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Abstract

A fast and accurate fusion of intra-operative images with a pre-operative data is a key component of computer-aided interventions
which aim at improving the outcomes of the intervention while reducing the patient’s discomfort. In this paper, we focus on the
problematic of the intra-operative navigation during abdominal surgery, which requires an accurate registration of tissues under-
going large deformations. Such a scenario occurs in the case of partial hepatectomy: to facilitate the access to the pathology, e.g.
a tumor located in the posterior part of the right lobe, the surgery is performed on a patient in lateral position. Due to the change
in patient’s position, the resection plan based on the pre-operative CT scan acquired in the supine position must be updated to
account for the deformations. We suppose that an imaging modality, such as the cone-beam CT, provides the information about
the intra-operative shape of an organ, however, due to the reduced radiation dose and contrast, the actual locations of the internal
structures necessary to update the planning are not available.

To this end, we propose a method allowing for fast registration of the pre-operative data represented by a detailed 3D model of the
liver and its internal structure and the actual configuration given by the organ surface extracted from the intra-operative image. The
algorithm behind the method combines the iterative closest point technique with a biomechanical model based on a co-rotational
formulation of linear elasticity which accounts for large deformations of the tissue. The performance, robustness and accuracy of
the method is quantitatively assessed on a control semi-synthetic dataset with known ground truth and a real dataset composed of
nine pairs of abdominal CT scans acquired in supine and flank positions. It is shown that the proposed surface-matching method is
capable of reducing the target registration error evaluated of the internal structures of the organ from more than 40 mm to less then
10 mm. Moreover, the control data is used to demonstrate the compatibility of the method with intra-operative clinical scenario,
while the real datasets are utilized to study the impact of parametrization on the accuracy of the method. The method is also
compared to a state-of-the art intensity-based registration technique in terms of accuracy and performance.

1. Introduction

A vast amount of research has been dedicated to deformable
registration due to its potential clinical impact. Many methods
have been proposed to address this complex task, and the so-
lutions usually depend on the actual scenario and the type of
data to be registered (Sotiras et al., 2013). Image registration
has been widely addressed in the context of radiation therapy,
intervention planning, intra-operative navigation and others.

The computer-based methods related to patient diagnosis and
pre- and post-operative treatment represent an important set of
applications requiring accurate and reliable registration of med-
ical images (Hill et al., 2001; Khalifa et al., 2011; Crum et al.,
2014). In the context of computer-aided diagnosis, the medical
image registration is applied to two or more images acquired
at different times in order to quantify the evolution of tissue
pathology or response to treatment (Charnoz et al., 2005; Kaus
et al., 2007; Eisenhauer et al., 2009). In computed-aided plan-

ning and navigation, image fusion is used to provide additional
information to the clinician in order to improve intervention
outcomes (Grimson et al., 1996; Cheung et al., 2010; Shekhar
et al., 2010). In this context, the image data is often acquired by
different modalities and one of the input image pair suffers from
poor signal-to-noise ratio. Moreover, registration time becomes
an important aspect in a computer-aided navigation context.

In this work we focus on image registration in the context
of partial hepatectomy which remains the preferable option to
liver pathologies such as hepatocellular carcinoma, the primary
hepatic malignancy with more than 780,000 deaths per year
according to World Health Organization. During the hepatec-
tomy, up to 50% of liver parenchyma containing the cancerous
tissue can be removed. The resection must respect so called
Couinaud regions which are 8 functionally independent seg-
ments, each having its own vascular inflow and outflow (Stras-
berg, 2005). Thus, accurate localization of both tumors but
also vascular structures is necessary to perform the liver re-
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section. This localization is performed pre-operatively, based
on contract-enhanced CT or MRI abdominal images (Meinzer
et al., 2002). Beside helping the surgeon to create a mental
image of the organ structure and its pathology, the geometry
extracted from the pre-operative data can be visualized during
the operation using the augmented reality (Nicolau et al., 2011).

However, the initial configuration of the liver at the begin-
ning of the intervention can differ significantly from the pre-
operative state: in the case of laparoscopic surgery, large de-
formations are introduced by the pneumoperitoneum (Tsutsumi
et al., 2013). For some cases in both laparoscopic and open
surgery, it is recommended to perform the right hepatectomy in
a semi-prone or a left lateral decubitus position (see Fig. 1a)
in order to facilitate the access to the pathology (Ikeda et al.,
2013; Wakabayashi et al., 2015). In Mulholland et al. (2014),
the patient is positioned in full lateral position during right pos-
terior sector robotic resection. Consequently, the pre-operative
plan must be adapted in order to compensate for the deforma-
tions (Jarnagin et al., 2017).

