measurement as a
baseline and scale future output of the machine learning algorithm up or down based on that
single set baseline. Similarly, a double baseline can be created by having each new participant
watch two different videos prior to use of the system. Whether single baseline or double baseline
is used, there is no additional training of the system, and no special knowledge by the operator is
needed. The novelty described in this research is the specific way baseline EEG data is used
within the optimal machine learning algorithm.

5. New signal analysis transformation technique using gradient features (GF) instead of

traditional Fourier or wavelet transform:

Most of the analysis in this research is performed using traditional frequency or wavelet
methods, but a third experimental method was desirable, both to see if improvements could be
made and to see if different methods agreed with each other with regard to participant
attentiveness. This third experimental method called Gradient Features (GF). Motivated by
control theory— signals and systems have been modeled using difference equations, or gradients.
GF seeks to expand upon this and identify features of gradients, just as Discrete Wavelet
Transform (DWT) identifies features of approximation coefficients. Before DWT data can be
used as input to a classification algorithm, a series of coefficients must be converted into a
handful of descriptive features. These may include Power, Mean, Median, Max, Min, Slope,
Entropy, and others. In addition, DWT methods frequently use pre-filtering to divide the signal

into bands prior to wavelet transformation. GF removes the need for DWT transformations, and



the pre-filtering, and instead finds these same descriptive features about the raw amplitude over
time data. GF then repeats this process over successive partial derivatives of that same raw data.
This lends itself to features which are also computationally simple to extract and making it
simpler to deploy on an embedded processing system — which may not have the multiplication
speeds of a desktop CPU. Although modern CPU’s calculate multiplications as quickly as
addition and subtraction, this is not the case for simpler and less expensive embedded processors
— which may benefit from such an algorithm, and can keep costs down if the solution is to be
deployed to many students. Future research is suggested towards the optimization of GF to the
development of this and other biometric devices.

6. Pseudo-Audio to hear EEG simultaneously with Short Training Video

By overlaying an audio signal that indicated attentiveness on top of the training video, an
operator would find it easier to spot which portions of the short training video elicit the most
attentiveness. Another benefit of pseudo-audio is that the audio playback can include actual EEG
data, so the operator can listen to the EEG, or even the extracted features of the EEG. Automated
classification systems for biometric data are complex and highly dependent on the signal analysis
and feature extraction methods presented to the machine learning algorithms. These methods
often seek to remove noise, but may also remove other important information. It is often not
possible to visualize on a two dimensional display the details of these features with enough
clarity for an operator to determine if they contain sufficient information for the machine
learning algorithm to classify correctly. It is possible to perform inverse transforms on the
feature data and thereby re-create a semblance of the original signal, which can be used by the
operator to determine if sufficient information remains to manually categorize the signal. The

novelty arises from the idea that it may be simpler for an untrained operator to use audio



feedback, rather than visual, to hear the differences between different categories of EEG signals.
Since EEG has several bands that are below the threshold of hearing, it is possible to speed up
the EEG signal so operator can hear it. This can be superimposed on the short training video,
which also plays faster, but can be easily followed by the user. The user can then clearly hear
when the EEG changes due to specific events (such as modeling, where the teacher demonstrates
a hands-on exercise). The method is simple and powerful, and might possibly be extensible to
other biometric applications where visualization does not provide sufficient access and
comprehension of the data.

7. Method of Selecting Mother Wavelets and Decomposition Levels

A rule of thumb in selecting the correct mother wavelet for a particular feature extraction
exercise is to choose a mother wavelet whose shape is closest to the signal desired to be
identified. The wavelet transform is essentially a cross correlation of the mother wavelet (at
different scales) and the signal in question, so a good measure when comparing mother wavelet
shapes would be a comparison of maximal values across different shifts and scales. This method
is essentially a brute force method, simply trying a large number of combinations of mother
wavelets and scales (decomposition levels) on the raw data and seeing which one has the highest
maximum value across all time shifts. Critical to this novel method is the use of the same pre-
processing algorithms as will be used in the automated system in question. The values are
compared, and then the largest is selected to use in comparing wavelets, and decomposition
levels for various EEG bands. The method is then validated against the complete system to see

that it does indeed provide more accurate results than other wavelet parameters.



CHAPTER 1 Introduction

The dissertation is organized to describe the research and newly developed system and
method which use electroencephalograms (EEG) as an input to an automated system that
measures indicators of a participant’s attentiveness while they are watching a short training
video. Important due to the increased use of distance and self-learning methods, the research
takes advantage of recent advances in EEG hardware and methods, and improves upon them to
provide a valuable engineering solution to a timely educational need. The bulk of the research is
focused on signal analysis of EEG for this application, although other areas are equally important
to describe this complex problem. The document first provides an extensive background of the
state of the art. This is then followed by a detailed methodology description and results analysis,
as well as conclusions and suggestions for further investigation.

The background section of this document begins with a description of related research in
the areas of training videos and the definition of attentiveness used in this research. The section
then goes on to describe the many applications of EEG towards the classification of mental state
currently being investigated by researchers around the world. Most importantly, the background
section of the document compares in great detail the existing signal analysis and feature
extraction methods used on EEG, and also the methods and number of participants used in
related research. Finally, the background section explains the validation methods currently used
in EEG mental state research. Throughout the section, tabular comparisons illustrate the variety
of systems and methods employed today, including the different EEG sensor positioning, noise
decontamination, windowing, frequency banding, number of participants, and accuracy

validation algorithms.
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The methods section of this dissertation described the experiment itself, as well as some
of the subject selection details, since the use of human participants is required. Once the
experimental procedure is described, the signal analysis methods are detailed, including a variety
of novel methods. Signal analysis descriptions include noise decontamination, windowing, and
transformation details for the solution. Machine learning and validation methods are also
detailed.

Results are then presented along with analysis comparing quantitative and qualitative
data. Also described are ensemble averages of attentiveness measures across all participants, and
individual participant attentiveness graphs, which are also qualitatively triangulated with
questionnaire responses and observation notes.

The results demonstrate that the developed system is suitable for use in real world
situations outside of the laboratory. Conclusions and future areas of investigation are also

provided.
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CHAPTER 2 Background and Literature Review

2.1 Purpose and Overview

The motivation of for this research rests on both the ongoing need to improve educational
multimedia content for distance learning and computer based training, as well as the
opportunities presented by engineering advances in EEG signal analysis. Recent advances in
EEG signal analysis have demonstrated that this biometric signal, traditionally used to detect
sleep patterns and seizures, can be extended to provide measures of affective or emotional state.
This research builds upon those signal analysis methods to extend these for practical use in
measurement of attentiveness towards short training videos. Hardware advances in EEG have
also made the physical devices lightweight, wireless, and easy to attach to the scalp without
sacrificing application specific effectiveness. This research has used these recent advanced in
EEG hardware and used them to gather extensive data. Finally, the research has developed
several novel techniques and incorporated them into a system and method providing signal
processing of EEG for the detection of attentiveness towards short training videos. To understand
the research and its results, a background understanding of the prior state of the art is needed.
This chapter seeks to provide this background information and describe the current state of the
art prior to this research.

The area of study covers a wide number of research areas, and as such, this review of the
existing body of literature requires a system of organization that will allow for an understanding
of how the topics fit together, and where prior studies set the foundation for this research. A
diagram outlining the organization of this review of related work is shown in Figure 1. Using this

structure of organization existing research can be compared and contrasted, and also inter-
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disciplinary research can be brought together in an orderly manner for the purposes of describing
the background of this research.
These inter-disciplinary topics include:

Attentiveness towards short training videos

EEG for the classification of mental state

Signal processing of EEG data

Pattern Matching / Machine Learning / Classification algorithms

Validation techniques used to gauge effectiveness of methods and algorithms

A review of self-paced asynchronously delivered training via video is discussed. Existing
research on the use of EEG biometric measurements for the detection of attentiveness and other
similar applications is also examined. Furthermore, a variety of described techniques are
examined in the areas of pre-processing related to EEG analysis, for the specific purpose of
feature extraction. Pattern matching algorithms are needed for the machine learning to classify
the extracted features into categories of attentiveness and non-attentiveness. Finally, a variety of
techniques that have been employed to validate methods and algorithms for automated EEG
analysis are examined. Therefore, this background chapter examines all of these disciplines of

research, as shown in Figure 1.
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2.2 Training Videos

This section provides a brief review of training videos. An overview of recent research
into the use of training video podcasts by students is provided. The section then concludes by
covering Intelligent Tutoring Systems (ITS) which use videos and attempt to engage students
into a more active learning method, even to the point of trying to detect the student’s emotion

and adjust the training accordingly.

