2,473 research outputs found

    A Survey on Modality Characteristics, Performance Evaluation Metrics, and Security for Traditional and Wearable Biometric Systems

    Get PDF
    Biometric research is directed increasingly towards Wearable Biometric Systems (WBS) for user authentication and identification. However, prior to engaging in WBS research, how their operational dynamics and design considerations differ from those of Traditional Biometric Systems (TBS) must be understood. While the current literature is cognizant of those differences, there is no effective work that summarizes the factors where TBS and WBS differ, namely, their modality characteristics, performance, security and privacy. To bridge the gap, this paper accordingly reviews and compares the key characteristics of modalities, contrasts the metrics used to evaluate system performance, and highlights the divergence in critical vulnerabilities, attacks and defenses for TBS and WBS. It further discusses how these factors affect the design considerations for WBS, the open challenges and future directions of research in these areas. In doing so, the paper provides a big-picture overview of the important avenues of challenges and potential solutions that researchers entering the field should be aware of. Hence, this survey aims to be a starting point for researchers in comprehending the fundamental differences between TBS and WBS before understanding the core challenges associated with WBS and its design

    Human metrology for person classification and recognition

    Get PDF
    Human metrological features generally refers to geometric measurements extracted from humans, such as height, chest circumference or foot length. Human metrology provides an important soft biometric that can be used in challenging situations, such as person classification and recognition at a distance, where hard biometric traits such as fingerprints and iris information cannot easily be acquired. In this work, we first study the question of predictability and correlation in human metrology. We show that partial or available measurements can be used to predict other missing measurements. We then investigate the use of human metrology for the prediction of other soft biometrics, viz. gender and weight. The experimental results based on our proposed copula-based model suggest that human body metrology contains enough information for reliable prediction of gender and weight. Also, the proposed copula-based technique is observed to reduce the impact of noise on prediction performance. We then study the question of whether face metrology can be exploited for reliable gender prediction. A new method based solely on metrological information from facial landmarks is developed. The performance of the proposed metrology-based method is compared with that of a state-of-the-art appearance-based method for gender classification. Results on several face databases show that the metrology-based approach resulted in comparable accuracy to that of the appearance-based method. Furthermore, we study the question of person recognition (classification and identification) via whole body metrology. Using CAESAR 1D database as baseline, we simulate intra-class variation with various noise models. The experimental results indicate that given enough number of features, our metrology-based recognition system can have promising performance that is comparable to several recent state-of-the-art recognition systems. We propose a non-parametric feature selection methodology, called adapted k-nearest neighbor estimator, which does not rely on intra-class distribution of the query set. This leads to improved results over other nearest neighbor estimators (as feature selection criteria) for moderate number of features. Finally we quantify the discrimination capability of human metrology, from both individuality and capacity perspectives. Generally, a biometric-based recognition technique relies on an assumption that the given biometric is unique to an individual. However, the validity of this assumption is not yet generally confirmed for most soft biometrics, such as human metrology. In this work, we first develop two schemes that can be used to quantify the individuality of a given soft-biometric system. Then, a Poisson channel model is proposed to analyze the recognition capacity of human metrology. Our study suggests that the performance of such a system depends more on the accuracy of the ground truth or training set

    A survey on wireless body area networks: architecture, security challenges and research opportunities.

    Get PDF
    In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensitive information within the Wireless Body Area Networks (WBANs), insecure data violates the patients’ privacy and may consequently lead to improper medical diagnosis and/or treatment. Achieving a high level of security and privacy in WBAN involves various challenges due to its resource limitations and critical applications. In this paper, a comprehensive survey of the WBAN technology is provided, with a particular focus on the security and privacy concerns along with their countermeasures, followed by proposed research directions and open issues

    Gait analysis from encrypted video surveillance traffic

    Get PDF
    This thesis proposes an original video-based gait analysis technique, different from others existing in the literature. We leverage deep learning techniques to analyze video sequence packet size both in a virtual and real environment. Moreover, we address the case in which encryption mechanisms are adopted and we conclude the study proposing an incremental learning framework to render the system suitable to real life applications where training data becomes progressively available over time.ope

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others
    • …
    corecore