For this purpose, intra-operative imaging modalities are em-
ployed at the beginning or during the intervention (Uchida,
2014) and the plan is updated according to the acquired data.
For example, if a contrast-enhanced CT is performed directly
in the OR, the actual position of the pathology and vascular
structures is localized directly in the image. However, this is
rarely the case and usually, the intra-operative modality does
not provide the sufficient image quality. In Kenngott et al.
(2014), a cone-beam computer tomography (CBCT) is used to
perform intra-operative scan. CBCT is typically used in inter-
ventional radiology and its employment in during surgery re-
mains rare. Nonetheless, this is changing thanks to the concept
of a hybrid operating rooms which aims at proposing novel
protocols that would benefit from the availability of various
imaging modalities directly during the operation (Benckert and
Bruns, 2014). While CBCT allows for reconstruction of the
volume, the amount of information that can be extracted di-
rectly from the image is limited: in general, the liver tumors
remain invisible under CBCT without intravenous contrast en-
hancement (Chan et al., 2017). However, CBCT is very sensi-
tive to the acquisition timing (Jones et al., 2014) and according
to Eccles et al. (2016), the intravenous injection does not guar-
antee the visibility of small tumors. While the internal struc-
tures are not easily visible under CBCT, it is possible to extract
the liver surface using segmentation (Li et al., 2012, 2014).

In this paper, we focus on the problematic of the intra-
operative navigation during the partial hepatectomy performed
in the lateral position to facilitate the access to the pathology.
In this case, the resection plan based on the pre-operative CT
scan acquired in the supine position must be considerably up-
dated in order to take into account the large deformations of the
tissue due to the supine-flank repositioning. We suppose that
an imaging modality, such as CBCT, provides the information
about the intra-operative shape of an organ, however, due to the
low contrast and reduced X-ray dose, the actual locations of
the internal structures and pathologies necessary to update the
resection plan are not visible.

To this end, we propose a method that performs a fast reg-

istration of the pre-operative data represented by a 3D model
of liver and its internal structures and pathologies to the ac-
tual configuration given by the organ surface extracted from
the intra-operative image. The method is based on a surface-
matching algorithm which combines the iterative closest point
technique with a biomechanical model based on a co-rotational
formulation of linear elasticity in order to account for large de-
formations of the tissue. The algorithm thus requires extraction
of sparse representations given by the pre-operative model and
intra-operative surface point cloud from the input image data.
It is assumed that the sparse representation was acquired by a
complete sampling, i. e. the intra-operative point cloud is dis-
tributed over the the surface of the organ.

The performance, robustness and accuracy of the method is
assessed using a control and real datasets. In both cases, the tar-
get registration error (TRE) is computed inside the volume of
the liver in order to assess the accuracy of the method which
employs only the surface geometry to perform the registra-
tion. The control dataset is used to quantify the accuracy of the
method via ground truth as well as to demonstrate the compat-
ibility of the registration method with a real clinical scenario.
For this purpose, the control dataset is represented by a semi-
synthetic pair of images, composed of a contrast-enhanced ab-
dominal CT scan acquired in the supine position and a synthetic
low-contrast CBCT volume mimicking the intra-operative flank
configuration, generated using a simulation and image filtering.
The extraction of the surface representation from the CBCT im-
age is a time-critical procedure since its duration directly con-
tributes to the time necessary to perform the intra-operative fu-
sion. Therefore, this aspect is examined in details: two differ-
ent methods of surface extraction are tested in terms of speed
and registration accuracy to demonstrate the method can be per-
formed in a real clinical setting.

The validation is further extended using nine real datasets,
each composed of two 3D contrast-enhanced abdominal CT im-
age acquired on a human subject scanned in lateral (flank) and
supine positions. The goal of the real-data evaluation is to test
the shape-matching algorithm in different patient-specific sce-
narios. Since in this case, the ground truth is not available, a
novel validation platform is presented. It performs topologi-
cal and geometrical matching of vascular trees, extracted semi-
automatically from the supine and flank images, in order to con-
struct a set of features distributed over the liver volume. The
output of the validation pipeline is represented by the target reg-
istration error which is computed using the vascular features.