2.2.1 Training Video Podcasts
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As distance learning and computer based training become more popular, published
research in this area has increased. Researchers (Bakera, et al. 2010) explain that many factors
can impact how well computer based training is received. The format of the lesson can greatly
change how actively the student is engaged, as well as many other factors including culture, age,
personality, and gender factors, and also the context (e.g., day before an important exam) and
subject preference (such as if one student likes history more than algebra).

The delivery of computer based training through the use of videos is of great interest.
Considerable investigation and experimentation has been conducted on video training. (Kay
2012) presents an extensive overview of current research into training videos which are
sometimes called podcasts (after a popular publication method of the same name). It was shown
that students choose to use podcasts because of improvement and control of their learning, as
well as catching up on missed lectures. Research also indicates that these video podcasts are
emotionally enjoyable to the students, as well as being satisfying and motivating. (Kay 2012)
describes video podcast research as finding largely positive cognitive results, and unique benefits
such as convenience (e.g., choosing a time, location, access method), and ability to access
lectures from experts geographically far away. (Kay 2012) notes the positive impacts of video
podcasts on student behavior, including frequency of viewing and improvement of study habits
such as more independence, more self-reflection, more efficient test preparation, more reviewing
of material, and increased contact with academic staff. The research also shows that enhanced
podcasts like audio narrated slideshows led to improved multiple choice test results. Also, the
research demonstrated a positive correlation between the uses of worked example video

podcasts, which are clips designed to explain, articulate and assist students in learning how to
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solve specific problems, and test scores (Kay 2012) which further demonstrated that video
training and podcasts have a positive impact on learning.

(Freire, Lopes and Campos 2012) examined the complex ways in which e-learning
systems have evolved. Their paper discussed learning management systems, and not short
training videos specifically, but the discussed systems are meant to store, manage, and modify
such content as well as many other educational content materials. The authors concluded that
usability is an area of continuing importance and research, including aspects such as satisfaction,
user motivation, engagement, and interaction (involvement). In addition, the authors concluded
that there is a need to improve usability measurement tools, especially with regard to making
them quicker and more complete.

It is therefore evident that a timely and significant need exists for a system that can
measure the quality of educational materials, such as short training videos, and that such a

method should measure engagement, interest, and involvement.

2.2.2 ITS and Student’s Emotions

Besides simply measuring engagement, interest, and involvement; there is also a need to
gauge the affective emotional state of a student.

Research on the discussion of Intelligent Tutoring Systems (ITS) (Bakera, et al. 2010)
suggests that the Human-Computer Interface (HCI) of a Computer Based Training (CBT) system
should modify its behavior dynamically based on the current emotional state of the user. This
change in how the ITS behaves is in addition to the more traditional ITS dynamic modifications,
I.e., those based on identification and correction of student errors and other assessments. The
paper also described the considerable research examining the affective states of a user (i.e.,

emotions, moods, feelings) and the importance of measuring this to develop more effective, user-
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friendly applications. The authors go on to explain that this is due to a complex interplay
between cognition and emotion. When it comes to duration and impact of the affective state of
the user (Bakera, et al. 2010) the researchers conclude that boredom is one of the most persistent
emotions and therefore boredom is important to avoid since it is difficult to overcome, and yields
poorer learning results. This is because frustration and confusion, although not seemingly
“positive” emotional states, are quickly changed, and may not need ITS remediation, because
these emotional states can still end up yielding good learning results.

To conclude research has shown that video lessons and podcasts have been shown to
have a positive impact on learning as demonstrated through prior research. Also, in the case of
the video lesson, there exists a pressing need for systems that measure the engagement and
emotional state of the user which may be critical to the efficacy of the training. It is therefore of

interest to determine the attentiveness of a student towards a training video.

2.2.3 Attentiveness definition

For the purposes of this research, the affective state of the participant watching the short
training video is deemed to be attentive when the participant has a high positive affect, including
feelings of satisfaction, engagement, interest, and involvement. This definition of educational
attentiveness is not the only possible definition. The above definition is justified by related
research in similar applications such as in the research cited above, as well as other related
research in similar applications which are listed below in a brief chronological history,
supporting the above definition of attentiveness.

In (Watson, Clark and Tellegen 1988) the authors propose a brief and easy to administer

mood scale called the Positive and Negative Affect Schedule (PANAS), where the orthogonal

16



17

axes of emotion are “negative affect” and “positive affect” and high positive affect is associated
with terms such as high energy, full concentration, and pleasurable engagement.

In (Lester, Towns and Fitzgerald 1999) affect is explored not from the point of view of
the learner having an emotional response, but rather a computerized tutoring system having an
avatar that uses facial expressions and body movements to communicate an affective state to the
learner. With regard to the range of emotions expressed by the avatar, the researchers explained
“...because their role is primarily to facilitate positive learning experiences, only a critical subset
of the full range of emotive expression is useful for pedagogical agents. For example, they
should be able to exhibit body language that expresses joy and excitement when learners do well,
inquisitiveness for uncertain situations (such as when rhetorical questions are posed), and
disappointment when problem-solving progress is less than optimal.”

In (Kort, Reilly and Picard 2002) the authors defines a model of emotions and learning
that explains the emotional state of the learner as being in one of four quadrants, depending on
the positive or negative value on two axes. The first axis is “learning,” and the second axis is
“affect.” The positive side of the affect axis is associated with terms such as awe, satisfaction,
curiosity, and hopefulness.

In (Chalfoun, Chaffar and Frasson 2006) the researchers use machine learning to predict
a participant’s self-assessed emotion when presented with the results of a quiz and personality
test. The participant finds out the results, and then expresses their emotions by selecting one of
the following words: disappointment, distress, joy, relief, satisfaction or fear-confirmed.

In (D'Mello, Craig and Graesser 2009) researchers analyze the affective state of
participants while they are performing a learning task with a computerized natural language tutor

using both online and offline self-reports by participants as well as peers and trained judges
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observing facial features. Words that the study used in both self-reports and reports by observers

(and their definitions) include those shown in Table 1.

Affective state Definition

Boredom State of being weary and restless through lack of interest

Confusion Failure to differentiate similar or related ideas/ noticeable lack of understanding
Flow State of interest that results from involvement in an activity

Frustration Making vain or ineffectual efforts however vigorous; a deep chronic sense or state

of insecurity and dissatisfaction arising from unresolved problems or unfulfilled needs;
dissatisfaction or annoyance

Neutral No apparent emotion or feeling

Surprise Wonder or amazement, especially from the unexpected

Table 1 Affective state of participants as they use an ITS

It is useful to note that the aforementioned study found the Kappa of trained judges who
watch the facial expressions of the participants and code facial actions to provide affective
judgments was only 0.36.

Although Kappa is a conservative measure of agreement, it still shows that the affective
states of participants are difficult to judge even by those who are trained to do so. The

Mathematical definition of Kappa is shown in Equation 1.

__ Pr(a) — Pr(e)
T 1-Pr(e)

Equation 1 Kappa measure of agreement

Where Pr(a) is the relative observed agreement among raters, and Pr(e) is the
hypothetical probability of chance agreement, using the observed data to calculate the
probabilities of each observer randomly saying each category. If the raters are in complete
agreement then k = 1. If there is no agreement among the raters other than what would be
expected by chance, as defined by Pr(e), then « = 0.

In a later study on the same topic (D'Mello and Graesser 2012) the issue of disagreement
between trained judges is removed by having participants self-rate their affective state. In
(D'Mello and Graesser 2012), the definitions of affective state needed to be explained to the
untrained judges (the participants themselves) and the definitions were explained to the

participants using wording similar to before, as shown in Table 1.
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In (Heller, et al. 2010) the researchers attempt to dive deeper into the affective state of the
learner by gathering, in their own words, the definition of what they mean by “engagement in
courses” and “What makes a course engaging to you?” The learners in this study were male and
female freshman and sophomores in engineering, and the researchers were able to group the
responses into categories, as well as give specific wording terms that the students used. Some
notable popular categories and terms used include: active participation, hands on, faculty
enthusiasm and interest, discussion, interaction between faculty and students, as well as other
similar terms, and other less popular terms.

The aforementioned related research therefore supports the use of the definition for this
research of attentiveness towards short training videos as having a high positive affect including

feelings of satisfaction, engagement, interest, and involvement.

