67 research outputs found

    Automatic Alignment of pre and intraoperative Data using Anatomical Landmarks for Augmented Laparoscopic Liver Surgery

    Get PDF
    International audienceEach year in Europe 50,000 new liver cancer cases are diagnosed for which hepatic surgery combined to chemotherapy is the most common treatment. In particular the number of laparoscopic liver surgeries has increased significantly over the past years. This type of minimally invasive procedure which presents many benefits for the patient is challenging for the surgeons due to the limited field of view. Recently new augmented reality techniques which merge preoperative data and intraoperative images and permit to visualize internal structures have been proposed to help surgeons during this type of surgery. One of the difficulties is to align preoperative data with the intraoperative images. We propose in this paper a semi-automatic approach for solving the ill-posed problem of initial alignment for Augmented Reality systems during liver surgery. Our registration method relies on anatomical landmarks extracted from both the laparoscopic images and three-dimensional model, using an image-based soft-tissue reconstruction technique and an atlas-based approach, respectively. The registration evolves automatically from a quasi-rigid to a non-rigid registration. Furthermore, the surface-driven deformation is induced in the volume via a patient specific biomechanical model. The experiments conducted on both synthetic and in vivo data show promising results with a registration error of 2 mm when dealing with a visible surface of 30% of the whole liver

    Intra-operative Update of Boundary Conditions for Patient-specific Surgical Simulation

    Get PDF
    Patient-specific Biomechanical Models (PBMs) can enhance computer assisted surgical procedures with critical information. Although pre-operative data allow to parametrize such PBMs based on each patient's properties, they are not able to fully characterize them. In particular, simulation boundary conditions cannot be determined from pre-operative modalities, but their correct definition is essential to improve the PBM predictive capability. In this work, we introduce a pipeline that provides an up-to-date estimate of boundary conditions, starting from the pre-operative model of patient anatomy and the displacement undergone by points visible from an intra-operative vision sensor. The presented pipeline is experimentally validated in realistic conditions on an ex vivo pararenal fat tissue manipulation. We demonstrate its capability to update a PBM reaching clinically acceptable performances, both in terms of accuracy and intra-operative time constraints

    Using Contours as Boundary Conditions for Elastic Registration during Minimally Invasive Hepatic Surgery

    Get PDF
    International audienceWe address in this paper the ill-posed problem of initial alignment of pre-operative to intra-operative data for augmented reality during minimally invasive hepatic surgery. This problem consists of finding the rigid transformation that relates the scanning reference and the endoscopic camera pose, and the non-rigid transformation undergone by the liver w.r.t its scanned state. Most of the state-of-the-art methods assume a known initial registration. Here, we propose a method that permits to recover the deformation undergone by the liver while simultaneously finding the rotational and translational parts of the transformation. Our formulation considers the boundaries of the liver with its surrounding tissues as hard constraints directly encoded in an energy minimization process. We performed experiments on real in-vivo data of human hepatic surgery and synthetic data, and compared our method with related works

    Silhouette-based Pose Estimation for Deformable Organs Application to Surgical Augmented Reality

    Get PDF
    International audience— In this paper we introduce a method for semi-automatic registration of 3D deformable models using 2D shape outlines (silhouettes) extracted from a monocular camera view. Our framework is based on the combination of a biomechanical model of the organ with a set of projective constraints influencing the deformation of the model. To enforce convergence towards a global minimum for this ill-posed problem we interactively provide a rough (rigid) estimation of the pose. We show that our approach allows for the estimation of the non-rigid 3D pose while relying only on 2D information. The method is evaluated experimentally on a soft silicone gel model of a liver, as well as on real surgical data, providing augmented reality of the liver and the kidney using a monocular laparoscopic camera. Results show that the final elastic registration can be obtained in just a few seconds, thus remaining compatible with clinical constraints. We also evaluate the sensitivity of our approach according to both the initial alignment of the model and the silhouette length and shape

    Recent Developments and Future Challenges in Medical Mixed Reality

    Get PDF
    As AR technology matures, we have seen many applicationsemerge in entertainment, education and training. However, the useof AR is not yet common in medical practice, despite the great po-tential of this technology to help not only learning and training inmedicine, but also in assisting diagnosis and surgical guidance. Inthis paper, we present recent trends in the use of AR across all med-ical specialties and identify challenges that must be overcome tonarrow the gap between academic research and practical use of ARin medicine. A database of 1403 relevant research papers publishedover the last two decades has been reviewed by using a novel re-search trend analysis method based on text mining algorithm. Wesemantically identified 10 topics including varies of technologiesand applications based on the non-biased and in-personal cluster-ing results from the Latent Dirichlet Allocatio (LDA) model andanalysed the trend of each topic from 1995 to 2015. The statisticresults reveal a taxonomy that can best describes the developmentof the medical AR research during the two decades. And the trendanalysis provide a higher level of view of how the taxonomy haschanged and where the focus will goes. Finally, based on the valu-able results, we provide a insightful discussion to the current limi-tations, challenges and future directions in the field. Our objectiveis to aid researchers to focus on the application areas in medicalAR that are most needed, as well as providing medical practitioners with latest technology advancements