The proposed registration method is compared to a state-of-
the-art intensity-based technique employing free-form defor-
mations (Modat et al., 2009, 2010) using the described vali-
dation platform. Then, both methods are examined in terms
of parametrization; large-scale parametric studies are presented
and it is demonstrated that a constant generic parametrisation
can be found for the proposed method so that a close-to-optimal
accuracy is achieved for all tested datasets.
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(a) (b) (c)

Figure 1: (a) Illustration of the lateral (flank) position during right hepatectomy. (b) Pre-operative contrast-enhanced CT scan acquired in the supine position.
(c) Intra-operative CBCT scan acquired in lateral position.

2. State of the Art

In Crum et al. (2014) and Rieder et al. (2012), registration
methods are classified according to the type of the computed
transformation as rigid, affine and deformable. The latter are
employed in order to achieve an acceptable quality of fusion
when the tissue undergoes large local or global deformations.
In this case, the choice of the deformation model used by the
method is important, as it defines the class of feasible trans-
formations and impacts the number of degrees of freedom and
parameters, as well as the computational time. In Maintz and
Viergever (1998), a classification of registration techniques is
based on the type of information used in the optimization pro-
cess. A large family of methods is based directly on voxel prop-
erties: they aim at maximization of a similarity metric com-
puted using the image intensities, i. e. the dense representation
of the input data. Another type of methods requires a sparse
representation extracted from the image: the algorithms typi-
cally aim at minimizing an error metric given by the geometri-
cal position of landmark features or the surface of an organ of
interest. According to Maintz and Viergever (1998), the meth-
ods using directly the voxel properties are considered as the
most flexible, since they use all of the available information in-
stead of relying on a sparse representation.

In the case of the intra-operative image fusion, the time
needed to register the images becomes crucial as it is not possi-
ble to suspend the intervention in order to wait for the fusion re-
sults. Therefore, a method applied directly to the images should
provide a more efficient tool. However, as we show in the pa-
per, in the specific scenario with important tissue deformations,
additional information represented by the biomechanical model
and intra-operative surface of the organ may be necessary in or-
der to perform reliable and fast fusion.

In what follows, we provide only a brief survey of non-rigid
registration methods: since the number of publications reported
yearly is huge, we do not aim at providing exhaustive survey of
technique but we focus on those which are relevant w. r. t. the
proposed method and its validation.

2.1. Intensity-based Registration

The registration methods based on voxel properties of the
input images are usually implemented as iterative procedures
optimizing a similarity metric such as sum of squared differ-
ences (SSD) or normalized mutual information (NMI). While
the SSD metric can be applied only to images acquired using the
same modality, the NMI metric assumes only probabilistic rela-
tionship between the image intensities, thus allowing for multi-
modal inputs (Thévenaz and Unser, 2000; Mattes et al., 2003;
Crum, 2004). These methods are applied directly to the input
images which significantly simplifies the registration pipeline.
Since the minimization process is ill-posed, it is usually regular-
ized with additional terms such as elastic energy (Marami et al.,
2011) or diffusion (Popuri et al., 2010), numerically solved by
a finite-element mesh covering the entire volume of the image.

Free-form deformations (FFD) (Rueckert et al., 1999) are
often used to implement the penalization term which is in-
terpolated over a regular grid using B-splines. In Elhawary
et al. (2010), Tang and Wang (2010) and Chen et al. (2007),
multi-modal fusions of CT and MR images are presented. The
methods start with a global rigid or affine alignment followed
by a FFD-based registration compensating for local deforma-
tions. The performance of the metric optimization is im-
proved in Song et al. (2014) employing the L-BFGS method.
A modification of the mutual information (MI) metric is pre-
sented in de Manuel et al. (2014): the proposed organ-focused
MI takes into account the mask of the liver obtained by seg-
mentation. Recently, a hybrid method combining the metric-
minimization and landmark-based approach has been presented
in Foruzan and Motlagh (2015).