2.3 The use of EEG Data for the Classification of Mental State

The EEG is one of the most useful tools in clinical neurophysiology. EEGs are voltage
measurements of the scalp, representing the sum of synchronous postsynaptic potentials arising
from broad cerebral cortical areas and can be used for the identification of cerebral injuries or
disorders (Epstein 2012). Research also shows that EEG data can be used to recognize other
more subtle mental states. Although a very wide variety of applications are described, the
literature does not involve signal analysis of EEG data being specifically used to measure
attentiveness to short training videos. Nevertheless, the wide cross sections of published
applications that have been researched have laid the foundation for the current research to be

successful through refinement of the signal processing and pattern recognition techniques.
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2.3.1 Alertness or Vigilance

Alertness and vigilance mental states are well studied with regard to EEG data
correlation. The published research of (MacLean, Arnell and Cote 2012) shows how EEG data
from participants who are resting can later be used to predict how well they can perform during
fast paced target identification using “attentional blink” measures. (Goldfine, et al. 2011)
demonstrated that EEG analysis can reveal awareness in brain injured patients who are otherwise
unable to communicate, but who are asked to mentally imagine motor and spatial navigation
tasks. There has been research on using EEG to detect when someone is no longer alert enough
to safely operate a vehicle or maintain display vigilance (Wilson and Bracewell 2002). Another
example (Jung, et al. 1997) used EEG data to predict alertness as measured by lapses in auditory
and visual sonar detection by trained Navy participants. Human experts can also look at features
extracted from EEG data and tell if the participant is alert versus asleep or drowsy, as in the case
of (Subeasi, et al. 2005) where trained neurologists looked at the EEG recordings, and then picked

which EEG sequences clearly indicated alert, drowsy, or sleepy states of the subject.

2.3.2 Mental and Physical Activity

More detailed classification of mental activity through EEG has been researched (Khare,
et al. 2009) including differentiation between relaxed, imagining moving the right hand,
watching a figure being rotated (imagining it as well), trivial multiplication (i.e., 2x3), and non-
trivial multiplication (i.e., 49x78). Other mental tasks can be classified using EEG data
(Palaniappan 2006) to determine the mental activity of participants from a series of mental tasks
including geometric figure rotation, multiplication, writing a letter to a friend, visual counting,

and resting.

20



21

2.3.3 Emotional or Affective State
EEG data has been used to classify the emotion of the user (Chakraborty, et al. 2009) as

compared to their facial expression when watching emotion inducing movies, where 50
participants were shown 60 audio-visual clips, covering a range of six different emotions
(anxiety, disgust (anger), fear, happiness, sadness, and relaxation). Similarly in (Khosrowabadi,
et al. 2010) participants are presented with pictures and music to elicit four basic emotions of
calm, happy, sad and fear, and they are also questioned using a self-assessment manikin as to the
emotion they felt. The emotion is mapped onto a Valence-Arousal emotion plane and EEG data
is then measured to see if emotion can be detected. In (Murugappan 2011) EEG data are related
to emotional state by using five videos intended to elicit emotions (disgust, happy, fear, surprise
and neutral) as selected by a college student panel from 115 international standard emotional
clips. Separate participants wear EEG devices and the data is used to identify the emotion
elicited by the video clips. In a more recent study, (Uusberg, et al. 2013) examined how certain
frequencies like Alpha band (discussed below) of EEG activity may be more related to affective
emotional state than earlier thought. (Uusberg, et al. 2013) shows that the alpha band is present
in varying amounts depending on the affective stimulus (pictures from the International
Affective Picture System). It was found that the prevalence of details in the picture affected the
Alpha band, and as such cannot be discounted when comparing affective stimulation results.
Also it was found that aversive (powerfully unpleasant) images generated high Alpha power,
compared to rest and other images.

Some studies try to use EEG data to detect less dynamic mental states such as
personality, or pathologies such as mental disorders. In one study (S. Lee, B. Abibullaev and W.-
S. Kang, et al. 2010), children between the age of 10 and 13 years with Attention Deficit

Hyperactivity Disorder (ADHD) were assessed for mental retardation using the Korean
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Educational Development Institute’s Wechsler Intelligence Scale for Children. Afterwards EEG
data was collected. Participants were asked to relax, count, and perform mental tasks. The EEG
data was used to recognize if the child had only ADHD, or also had mental retardation. One
research paper (Ito, et al. 2010) demonstrated the ability to determine the personality of
participants by using EEG measurements. In the aforementioned study, EEG data was collected
while participants listened to music segments which they later rated as "Matches Mood", "Does
not match mood", and "Borderline” (Ito, et al. 2010). Separately, the personality score of the
participant is known from a 50 question exam (rating the person in the 5 areas of "Critical
parent”, "Nurturing parent”, "Adult”, "Free Child", and "Adapted Child".) The authors then
compared the false-detection accuracy of the EEG classification system of "mood matching™ to
the personality trait of the participant, and make the claim that that false-detection may be related
to the person’s personality (Ito, et al. 2010).

Even before the widespread use of EEG, there was an interest in the physiological and
anatomical structure of the human brain with relation to purchasing decision making. Termed
“Neuromarketing” in the seminal book of the same name (Renvoise and Morin 2007), the
authors foreshadowed modern medical signal analysis techniques applied to market studies.
Neuromarketing research includes such trials as (De Vico Fallani and al 2008) where EEG data
is used to predict whether a short advertisement video clip embedded within a television
documentary will be remembered or not several days after viewing.

EEG data has been used in some aspects of the education field. For example, (Rebolledo-
Mendez, et al. 2009) researchers described using EEG data while a student is taking an
examination. In this case, participants interact with a computerized avatar that asks multiple

choice questions. EEG attention rating from 0 to 100 is correlated with speed/accuracy of
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response and user self-described attentiveness levels. There was no student education or training
provided — only assessment - the questions were targeted at Computer Science, and participants
all were majors in computer science (and so should have been familiar with the answers to the
questions). In another research experiment (Crowley, et al. 2010) participants wearing an EEG
cap were asked to do an increasingly stressful (faster) Stroop Test. A Stroop test is an
intentionally cognitively demanding task that asks the participant to name the displayed color of
a conflicting display word. For example the participant is presented with the word “red” but it is
colored in a green font. Subsequently, people will unintentionally say “red” instead of the correct
response which is “green.” During each trial the speed was increased, while EEG was used to
register “dips in meditation” which suggests lower relaxedness. The same research paper
describes using the Tower of Hanoi problem (stacking different sized disks) was given to
participants three times in a row — the researchers explain that this problem appears difficult to
solve but once a participant learns the stacking algorithm it becomes easier to solve (Crowley, et
al. 2010). EEG data was able to show trends in lowered assessment stress. Another research
example that correlates educational assessment exercise stress to EEG data is (Mostow, Chang
and Nelson 2011) where easy and hard “reading for meaning” tasks assigned and EEG data
compared for adults and children. Yet another research study (Berka, et al. 2004) correlates EEG
data to mental states including alertness (simulation defending against incoming enemy planes),
cognitive task (response rate in identifying the number "5" out of digits presented), and memory
(recognizing memorized images).

Somewhat related to the current research, EEG data can also be used for the detection of
physical activity (not just mental activity). In (Nagashino, et al. 2002) EEG is used to

discriminate whether a participant in a relaxed state has their eyes open or closed, and in (Selvan
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and Srinivasan 1999) EEG data includes ocular artifacts [electrical signals from the muscles used
to move the eyeball] where in this case the goal is the removal of those artifacts (adaptive noise
canceller).

To conclude the review of related work on the use of EEG data to determine mental state,
prior research describes a wide variety of applications for this electrical engineering biometric
measurement. These include measurement of dynamic mental activity such as alertness, type of
mental task, memory of a television commercial and emotional state, as well as more static
mental aspects such as pathology [mental retardation, and ADHD] and even possibly personality.
The review of related work did not find published research suggesting that signal analysis of
EEG data has been used to measure attentiveness to short training videos. Nevertheless, the very
wide variety of applications described in the literature have paved the way for this research to
refine the signal analysis and pattern matching methods to extend the use of EEG to this new

application.

2.4 Signal Analysis and Feature Extraction of EEG Biometric Data

This section is the major focus of this background chapter and the research as a whole.
Signal analysis of EEG biometric data involves several steps which can be grouped into two
major areas. The first area involves the collection of EEG data, and the second area of
algorithmic procedures involves the conversion or transformation of EEG data into vectors that
will later be presented to an automated classification mechanism. Figure 2 shows these two
major areas diagrammed as two horizontal sequential processes, with the top row diagramming
the sequence required for the collection of EEG data, and the bottom row diagramming the

sequence of operations for transformation into vectors.
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Figure 2 Detail of the components of the Signal Analysis of EEG Data

2.4.1 Sensors, Hardware Filtering, and Sampling Rate

EEG sensor positioning is often referred to according to a standard positioning chart
(BIOPAC Systems 2011), often with the ground reference provided by the earlobe. Figure 3
shows a common EEG cap (left) as well as the International 10-20 system used to describe and
apply EEG electrodes to the human head. Application of the sensors is time consuming. Notice
the jar of electro gel and syringe applicator, the large number of electrodes that must each be
gelled and applied, and the extensive amount of cabling (movement of which can cause

unwanted noise to appear on the collected signals).