    Model-based registration for pneumothorax deformation analysis using intraoperative cone-beam CT images

    Get PDF
    [2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 20-24 July 2020, Montreal, QC, Canada]Because the lung deforms during surgery because of pneumothorax, it is important to be able to track the location of a tumor. Deformation of the whole lung can be estimated using intraoperative cone-beam CT (CBCT) images. In this study, we used deformable mesh registration methods for paired CBCT images in the inflated and deflated states, and analyzed their deformation. We proposed a deformable mesh registration framework for deformations of partial organ shapes involving large deformation and rotation. Experimental results showed that the proposed methods reduced errors in point-to-point correspondence. As a result of registration using surgical clips placed on the lung surface during imaging, it was confirmed that an average error of 3.9 mm occurred in eight cases. The result of analysis showed that both tissue rotation and contraction had large effects on displacement

    Technologies for Biomechanically-Informed Image Guidance of Laparoscopic Liver Surgery

    Get PDF
    Laparoscopic surgery for liver resection has a number medical advantages over open surgery, but also comes with inherent technical challenges. The surgeon only has a very limited field of view through the imaging modalities routinely employed intra-operatively, laparoscopic video and ultrasound, and the pneumoperitoneum required to create the operating space and gaining access to the organ can significantly deform and displace the liver from its pre-operative configuration. This can make relating what is visible intra-operatively to the pre-operative plan and inferring the location of sub-surface anatomy a very challenging task. Image guidance systems can help overcome these challenges by updating the pre-operative plan to the situation in theatre and visualising it in relation to the position of surgical instruments. In this thesis, I present a series of contributions to a biomechanically-informed image-guidance system made during my PhD. The most recent one is work on a pipeline for the estimation of the post-insufflation configuration of the liver by means of an algorithm that uses a database of segmented training images of patient abdomens where the post-insufflation configuration of the liver is known. The pipeline comprises an algorithm for inter and intra-subject registration of liver meshes by means of non-rigid spectral point-correspondence finding. My other contributions are more fundamental and less application specific, and are all contained and made available to the public in the NiftySim open-source finite element modelling package. Two of my contributions to NiftySim are of particular interest with regards to image guidance of laparoscopic liver surgery: 1) a novel general purpose contact modelling algorithm that can be used to simulate contact interactions between, e.g., the liver and surrounding anatomy; 2) membrane and shell elements that can be used to, e.g., simulate the Glisson capsule that has been shown to significantly influence the organ’s measured stiffness

    Patient-specific Biomechanical Modeling for Guidance during Minimally-invasive Hepatic Surgery

    Get PDF
    International audienceDuring the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data.In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method.We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w. r. t. the quality of the intra-operative data

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    Fast Elastic Registration of Soft Tissues under Large Deformations

    Get PDF
    International audienceA fast and accurate fusion of intra-operative images with a pre-operative data is a key component of computer-aided interventions which aim at improving the outcomes of the intervention while reducing the patient's discomfort. In this paper, we focus on the problematic of the intra-operative navigation during abdominal surgery, which requires an accurate registration of tissues undergoing large deformations. Such a scenario occurs in the case of partial hepatectomy: to facilitate the access to the pathology, e.g. a tumor located in the posterior part of the right lobe, the surgery is performed on a patient in lateral position. Due to the change in patient's position, the resection plan based on the pre-operative CT scan acquired in the supine position must be updated to account for the deformations. We suppose that an imaging modality, such as the cone-beam CT, provides the information about the intra-operative shape of an organ, however, due to the reduced radiation dose and contrast, the actual locations of the internal structures necessary to update the planning are not available. To this end, we propose a method allowing for fast registration of the pre-operative data represented by a detailed 3D model of the liver and its internal structure and the actual configuration given by the organ surface extracted from the intra-operative image. The algorithm behind the method combines the iterative closest point technique with a biomechanical model based on a co-rotational formulation of linear elasticity which accounts for large deformations of the tissue. The performance, robustness and accuracy of the method is quantitatively assessed on a control semi-synthetic dataset with known ground truth and a real dataset composed of nine pairs of abdominal CT scans acquired in supine and flank positions. It is shown that the proposed surface-matching method is capable of reducing the target registration error evaluated of the internal structures of the organ from more than 40 mm to less then 10 mm. Moreover, the control data is used to demonstrate the compatibility of the method with intra-operative clinical scenario, while the real datasets are utilized to study the impact of parametrization on the accuracy of the method. The method is also compared to a state-of-the art intensity-based registration technique in terms of accuracy and performance
    corecore