The main drawback of the registration techniques employ-
ing the FFD algorithm is the high computational cost. To ad-
dress this issue, a parallel version is presented in Rohlfing and
Maurer Jr (2003) running on a shared-memory supercomputer
and in Rohrer et al. (2008), a multi-core version is proposed.
Finally, CUDA-based implementation is presented in Modat
et al. (2009, 2010). It allows for choosing between two met-
rics (NMI and SSD) and provides four different regularization
terms: bending energy (Rueckert et al., 1999; Rohlfing et al.,
2003), linear elastic energy, squared Euclidean distance of the
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displacement field and Jacobian determinant of the registration
transformation (Rueckert and Aljabar, 2015). The actual ver-
sion is publicly available in a NiftyReg package, which is con-
sidered as the state-of-the-art implementation of the FFD reg-
istration. Although the method was originally designed for the
deformable registration of the human brain, it was ranked in
the top 5 algorithms in the Empire10 challenge dealing with
the registration of pulmonary data (Murphy et al., 2011) and
recently, it was evaluated in an inter-patient registration of 20
abdominal data sets where it scored the best in terms of Dice
metric (Lee et al., 2015).

2.2. Geometry-based Registration
Unlike the intensity-based methods, the geometry-based

techniques require additional preprocessing of the image data
in order to extract the landmarks or surface of the organ. Since
the optimization of the purely geometric error is also ill-posed,
the process is regularized with additional a priori information
which is often represented by a physical model of the tissue
reconstructed from the extracted geometry.

A multi-organ deformable image registration used to ana-
lyze the motion of abdominal organs is presented in Brock
et al. (2005). The algorithm minimizes the difference in surface
shape and landmark displacement and it employs a mechan-
ical model based on the finite element method (Brock et al.,
2005). In Vagvolgyi et al. (2008), a shape-matching algorithm
is used to register a pre-operative CT image to a point cloud ex-
tracted from stereoscopic intra-operative images. The method
combines dense and sparse registration based on the iterative
closest point (ICP) and point-based least-squares fitting, respec-
tively. Only visual assessment of the algorithm is presented on
kidney data.

A surface-matching approach was already employed in the
context of intra-operative to pre-operative registration for hep-
atic interventions. In Cash et al. (2005), the ICP method is used
together with a mixed co-rotational formulation of the linear
elasticity in order to compensate for the tissue deformations:
while the ICP is initially used to perform a rigid registration,
the FE model is used to apply additional corrections compen-
sating for elastic deformations. The reported fiducial registra-
tion error evaluated using a rubber-silicone liver phantom is
2 mm. A weighted ICP (Clements et al., 2008) is used in a
rigid registration followed by elastic corrections to facilitate the
tumor prediction and radio-frequency ablation (Simpson et al.,
2012). The quantitative results confirming the benefits of the
non-rigid registration are given only for phantom data. Sim-
ilarly, liver phantoms are used to assess the role of the elas-
tic compensation in non-rigid registration of pre-operative and
intra-operative data in Rucker et al. (2013b,a). The wICP is
further modified as the correspondences are updated at each it-
eration of the registration procedure. Also, the influence of the
sparsity and partiality of the target data is studied w. r. t. the ac-
curacy of the registration method. Finally, different acquisition
modalities are compared in Wu et al. (2014).

Recently, deformation correction algorithms have been eval-
uated on six patients undergoing open hepatectomy (Clements
et al., 2016). Intra-operatively, tracked ultrasound probe was

used to digitize the subsurface targets and laser range scan-
ner was employed to partially reconstruct the surface. The au-
thors report significant improvement of target registration error
thanks to the deformation correction based on an elastic model
reconstructed from the pre-operative data.

Deformable registration of intra-operative images acquired
by a rotational C-arm during laparoscopic surgery to pre-
operative CT data is studied in Bano et al. (2013). It com-
bines rigid registration driven by anatomical features with de-
formable registration employing three landmarks. The accu-
racy of the method is evaluated using porcine liver data: the
Euclidean distances between selected vascular bifurcations is
reduced from 17.5±9.0 mm (max. 37.4 mm) before the registra-
tion to 10.3±2.7 mm (max. 15.8 mm). The method is extended
in Oktay et al. (2013) by a specialized gas-insufflation model
followed by diffeomorphic non-rigid registration and similar re-
sults are reported on synthetic data obtained by simulated de-
formation of porcine liver.