Figure 3 EEG cap and International 10-20 System (BIOPAC Systems 2011)

The selection of the sensor positions vary in the literature, although there seems to be a
predominance of two types of sensor positions — frontal only or multiple sites on the scalp. The
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frontal positions are frequently though not exclusively used for time varying analysis. The all-
over the head sensor positions involve a large number of sensor readings and are used if spatial
analysis is being performed. The following sections provide a review of related experiments that
document the sensor positions, pre-digitization filtering and sampling rate, and then the digital
signal processing algorithms used.

Some examples in literature where time varying signals are of interest and electrode
placement is described include (Chakraborty, et al. 2009) (Selvan and Srinivasan 1999) (Jung, et
al. 1997) (Ito, et al. 2010) (S. Lee, B. Abibullaev and W.-S. Kang, et al. 2010) (Rebolledo-
Mendez, et al. 2009) (Crowley, et al. 2010)and (Mostow, Chang and Nelson 2011). In
(Chakraborty, et al. 2009) where researchers look to classify emotions, EEG data from frontal
positions F3 and F4 are used. In (Selvan and Srinivasan 1999), where researchers are looking to
capture and filter out ocular movement artifacts, use EEG electrodes F7 (frontal) and T3
(temporal, or at the temple of the head above the ear) based on the assumption that ocular noise
is contained in this location. Additional electrodes are placed to collect electrooculography (e.g.,
eye movement) data to the left and right of eyes, and also above and below the right eye and the
participant is asked to blink or rotate eyes while being monitored with EEG. In (Jung, et al.
1997) where alertness is measured, EEG data from two scalp sites ("two midline sites, one
central (Cz) and the other midway between parietal and occipital sites (Pz/Oz), using 10-mm
gold-plated electrodes referenced to the right earlobe.”) are used. In (lIto, et al. 2010) where mood
is being researched, a simple EEG cap (earlobe referential and frontal Fpl) is used to collect
data. In (S. Lee, B. Abibullaev and W.-S. Kang, et al. 2010) where mental disorders are sought to

be classified, EEG data was collected from 2 frontal lobe points.
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Spatial analysis literature examples describing electrode placement include (De Vico
Fallani and al 2008) and (Murugappan 2011). In (De Vico Fallani and al 2008) researchers
examined a spatial network efficiency measure by examining 14 regions of interest (averaging
current magnitudes of dipoles in each region) manually segmented from the cortical model of
each subject (from MRI's). From this a spectral measure used to determine the directed
influences between any given pair of signals in a multivariate dataset. In (Murugappan 2011)
where emotional response was classified, participants wore a 64 electrode EEG cap and the data
was analyzed on a spatial basis by first taking the Surface Laplacian of individual electrodes and

their adjacent neighbors, where Surface Laplacian is defined in Equation 2.

Ng
1
Xsin(8) = Xo0) == Xi (0
i=1

Equation 2 Surface Laplacian

where Xsin is the Surface Laplacian at a given electrode n, and Ng is the number of
neighbor electrodes. Once this spatial analysis is complete, the remaining analysis described in
(Murugappan 2011) is similar to other discrete time signals (and transformations of discrete time

signals) described further below.

2.4.1.1 Justification of Use of Single Dry Electrode for This Research

Not all experiments are focused on collecting data from multiple locations on the head.
Some EEG measurement devices seek to avoid a bulky EEG cap, liquid gel conductive material
on the leads, and bundle of wires connecting the sensors to the digitization equipment. If the
participant is more concerned about cold gel-like sensation in their hair, and keeping still in a
chair because they are tethered to a big box, then they may not be focused on the experiment. For
this reason, some models of EEG hardware have dry contacts (not requiring wet conductive gel)

and wireless (not requiring cables tethering the user to the computer equipment) headsets. Figure
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4 shows one such device from NeuroSky, the “MindWave Mobile” (NeuroSky Co. Feb 11,
2012). Using a wireless headset means that the bandwidth of data transmission greatly limits the
number of sensors (as shown, there is only one forehead sensor measuring electrical potential
compared to the earlobe ground reference clip). The dry sensor theoretically does not have the
sensitivity of the wet sensor, although research described below shows this is not so much of a
disadvantage when measuring attentiveness — perhaps in part because this is one of the few
standard sensor positions that is not attenuated with hair, and has instead direct sensor to skin
contact. It should also be noted that even though the dry contact single sensor headset is less
obtrusive to the user, not requiring the application of cold wet gelatin, it is a device that must be
placed on the head similar to wearing a set of headphones.

Use of a single frontal lobe EEG electrode is commonly described in literature. In
(Frasson and Chalfoun 2010), the participant’s affective state while using an Intelligent Tutoring
System (ITS) is measured using a single frontal lobe EEG electrode with earlobe grounds
showing an accurate detection (82%) of affective state from the brainwaves. (Frasson and
Chalfoun 2010) was based on earlier work (Heraz and Frasson 2007) which also used the same
EEG sensor setup and revealed an ability to use brainwaves to accurately predict participant self-
assessed emotion according to the Self-Assessment Manikin (SAM) scale. (Belle, Hobson
Hargraves and Najarian 2012) also uses only a frontal electrode (two electrodes are used,
however the difference in voltage between the two is used as the only single EEG data stream
over time) to achieve an 85.7 percent accuracy in identifying if the participant is watching an
interesting video versus an uninteresting video. In (Chakraborty, et al. 2009), the single electrode

is placed at F3 or F4 alternatively in an experiment that also collected facial expressions when
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watching emotion inducing videos, revealing that noisy correlated EEG-facial expression data
could also be correctly recovered in as high as 95.2 percent of cases.

Recent research has set the precedent for use of a dry electrode in similar applications.
Described is the use of a single electrode in the frontal position, this time without the use of wet
conductive gel, specifically the MindSet EEG data collection headset made by manufacturer
NeuroSky. In (Rebolledo-Mendez, et al. 2009), the same make and model of EEG data collection
device as used in this experiment, showed a positive correlation between EEG data and
participant self-reported attention during an experiment where the participant interacts with a
computer generated three-dimensional avatar. Also using the same make and model of EEG data
collection equipment is (Crowley, et al. 2010), where 78% of the time the brain wave data
accurately identified the participant’s self-categorization of category of affective state during an
experiment which presented increasingly stressful mental challenges to the participant. (Mostow,
Chang and Nelson 2011) also used the same device to predict with accuracy levels significantly
better than chance whether or not the participant was reading an easy or a hard sentence. Studies
also show the effectiveness of dry electrodes at various positions on the scalp (Gargiulo, et al.
2010) showing the signal recorded by a dry electrode is almost identical to that recorded by

standard wet electrode EEG sensors.
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Figure 4 The MindWave Mobile from NeuroSky (Corporation Feb 11, 2012)

This research uses a single dry frontal electrode for the capture of EEG data, a reasonable

EEG data collection method justified by the related research in similar applications.

2.4.1.2 Overview of different EEG sensor positions in Prior Research

Table 15 in Appendix A summarizes the different EEG sensor positioning methods

selected by researchers.

2.4.1.3 Digitization Hardware

Besides sensor location, EEG data collection hardware also plays a role in the EEG signal
that is examined. Digitization of the time varying data is accomplished using equipment such as
the Biopac MP 150 (Figure 5) data acquisition system. With this equipment, the signal
conditioning and filtering is already accomplished before digitization along with modifiable
configuration settings (BIOPAC Systems 2011). The same functions are performed with the
hardware used in this research (NeuroSky Co. Feb 11, 2012). Figure 6 shows the configuration
settings available on the hardware used for this research, including output baud rate, power up

data content, and notch filter setting (60 Hz for United States use products).
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Figure 6 The TGAM1 board from NeuroSky showing the configuration pad outlined in red.

Before the data can be analyzed, it must be converted for storage on a digital computer.
Some literature mentions the details of the parameters used for that conversion (pre-digitization
filtering and sampling rate) and these parameters are briefly discussed below.

