3 research outputs found

    Standardizing bimanual vaginal examination using cognitive task analysis.

    Get PDF
    OBJECTIVE: To create a standardized universal list of procedural steps for bimanual vaginal examination (BVE) for teaching, assessment, and simulator development. METHODS: This observational study, conducted from June-July 2012 and July-December 2014, collected video data of 10 expert clinicians performing BVE in a nonclinical environment. Video data were analyzed to produce a cognitive task analysis (CTA) of the examination steps performed. The CTA was further refined through structured interviews to make it suitable for teaching or assessment. It was validated through its use as a procedural examination checklist to rate expert clinician performance. RESULTS: BVE was deconstructed into 88 detailed steps outlining the complete examination process. These initial 88 steps were reduced to 35 by focusing on the unseen internal examination, then further refined through interviews with five experts into 30 essential procedural steps, five of which are additional steps if pathology is suspected. Using the CTA as a procedural checklist, the mean number of steps performed and/or verbalized was 21.6 ± 3.12 (72% ± 10.4%; range, 15.9-27.9, 53%-93%). CONCLUSION: This approach identified 30 essential steps for performing BVE, producing a new technique and standardized tool for teaching, assessment, and simulator development

    In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    Get PDF
    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching
    corecore