In (Suwelack et al., 2014), the non-rigid registration process
is treated as an electrostatic-elastic problem. An electrically
charged elastic FE model of liver (Suwelack et al., 2012) re-
constructed from segmented CT data slides into a rigid target
shape having the opposite charge. The target shape is recon-
structed using the method proposed in Speidel et al. (2011)
combining RANSAC calibration and correspondence analysis
based on hybrid recursive matching. The method is evaluated
using simulated data and a silicone phantom equipped with
teflon markers. The initial mean Euclidean distance between
markers is reduced from 23.9 mm (max. 46.6 mm) to 2.3 mm
(max. 4.2 mm). The surface matching was also extended to-
wards pose-independent scenarios (dos Santos et al., 2014).

A fast and reliable registration suitable for intra-operative
scenarios where the tissues undergo large deformations remains
a challenging task. Except for a few studies (Vagvolgyi et al.,
2008; Bano et al., 2013; Clements et al., 2016), the assess-
ment is performed or either synthetic or phantom data. Further,
the robustness of the method w. r. t. low-quality intra-operative
images is rarely discussed. Moreover, the parametrization of
proposed methods often remains unclear. Nevertheless, if the
method is to be applied directly during the operation, a patient-
specific parametrization poses a serious issue to the usability of
the registration procedure.

In the following section, we present the proposed registra-
tion method: Beside the detailed explanation of the iterative
surface-matching algorithm, we also describe the data process-
ing necessary to perform the fusion. The section 4 contains
the validation of the method using the control semi-synthetic
data. It describes the control data generation, presents the vali-
dation methodology and reports the results in terms of the ini-
tial and target registration error. The section 5 deals with the
validation performed on the real datasets. The validation plat-
form employing the vascular features is portrayed and the re-
sults for nine supine-flank pairs are presented for both the pro-
posed method and an intensity-based registration method. In
section 6, the parametrization of registration techniques is dis-
cussed. Then, parametric studies for the two methods evaluated
on real data are presented together with consequences for the
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applicability of both methods in the clinical setting. Finally, the
impact of the intra-operative data processing on the proposed
registration method is briefly discussed and further perspectives
are given.

3. Elastic Surface-matching Registration

3.1. Overview of the Registration Algorithm

The work flow of the surface-matching registration method
is depicted in Fig. 2. The input data is represented by a pair of
pre- and intra-operative images. While the former is a contrast-
enhanced 3D scan that allows for reliable localization of the
surface and the internal structures of the organ of interest, the
latter shows only the actual organ shape. Thus, due to a low
contrast, the intra-operative image does not provide any reliable
information about the position of the internal structures in the
actual configuration.

The pre-operative data is used to reconstruct the biomechani-
cal model: the liver parenchyma and the internal structures here
represented by vessels are segmented from the input contrast-
enhanced images. This process can be done either manually or
semi-automatically, but it must preserve a good level of detail of
both the organ and the structures. Next, a finite element volume
meshM of the liver parenchyma is generated together with sur-
face geometry of the vascularization. While the surface meshes
are used only for visualization purposes after the registration is
computed, the volume mesh M represents the domain of the
reconstructed biomechanical model which is registered to the
intra-operative data. In this paper, we always use the fully auto-
matic method described in Boltcheva et al. (2009) to convert a
segmented map into a geometric structure such as a volume or
surface mesh. The method first samples features in voxels lo-
cated on the boundary of segmented region and then performs
a Delaunay refinement to generate either the triangulation of its
surface or a tetrahedralization of its volume.

Intra-operatively, the method first necessitates the extraction
of the organ surface from the intra-operative scan. More pre-
cisely, a cloud C of points located on the boundary of liver
parenchyma is constructed so that the points are distributed
over the entire surface of the organ. This phase also requires
segmentation of the liver parenchyma but unlike in the case of
the pre-operative image, the intra-operative segmentation pro-
cess must be done quickly and thus manual processing of a
high-resolution intensity image is not possible. We employ a
semi-automatic method proposed by Yushkevich et al. (2006)
which is applied to a down-sampled intensity image in order
to speed up the segmentation. The algorithm is based on ac-
tive contours and employs the level set method. As in the case
of the pre-operative data, the point cloud C is extracted from
the segmentation using the automatic sampling and refinement
method (Boltcheva et al., 2009).

The last step of the intra-operative processing is the execution
of the surface-matching algorithm registering the pre-operative
model, the geometry of which is given by the FE mesh M, to
the intra-operative point cloud C. In what follows, a detailed
description of the algorithm is given.

3.2. Elastic Registration as Constrained Optimization
The proposed method of surface registration is formulated as

an optimization problem

min
q

Π(q)

Φ(q) = 0 (1)

where Π(q) denotes the elastic energy of the pre-operative
model and Φ(q) denotes the geometric constraints which im-
pose the surface matching between the pre-operative model and
intra-operative point cloud.