Filtering prior to digitization is performed to avoid sample aliasing by removing high
frequency signals that would violate the Nyquist rate, which dictates that the sampling rate be
twice the highest frequency contained in the EEG signal. Pre-digitization filtering is mentioned
in (Subasi, et al. 2005) where band pass filters between 0.3 Hz and 70 Hz are used prior to
digitization, and (Khosrowabadi, et al. 2010) mentions pre-filtering in the 2 Hz to 30 Hz range.

The user manual for the Biopac hardware (BIOPAC Systems 2011) discussed optional settings
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including band pass between 0.1 Hz and 100 Hz, or band pass between 0.5 Hz and 35 Hz, with
high pass and low pass filters available at those high and low frequencies respectively.
Attentiveness is often associated with Beta wave and lower frequency activity, ranging up to 30
Hz (NeuroSky Co. Feb 11, 2012) and so the setting of pre-filtering in that range is supported.
Digitization sampling rate is mentioned in (Gwin, et al. 2010) at 512 Hz, (Nagashino, et
al. 2002) at 200 Hz, (Khosrowabadi, et al. 2010) at 250 Hz, (S. Lee, B. Abibullaev and W.-S.
Kang, et al. 2010)at 22.5 Hz, (Murugappan 2011) at 256 Hz, and (Mostow, Chang and Nelson
2011) at 512 Hz. The B-Alert software that comes with the Biopac hardware (BIOPAC Systems
2011) intended to detect the alertness of the participant, suggests a sampling rate of 256 Hz,
which is consistent with the frequency of sampling needed to calculate band power accurately in
the frequency ranges needed. Note also in the wavelet discussion below, there is a calculation

simplification that arises by having a sampling rate a power of 2.

2.4.2 Decontamination of the Data

Traditionally studies have used extensive decontamination and removal of unwanted data
from EEG including removal of ocular artifacts, power line signals, and spurious signals
occurring from the movement of the sensors. These are signal contaminators in a normal EEG
signal, and may require manual or automated removal. For example, the B-Alert system (Berka,
et al. 2004) which samples EEG data at 256 Hz, first performs removal of artifacts caused by
bumping or tapping of the sensors by searching for 3, 5, or 7 point data spikes with amplitudes
greater than a threshold (40 mV in this case), as well as signals with amplifier saturation

(maximum or minimum values of the digitizer) and excursions that occur before and after
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saturations. These are all removed by searching for the first zero crossings before and after these
spurious signals, and replacing all data values between them with 0 u V values. After this, a 60
Hz notch filter is used to remove power line signals (the experimental equipment and
environment is exposed to these power current frequencies). Removal of ocular artifacts
(blinking of the eyes) is more complex. In (Berka, et al. 2004) the EEG signal is passed through
a 7 Hz low pass filter and then applying cross-correlation analysis to the filtered signal using the
positive half of a 40 p V 1.33 Hz sine wave as the target shape, and applying thresholds to the
outputs of the cross-correlation analysis. Cross-correlation analysis is similar to convolution,
except neither of the signals is reversed in time, as in Equation 3.

(E x PS)[n] = Ysne—o E[M]PS[n + m]

Equation 3 Discrete Time Cross Correlation

E is the filtered EEG signal, and PS is the half-wave rectified sine wave. Once the start
and endpoints of blink signals are identified (using minima and maxima analysis in each
direction from the point of maximum cross-correlation) the blink signal is removed by replacing
that segment of the EEG signal. Maxima and minima analysis is performed by looking for zero
first derivatives, or in the digital sampled case, minimum difference between samples. Figure 7
and Figure 8 graphically depict a recreation of the process described in (Berka, et al. 2004)
except using EEG data collected using the NeuroSky hardware (the single dry sensor on the

forehead and earlobe ground samples at 512 Hz).
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Figure 7 Raw EEG data sampled at 512 Hz showing possible areas of noise contamination

Figure 7 shows some of these possible areas targeted for decontamination. The sensor
movement decontamination would be identified by the large amplitude of the signal, and
replaced by zeroes. The removal of ocular artifacts requires cross-correlation and is graphically
shown below in Figure 8, which shows, from left to right, a segment of the EEG with possible
ocular artifacts, a one period of a 1.33 Hz half wave rectified sinusoid, and finally the cross-
correlation of the two signals, showing identification of start and end of ocular artifacts (local
maxima on either side of large minima). The “blink” segment consists of samples 3000 through
5000 from the previous EEG signal. The use of the positive portion of a cosine centered on 0
(instead of causal sine with only positive values of samples n) would have more precisely

identified the blink ocular artifact.
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Figure 8 a) EEG signal with Ocular artifacts, b) one period of half-wave rectified sin(2n1.33) , and c) resulting

signal after cross correlation.

Extensive as the above described decontamination algorithm is, it is by no means the only
example in literature of EEG preprocessing. One simple method in (Jung, et al. 1997) used EEG
signals sampled at 312.5 Hz and a threshold function which removed epochs that contained
values beyond the £50 mV limit. The removal of the epochs was to remove both muscle and eye
movement artifacts. One algorithmically intensive method to remove ocular artifacts was
described in a research experiment dedicated to this task alone (Selvan and Srinivasan 1999) and
involved adaptive noise cancellation and adaptive signal processing using recurrent ANN.

A more complete comparison of various noise decontamination methods used on EEG
data is shown in Table 16 in Appendix A.

Noise decontamination methods fall into two broad categories — multi-sensor and single-
sensor. When multiple EEG sensor applications are needed, independent component analysis
(ICA) is a popular noise decontamination method. This research uses a single electrode, and so
that category of noise decontamination methods is of interest. Some of the most common single-
sensor noise decontamination methods include manual (visual) noise removal, averaging over
time, band pass filtering, and more sophisticated methods described above. Since the methods

vary in literature this research compares different noise removal methods.

2.4.3 Window Size, Overlap, Envelope, and Normalization
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Since EEG is a time varying signal and pattern recognition algorithms seek to classify
changes in that signal over time, it makes sense to label stretches of time (sometimes called
epochs or windows) with one or more classifications. If an algorithm were classifying train cars
as being an engine, passenger car, caboose, etc. — it would be straightforward to select start and
endpoints. When it comes to thought processes, however, there is a great deal that is not known
regarding what is the optimal window size for different applications. Indeed, a number of other
aspects regarding windowing vary from application to application as described in the literature,
and there is also little describing why the selection of one set of parameters over another was
chosen, or if it was optimal. Some of these parameters include the size of the window (in
samples or seconds), the overlapping of windows (which may also imply ambiguity of single
classification), and another aspect called the windowing envelope.

The windowing envelope is important because the simple act of taking an EEG signal
from one start point to one end point implies multiplication of the signal with a rectangular pulse
(being of magnitude 1 within the window, and magnitude 0 elsewhere). Multiplication in the
time domain implies convolution in the frequency domain, which may yield undesired ripples of
frequencies, unrelated to EEG data being investigated. Other window envelope functions exist,
such as a raised cosine (Hanning window). Equation 4 shows the formula for the Hanning

window, where w(n) is the Hanning window of size wsi,e Seconds for a given sampling rate f.

0 n<l1
n
1—cos 2*wsize*fs)>
w(n) = > 1<sn<Swge f;
I
k 0 n > Wgize * fs

Equation 4 Hanning Window
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The Hanning window produces much fewer and lower magnitude ripples, as can be seen

in Figure 9.
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Figure 9 Windowing Envelopes and their Frequency Spectrums

The use of different window parameters can vary greatly. Table 17 in Appendix A shows
some examples of the wide variety of windowing parameters described in the literature.

It is also useful to mention normalization at this point, although it reappears in the
discussion of machine learning, and in the area of dimensionality reduction. Normalization seeks
to remove apparently unimportant amplitude scale information that may otherwise complicate
machine learning and pattern recognition algorithms. For example, if the skin or other sensor
interface aspect varies from one participant to another, thereby changing the range of voltages
recorded by the EEG hardware, an algorithm may look to ignore that overall change, and instead
focus on other EEG aspects. For example in (Palaniappan 2006) each individual window was
magnitude normalized to values between -1 and 1, and in (Khosrowabadi, et al. 2010) the authors
describe normalizing the EEG data for each participant separately. Normalization is also

commonly used as a part of machine learning, either normalizing the min and max values of
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training samples, or normalizing their mean and standard deviations, and then recalling the
parameters used for this normalization for use on future, as yet unseen, testing examples. This
technique can also be used to normalize individual windows as in the case of (Jung, et al. 1997)
where the sample data is first converted to a logarithmic scale and then normalized at each
frequency separately by subtracting the session mean and dividing the result by half the
difference between the 25th and 75th percentiles of the log power distribution during the session,

without memory of the normalization parameters from the training for use the testing samples.

2.4.5 Transformation

Once the EEG data is stored on a computer (both in discrete time — sampling rate, and
discrete amplitude — number of bits or resolution), digital signal analysis can convert the signal
from a time domain into a more useful domain for analysis and feature extraction. This is done
without loss of information as long as certain criteria are met. For example, the Discrete Fourier
Transform (DFT), or FFT equivalently, algorithm, can convert a time domain signal into a
frequency domain signal. The FFT result yields the same complex valued results as the DFT,
except its calculation is optimized for the computer processor. As long as the limitations of
Nyquist sampling rate and sufficient resolution of digitization is met, then the digital sampling
and subsequent FFT can be accomplished without loss of information (i.e., can be calculated in
reverse to recreate the original signal exactly). Other transformations are discussed below.

Before EEG can be used to determine if a participant is paying attention to a video, an
extensive amount of signal processing is required, and the literature describes a wide variety of
methods to accomplish this. As discussed above EEG signals must be collected via sensors,
preprocessing and filtering must remove noise and distortion, and features important to the

application are extracted. Expert analysis of EEG data often groups the signals into frequency

38



39

bands and approximate frequency ranges: Delta Waves are 0 to 4 Hz, Theta Waves (also called
Theta Rhythms) are 4 to 7 Hz, Alpha Waves are 8 to 12 Hz, Beta Waves are 12 to 30 Hz, and
Gamma Waves are 25 to 100 Hz. It is worth noting that not all the literature is consistent in these
band frequencies. This may be attributable to nomenclature differences due to convenience, or to
the method of extracting the frequency information particular to that experiment, as is described
in more detail in Table 18 in Appendix A, which illustrates for comparative purposes, the
differences in the definition of Delta, Theta, Alpha, Beta, and Gamma EEG bands in the
literature.

Wavelet and frequency analysis feature extraction methods are popular signal analysis
methods (Nagashino, et al. 2002) (Lisetti and Nasoz 2004) (Subasi, et al. 2005) (Palaniappan
2006) (Ito, et al. 2010). The goal of the signal analysis and feature extraction is to create
exemplary data (good examples) of factors that define and distinguish the EEG data in terms of
what each example classifies. Experiments described in the literature describe methods to create
a compressed set of data where it is possible to point to a good example of the EEG features for

someone who has one mental (affective) state versus another.
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Feature extraction methods for EEG data in literature fall into three major categories:

e Conversion from the amplitude over time into a frequency and phase over time
(frequency transform analysis)

e Conversion from the amplitude over time into a scale and position over time
(wavelet transform analysis)

e Creation of a spatial-map of how the EEG voltages correlate or do not correlate
with each other as spread out over the many sensors placed on the surface of the
head.

Since the dry wireless EEG headsets in this research only use one frontal sensor, it is not
possible to use them to analyze spatial-map type feature extraction methods such as the “measure
of network efficiency” in (De Vico Fallani and al 2008) and finding the 30 most significant pairs
of EEG sensors based on their “mutual information” metric (Khosrowabadi, et al. 2010).
Nevertheless, these are of interest and may be useful in future research. It is worth noting that the
wavelet transform analysis is also concerned with extracting frequency information, described
later in the wavelet literature discussion.

Frequency analysis often refers to frequency bands. Banding is a common precedent in
the literature. For example (Khare, et al. 2009) discusses collecting FFT information in the Alpha
(8-13 Hz) band. (Chakraborty, et al. 2009) discusses using “peak and average” power in seven
bands between 0 and 32 Hz. (De Vico Fallani and al 2008) does not take frequency bands but
rather it does take the FFT and uses the phase information between different sensors. (Jung, et al.
1997) uses 81 frequency bands from 0.61 to 49.41 Hz. (Nagashino, et al. 2002) uses only time
domain information and then presents it to a time delay ANN (presenting ten consecutive 200
samples/sec collected EEG data) essentially training the classifier to act as a frequency analysis

method. (Palaniappan 2006) does not use FFT, and instead uses a bank of fifth order band-pass

filters to compute the power in each of the delta, theta, alpha, beta, and gamma bands. This
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implies that the frequency bands are allowed to overlap, due to the dB drop off of the filters. (lto,
et al. 2010) also uses average power spectrum, in this case at 1 Hz intervals from 4 to 22 Hz.
Wavelet transform analysis differs from frequency transform analysis in that frequency
transforms convert the amplitude over time data into frequency and phase information whereas
Wavelet transforms convert the amplitude over time data into shift and scale information.
Nevertheless, the literature suggests using wavelet transform analysis for the purposes of
deriving frequency power information. For example, (Subasi, et al. 2005)discussed using
Discrete Wavelet Transforms (DWT) to divide the EEG data into four sub-bands (alpha, beta,
theta, and delta). Similarly, (S. Lee, B. Abibullaev and W.-S. Kang, et al. 2010) states that DWT
was used to compute the “power spectrum features of EEG for each frequency band (alpha, beta,

and theta).” A brief description of the DWT can help to explain this seeming contradiction.
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Figure 10 Mallat technique for DWT (Najarian and Splinter 2012)

In Figure 10, the filters h(k) and g(k) are chosen based on the desired wavelet function.
The diagram shows a DWT of scale = 2. Notice also that in each step in the scale the algorithm
creates a set of approximation coefficients (a,c) and detail coefficients (d.c). If the algorithm
continues to an nth scale DWT, it will end up with n detail coefficient sets, and n approximation

coefficient sets. The size of the sets will be 1/2n, where n is the scale of the coefficients.
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The rationale for the use of the DWT for the purposes of frequency band power data
computation is perhaps best explained in (Murugappan 2011). Here the paper explains that since
the EEG was sampled at 256 Hz, and then the DWT was taken five times, it therefore yielded
“D1 (64-128 Hz Noise), D2 32-64 Hz Gamma, D3 16-32 Hz Beta, D4 8-16 Hz Alpha, D5 4-8 Hz
Delta, and A5 0-4 Hz Theta.” The paper (Murugappan 2011) shows this visually in Figure 11
which details the frequencies for each level in tabular form, showing how different levels of
DWT decomposition represent different EEG bands (table is applicable only when the EEG data
is sampled at 256 Hz, however a similar band decomposition can be accomplished with other
sampling rates that are multiples of powers of two). (Subasi, et al. 2005) explained this using the
formula for “pseudo-frequency” which they defined as Fa = (Fc * Fs) / a, where Fs is the
sampling frequency, a is the scale of the DWT, and Fc is the “center frequency or dominant
frequency of a wavelet in Hz, defined as the frequency with the highest amplitude in the Fourier
transform of the wavelet function.” In this article, they use the Daubechies order 2 wavelet

function, using simply the fifth scale coefficients.

Frequency Decomposition Irequency Frequency
Range Level Bands Bandwidth
(Hz) (Hz)
0-4 AS Theta 4
4-8 D5 Delta 4
g—16 D4 Alpha 8
16 —32 D3 Beta 16
32 -064 D2 (ama 32
64 - 128 D1 Noises 64

Figure 11 Mapping of DWT decomposition levels to EEG bands (Murugappan 2011)

Use of these coefficients involves an additional step, that of some statistical measure of

those coefficients. For example, in (Murugappan 2011), the D1 coefficients do indeed represent
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the frequencies from 64 to 128 Hz, but the coefficients themselves are simply a sequence of
values. They are extremely phase dependent (i.e. if the EEG data were collected a few
milliseconds later, the coefficients would be different) and cannot therefore be used as a feature
for input to a machine learning algorithm. Another step must be taken with these coefficients to
analyze them and create one or more real numbers (statistical measures) that categorize
important features regarding these coefficients. Some of the statistical measures described in the
literature include variance, standard deviation, power, entropy (Murugappan 2011), power
spectral density (which is equivalent to variance if the mean of the original signal is 0) (S. Lee,
B. Abibullaev and W.-S. Kang, et al. 2010), and other non-defined sub-band frequency (Subasi,
et al. 2005). For example, if the wavelet decomposition were to be done to the fifth level, then
the original signal can be constructed using the wavelet coefficients A5, D5, D4, D3, D2, and D1
— so any of the statistical measures can be used on any of these six coefficient sets.