The LagrangianL of the equality-constraint problem 1 is de-
fined as

L(q, λ) = Π(q) − λΦ(q) (2)

where λ are the Lagrange multipliers associated with the con-
straints Φ. The minimization of the Lagrangian 2 is done by
solving ∇q,λL = 0. The differentiation w. r. t. q and λ yields a
system of equations

∇qΠ(q) − λ∇qΦ(q) = 0
Φ(q) = 0. (3)

The elastic energy of a deformable body is defined as Π(q) =
1
2

∫
V σ

>εdV where σ and ε are the stress and strain in each
position of the body, respectively. In this work, we employ the
co-rotational formulation of the linear elasticity to define the
internal forces g̃(q) = ∇qΠ(q) (Nesme et al., 2005). In linear
elasticity, the internal forces in a position q are defined as

g̃LIN(q) = B>σ = B>Dε = B>DBu(q) (4)

where u(q) = q − q0 is the displacement of the particle at the
actual position q w. r. t. its original position q0, and B and D
are strain-displacement and stress-strain matrices, respectively.
Due to the linearization of the strain tensor ε, the linear elastic-
ity is not capable of handling large deformations. This issue is
addressed by the co-rotational approach where the definition of
the internal forces at position q is modified using a rotational
matrix R which encodes the rotation of the local frame w. r. t.
its initial orientation (Müller et al., 2002). Then,

g̃(q) = R>B>DBRu(q). (5)

Since the rotation matrix R depends on the actual position q,
the internal forces g̃ are non-linear in q.

The continuous formulation is discretized using finite ele-
ment (FE) method: we suppose that the FE mesh is composed
of tetrahedral P1 elements equipped with linear interpolation
functions defined in n nodes of the mesh. The vector of 12 dis-
cretized internal forces ge is computed using the weak form of
Eq. 5 for each element e:

ge = veR>e B>e DeBeReue (6)

where ue are the actual displacements of the 4 vertices of the
element e. For definition of other quantities, see Appendix.

Due to the non-linearity of internal forces, it is necessary to
compute the linearization of g usually denoted as the tangent
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Figure 2: Scheme of the proposed surface-based registration: the biomechanical model of the organ including its internal structures is reconstructed from the
pre-operative contrast-enhanced image (right). The surface point cloud is extracted from low-contrast intra-operative image (left). The biomechanical model is
registered to the point cloud using the proposed surface-matching method (middle).

stiffness matrix. In the co-rotational formulation, this quantity
is approximated for each element e as a 12×12 matrix

Ke = veR>e B>e DeBeRe. (7)

The local vectors of forces ge and element tangent stiffness ma-
trices Ke are assembled to obtain the global vector g composed
of 3n values, and the global tangent stiffness 3n × 3n matrix K,
respectively.

The constraints Φi(q), where i runs over m points of the sur-
face point cloud C, are defined using a technique similar to the
iterative closest point (Rusinkiewicz and Levoy, 2001). For
each node pi from the target cloud C, the closest point with po-
sition ri located on the surface of the meshM is found. Since ri

is located within a triangle (A, B,C) of the source meshM, its
coordinates are expressed using the nodal positions qA,qB,qC:
ri = βiAqA +βiBqB +βiCqC where βiA, βiB, βiC are the barycentric
coordinates of ri within the triangle (A, B,C). Denoting by ni

the outer surface normal computed at position ri, the constraint
Φi associated with the cloud point pi is given as

Φi(pi) = (pi − ri) · ni = (pi −
∑

v∈{A,B,C}

βivqv) · ni. (8)

In order to solve the problem 3, it is necessary to compute the
Jacobian of the constraints ∇qΦ(q). Given the definition 8, this
quantity is given as a m × 3n Jacobian matrix J which is highly
sparse: on each line i, only nine entries are non-zero. Each
non-zero triple corresponding to the triangle vertex w ∈ A, B,C
is given as Ji,w = −βvni.