This concludes the review of related work of signal analysis and feature extraction of
EEG biometric data. The literature describes common sensor and digitization settings for
alertness measure, but variations exist. For individual sensor EEG data, the use of either
frequency band or wavelet parameter data is supported for the creation of a feature vector from
the time varying data. Other techniques exist for multiple simultaneous sensor measurements
(spatial-temporal analysis). In all of these cases, signal analysis and feature extraction of EEG
biometric data is created for the purpose of using the result as an input into a machine learning
algorithm.

It is worth noting that one of the primary reasons for converting from the time domain to
another domain is to find features that are useful for the classification problem at hand. The

brain, for example, can understand the meaning of a spoken word, whether or not the time when
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the word is spoken has been shifted one way or another by a few seconds. For Machine Learning
algorithms to do this, on common processors with limited parallelism, would be computationally
prohibitive. For this reason the transformation algorithm is used to convert similar signals,
differing only by shift, to be made similar. So essentially, instead of creating a machine learning
system which can recognize signals shifted by every increment of time possible, one can simply
convolve the EEG signal EEG(t) with a transformation signal Trans(t) as in Equation 5 or cross
correlate the signal as in Equation 6 (these are equivalent in the aforementioned examples since
the transformation signal is symmetrical/even) with a sine wave or a wavelet and present the

resulting magnitude data to the machine learning algorithm.

t
f EEG(t)Trans(t — s)ds, 0<t<ow
0

Equation 5 Convolution with Transforming Signal

t
f EEG(t)Trans(t + s)ds, 0<t<o
0
Equation 6 Cross Correlation with Transforming Signal
In this way, it is possible remove information that is not important to the classification
algorithm at hand. The next section will continue the discussion of discarding unimportant data,

in the form of dimensionality reduction.

2.4.6 Dimensionality Reduction and Optimal Feature Extraction

As discussed in the previous section, the EEG signal has been transformed into a more
convenient form, from the time domain into the frequency/phase domain of the Fourier transform
or the scale/shift domain of the wavelet transform. In that discussion it was also noted that some

dimensionality reduction took place.
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Dimensionality reduction is important for several reasons. First, it greatly reduces
computation time for the machine learning algorithms that follow. Second, it helps to avoid the
“curse of dimensionality” (discussed further in the next section) which causes over-fitting of
training data reducing the generality of the resultant machine learning algorithm. Finally,
dimensionality reduction is a means of looking only at the data which is common across many
participants and is relevant or common to all those instances in identifying the feature of
importance (such as attentiveness), hence for feature extraction. Dimensionality reduction is
common in many machine learning implementations, and may include application specific
methods, such as banding or Principal Component Analysis (PCA).

PCA is a common dimensionality reduction method which requires samples of data
(training data) and once the transformation matrix is calculated, it must accompany the classifier
so it can be applied to all new incoming data. PCA does not use any information about the
desired workings of the machine learning algorithm, nor the application in question. PCA simply
searches for directions in the data that have largest variance and subsequently project the data
onto it. (Welling 2012) Another method similar to PCA which seeks to address the classification
issue at hand is Fischer Discriminant analysis. Fischer Discriminant analysis seeks to add to
PCA, using classification information in the calculation of an optimal linear separation of the
data. The Fischer Discriminant seeks to find a linear separation of the data that maximizes the
ratio of scatter of inter class data divided by the ratio of scatter of intra class data. (Welling 2012)
It is therefore theoretically possible to use the Fischer Discriminant formula (the ratio of inter
class scatter over intra class scatter) as the algorithm with which to compare feature extraction

methodologies.
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The Fischer Discriminant normally seeks to find a linearly transforming matrix, w, which

maximizes the Equation 7

Jw) =wlSyw/wi'Sy,w
Equation 7 Fischer Discriminant

Since there is no need to look for an optimal w, the formula simplifies to Equation 8

F =Sg/Sw
Equation 8 Simplified Discriminant

Where Sg and Syy are defined as the “between classes scatter matrix” and the “within
classes scatter matrix” respectively (Welling 2012). Another way of looking at this is using the
Davies-Bouldin index which is simply the reciprocal of the proposed Fischer Discriminant
Metric F, and also assumes the classifier will use a Euclidean Distance measure of some sort.

When there are only two classes, Sg can be calculated as the square of the difference of
the means and Sy is calculated as the sum of the within class variances. The scalar value F,
which is the ratio of these two scatter matrices, can be used as the Fischer Discriminant Measure
for a given feature extraction method.

One example in the literature is (S. Lee, B. Abibullaev and W.-S. Kang, et al. 2010)
where a number of wavelet transforms were used and visually compared the fifth level
decomposition coefficients of Bior3.1, Sym7, Db4, and Coif5; although an analytic (numerically
on its own) comparison was not provided, the paper did compare the feature extraction method in
terms of overall system performance. Also important is the work done in (Murugappan 2011)
which compared feature extraction methods, largely as part of how they performed as part of the
overall system. This paper is important because it discusses an interesting hypothesis of the

importance of non-linearity. (Murugappan 2011) notices that the “Entropy” metric seems to be
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one of the better ones to use and the authors go on to hypothesize that this is because it
“...captures the nonlinearity of the EEG signals over different emotions [better] than other
statistical features.”

Without a complete understanding of the physical brain neuron-firing mechanisms related
to when someone is attentive towards a short training video, it would be difficult to make any
definitive conclusions as to why linear comparison of feature extraction methods might not
reveal the one that will work best in the classifier. Nevertheless, it is well understood that the
ANN classifier does allow non-linear pattern recognition. It could be that the ANN is able to
solve this pattern recognition problem because it can handle non-linear combinations of input
data. Therefore, a purely linear comparison of feature extraction methods might not find the one
method that contains the data needed to solve the classification problem the best.

If indeed, linear methods of comparing feature extraction methods are not revealing the
best method for feature extraction, then this may imply that common linear methods for
dimensionality reduction may flawed. For example PCA is frequently used to reduce a large
feature vector down to a smaller dimensionality, such as in (Khare, et al. 2009) and
(Chakraborty, et al. 2009). PCA makes assumptions about the ability to find an optimal matrix
that is multiplied by the input data. This linear operation, similar to the category using Fischer
Discriminant, is by definition taking a linear combination of the total set of data to create a
reduced set of data (discarding information). Similarly, the banding methods described in the
previous section use linear combinations of adjacent frequency power values to combine them

into a single band power value.
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If an engineer is looking to reduce the amount of data while minimally impacting
classification accuracy, these linear methods may not offer the best solution. It may instead be
that linear methods of dimensionality reduction do not yield the best classification accuracy.

In conclusion, dimensionality reduction is important to speed computation, help the
machine learning algorithm avoid over-fitting, and extract a subset of the features that are
important for the application. Another purpose of dimensionality reduction is to help increase the
generalizing abilities of the solution by removing those features that distinguish between
participants rather than their mental state. The literature describes several methods of
dimensionality reduction including using power (throwing away phase information), grouping
frequencies into bands, PCA (Khare, et al. 2009), (Chakraborty, et al. 2009), and converting
wavelet coefficients into statistical measures such as entropy and standard deviation

(Murugappan 2011).

2.5 Automated Pattern Recognition (Machine Learning Classification

Algorithms) of Biometric Data

Even though researchers may have good examples of the data they are looking for, and
even though they can extract numerical features from those examples, researchers must also still
implement a classification algorithm. Classification algorithms are used to classify the observed
signal being a member of one or more categories. (Rumelhart, Widrow and Lehr 1994) Artificial
Neural Networks (ANN) have been successfully deployed to perform such tasks as detecting
driver sleepiness (Sandberg, et al. 2010) (Hayashi, et al. 2005), and basic statistical analysis tasks
such as principal feature classification (Li and Tufts 1997). Other classification algorithms

described in the literature include k Nearest Neighbor (KNN) and Support Vector Machines
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(SVM). Before going into the detailed review of related work, a brief discussion about training
terminology and the ANN follows.

Why is an iterative algorithm that requires training needed in order to perform
classification? Why not simply mathematically solve for some conversion formula that takes the
input feature vectors and converts them to the desired output (1 for “attentive” and -1 for “not-
attentive”)? Certainly if a group of exemplary (great examples of) feature vectors P is provided
where each column of matrix P was a single vector, and it is multiplied by some linear

transformation matrix W, it would be desirable to see that it yields a target vector T which is a

29 <6 29 ¢¢

single column of “correct answers” (1, -1, 1... “attentive,” “not-attentive,” “attentive”...) for the
associated input vector. W must be found such that T = WP. The error of such a system must be
as small as possible, so for example, by minimizing the following error function |E|* =|T-WP*.
(Hobson-Hargaves 2011) describes that if one could find the inverse of matrix P then the
problem is simple. Simply let W = TP™ and then |E|* will equal 0. The problem finding the
inverse of matrix P requires having a square matrix of great examples of feature vectors (which
may not be the case) and also that the mapping from P to T is linear (which also may not be the
case). To solve the linearity assumption, one can use non-linear functions between steps in our
algorithm (called “transfer functions” of the ANN layers). To minimize error without the benefit
of an inverse matrix, the ANN training methods use iterative training techniques to step by step
reduce the error, approaching a solution. The biggest problem with iterative training techniques
is that in reducing error the algorithm can “over-fit” or find a solution that only works for the
training examples, but works poorly on never before seen examples. This can be exacerbated by

having large amounts of data in the form of feature dimensions. The methods described in the

literature account for this by using some techniques briefly described here.
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(Rumelhart, Widrow and Lehr 1994) ANN programming techniques have evolved over
the years, attempting to overcome hurdles in reliable training of the ANN to perform pattern
recognition based on example sets. One reliable training method based on multilayer perceptron
like devices is known as the back-propagation learning algorithm. The back-propagation
learning procedure connects the set of hidden units, to a set of output units, and this input/output
pair is called the training set. A target output and an actual output are evaluated using the error
correction learning procedure, which in turn leads to measuring the performance and then
optimize it, which minimizes the error function.

So looking across the literature, (Rumelhart, Widrow and Lehr 1994) gives an excellent
description of ANN types and (Li and Tufts 1997) gives a good example of using an ANN with a
winner take all algorithm. Other research (Sandberg, et al. 2010) describes an ANN for EEG data
classification that has 3 layers and a single output neuron with 3 or so hidden neurons, and
sigmoid activation function (from 0 to 1) to classify driver sleepiness. In yet another experiment
(Hayashi, et al. 2005) a 3 layer ANN (6 input nodes, 3 hidden layer nodes, and one output node)
is used for each driver. EEG is not used in this experiment (Hayashi, et al. 2005) but instead,
Pulse Wave and Steering data were used to detect drowsiness.

There are a number of good examples in literature where an ANN is used specifically in
the classification of EEG data. In (Wilson and Bracewell 2002) where the goal is to detect when
someone is no longer alert enough to safely operate a vehicle of maintain display vigilance using
EEG data, classification is performed using two sets of binary-output multilayer perceptrons. The
first set has one output neuron for every spectral band of interest (Alpha, Theta, K, and Delta).
Using a three layer ANN, these are trained using artificial data for spectral tuning. The second

set are provided with current and past spectral data (from the first set of ANN) to classify into
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one of seven alertness levels. In (Khare, et al. 2009) the researchers want to use EEG data to
classify mental state (e.g., relaxed, imagine moving your right hand, watching a figure being
rotated, trivial multiplication, and non-trivial multiplication). The classification algorithm used in
(Khare, et al. 2009) two layer feed-forward ANN with 16 inputs, 10 hidden, and one output
neuron for each mental task trained to output a O for relaxed and 1 for the particular mental task.
In (Chakraborty, et al. 2009) EEG data is used to predict the user's facial expression (e.g.
anxiety, disgust, fear, happiness, sadness, and relaxation). The classification algorithm used was
an ANN learning algorithm with momentum for training the EEG-facial/voice features to the
network. After training the ANN is used for mapping EEG space to facial expression space so
that given an unknown EEG vector the features of facial expression can be determined by using
the ANN. It is worthwhile to note that in this experiment (Chakraborty, et al. 2009) PCA was
used on the EEG data to reduce down to a 50 dimensional vector prior to presentation to ANN
for correlation to facial data. In (Selvan and Srinivasan 1999) researchers sought to use EEG data
including ocular artifacts is used to train an ANN for the purpose of removal of the ocular
artifacts (adaptive noise canceller). A recurrent ANN was used to implement the adaptive noise
canceller. "To compare its performance, adaptive noise canceller and a cascaded connection of
adaptive noise canceller and adaptive signal enhancer are employed. Recurrent ANN using the
real-time recurrent learning algorithm (RTRL) is employed for realizing all the [aforementioned]
systems." In (Jung, et al. 1997) EEG data is used to predict a participant's alertness and the
classifier employed is Back Propagation ANN.

In (Nagashino, et al. 2002) the ANN is trained with 10 input neurons (or more, but
without further reduction in error), 30 hidden neurons, and 1 output neuron indicating whether

the eyes are open or closed. In (Subasi, et al. 2005) a three layer back propagation network was
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used with 4 input neurons (one for each band), 10 hidden layer neurons, and three output neurons
(one each for alert, drowsy, or sleepy). In (Palaniappan 2006) the researchers used an Elman
ANN with single hidden layer trained by the resilient back propagation algorithm.

As mentioned at the beginning of this section, ANN is not the only classification
algorithm used in research. One machine learning algorithm is KNN. kNN is supported in the
literature and consists of selecting some number k of nearest vectors (using Euclidean distance)
from the set of manually classified vectors. The classification of these k vectors is examined, and
the most popular classification wins. This method has a number of variations, mostly designed to
overcome limitations when the vectors contain many dimensions, or less relevant dimensions
whose scale is large compared to the other dimensions, thereby giving excessive non-relevant
contribution to the distance measures.

SVM is an algorithm that, like a single layer ANN, can be used to find a line, plane, or
hyper-plane that separates the two classes of vectors with as much distance between the vectors
and the separator as possible. If the vectors cannot be linearly separated, then SVM attempts to
calculate a non-linear transformation (a kernel function) that maps the vectors into a domain
where they can be linearly separated (a domain with more dimensions).

Random Forest is a machine learning algorithm based on classification trees. A
classification tree is constructed by looking at each individual dimension of the vectors and
seeing if it can be used to split the data. This continues on until, a final classification is made (at
the leaf of the tree) and several algorithms exist to optimize the creation and pruning (i.e.,
optimization) of the classification trees. Random Forest takes this one step farther and creates

many decision trees (skipping the pruning step), based on randomly selected ensembles of
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vectors from the original data set (including, sometimes, repeats of the data, sometimes called
bootstrap ensembles).

Genetic Algorithms are a machine learning method that mimics natural selection of life
based on chromosomes. Each solution has a mother and father, from which it gets a set of
chromosomes. The fitness of the offspring is determined (classification error is one measure that
is possible) and only the most fit are selected to have the next generation of offspring. In this
way a large number of chromosomes (vector dimension values) can be winnowed out to find the
best combination to classify the data set.

Some examples form the literature include (Ito, et al. 2010) which used a weighting of
individual features (biased Euclidean distance) generated by a competitive "real-coded genetic
algorithm™ which seeks to genetically find a weighting to maximize the Euclidean distance
between vectors from different classes then KNN was used. In (Ito, et al. 2010) the end result was
the selection from one of three choices for classification which were "Matches Mood", "Does not
match mood", and "Borderline™ (or other). In (Khosrowabadi, et al. 2010) researchers
documented that they tried KNN and SVM, with the latter performing a bit better. (Murugappan
2011) described the use of KNN with 2 to 8 values for k tried. Seems best results are with 64
electrodes, sym8 DWT (although not much difference), and Entropy as the parameter used and
k=6 for the kNN classification algorithm. (Mostow, Chang and Nelson 2011) discussed trained
binary logistic regression classifiers to estimate probability of easy or hard based on EEG data.
The researchers specifically describe their testing across users (leaving out one user) and across
samples for one user (leaving out one sample). Also described were a number of methods used to
deal with disparity in number of examples (many more easy examples, many more imaginary

word examples) which can plague both ANN and kNN classification methods.
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Finally (De Vico Fallani and al 2008) did not use a classifier and simply graphed average
efficiency measures for each band, Theta, Alpha, Beta, Gamma - showing more efficiency for
forgotten videos. This implies a human classification by visual examination of the graphs. Also
(Lisetti and Nasoz 2004) experimented with three different supervised learning algorithms
including k nearest neighbor (kNN), Discriminant function analysis (DFA), and Marquardt back
propagation algorithm (MBP) for ANN. MBP seemed to do best, and the addition of the feature
extraction (min, max, etc...) also slightly improved performance.

So to conclude the review of related work on automated pattern recognition (machine
learning) of biometric data, classification algorithms require human supervised training (such as
ANN, SVM, and Random Forests) and/or human supervised selection of exemplary feature
vectors for each category (such as for kNN). Once this is done, an unsupervised automated

algorithm can recognize the pattern, and suitably classify the biometric data.

2.6 Validation

Validation is an important step in the process of creating any engineering system. In the
case of signal processing of EEG for the detection of at