Given the discretization and linearization of both elastic
forces and constraints presented above, the Lagrangian sys-
tem 3 can be solved by an iterative Newton-Raphson method
where in each step, following augmented system of m+3n equa-
tions is solved for the positional correction ∆q and Lagrange
multipliers λ: (

K J>
J 0

) (
∆q
λ

)
=

(
−g
Φ

)
. (9)

3.3. Iterative Solution with Numerical Damping
The matrix K itself is singular as no essential boundary con-

ditions are applied after the assembly of the FE equations. At

the same time, the definition of J does not guarantee the regular-
ity of the augmented system. Therefore, we introduce a numer-
ical damping by adding a small positive constant τ on the di-
agonal; see the Hessian modification methods in (Nocedal and
Wright, 2006). The regularized augmented system correspond-
ing to the optimization problem is then given by(

K + τIK J>
J τIS

) (
∆q
λ

)
=

(
−g
Φ

)
(10)

where IK and IS are, respectively, 3n×3n and m×m identity ma-
trices. The system 10 is solved by the method based on Schur
complement as described below.

First, given the actual nodal positions q, the vector of internal
elastic forces ge and the tangent stiffness matrix Ke is computed
for each element (steps 3 to 5 of Algorithm 1). Second, the lo-
cal quantities are then assembled into global vector of internal
forces g and the co-rotational tangent stiffness matrix K which
is further modified by adding the damping factor τ on the di-
agonal (steps 6 to 8). Next, a vector ∆qun of corrections of
the unconstrained positions is computed by solving the system
Kτ∆qun = −g (steps 9 and 10). The vector of unconstrained
positions qun = q + ∆qun is computed and employed to eval-
uate the actual constraints Φ and the corresponding Jacobian
J. This computation requires very simple collision detection
where for each point pi of the cloud C, the closest surface tri-
angle given by vertices A, B,C of the mesh M is found, the
point pi is projected on a location on the triangle (denoted as ri)
and the barycentric coordinates of posri w. r. t. A, B,C are com-
puted. This procedure together with evaluation of constraints
and the constraint Jacobian is performed on lines 11 to 17.

In step 18, both Kτ and J are used to compute the Schur
complement S of the augmented system 9 as S = τIS −JK−1

τ J>.
In step 19, the dense m×m matrix S is used to obtain the vector
λ of Lagrange multipliers; this is done by a projected Gauss-
Seidel method solving the system Sλ = Φ. Finally, the vector
λ is used to compute the corrected position update ∆q (step 20)
which is applied to improve the actual estimation of the solution
q (step 21 of Algorithm 1). The iterative process is stopped as
soon as the the correction ∆q does not improve significantly,
i. e., ||∆q|| < ε for a small constant ε.
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Algorithm 1: Iterative Surface-matching Registration
Input : Initial positions q0 of source meshM

Positions p of points in target cloud C
Output : Registered positions q f of source meshM
Parameters: E [kPa], ν, τ

1 q←− q0
2 repeat
3 foreach e ∈ M do
4 ge ←− veR>e B>e DeBeReue

5 Ke ←− veR>e B>e DeBeRe

6 g←−
⊎

e {ge(q)}
7 K←−

⊎
e {Ke(q)}

8 Kτ ←− K + τIK

9 ∆qun ←− −K−1
τ g

10 qun ←− q + ∆qun
11 foreach pi ∈ C do
12 ri ←− minx∈∂M ||x − pi||

13 ni ←− normal ofM in ri

14 {A, B,C} ←− vertices of triangle containing ri

15 {βA, βB, βC} ←− barycentric coordinates of ri

16 Φi ←− (pi −
∑

w∈{A,B,C}
βiwqw) · ni

17 Ji,w = βwni for w ∈ A, B,C

18 S←− τIS − JK−1
τ J>

19 λ←− solve(S,Φ)
20 ∆q←− K−1

τ Jλ
21 q = qun + ∆q
22 until ||∆q|| < ε
23 q f ←− q

3.4. Physical Interpretation of Numerical Damping

In this section, we analyze the impact of the numerical damp-
ing on the solution of the original problem given by 1. The
damping is added to both the upper left part of the augmented
system (via the term τIK) and the lower right part (via the term
τIS ). The former modification of the original system can be
regarded as adding a lumped mass to elastic body. Thus, this
modification does not influence the final solution of the system,
but improves the stability of the iterative solution by increasing
the inertia of the object being deformed.

The modification introduced by term τIS is more subtle. In
case when τ = 0, the Lagrange multipliers λ, computed by res-
olution of system (−JK−1

τ J>)λ = Φ, represent the forces nec-
essary to impose the equality constraints 8, so that the surface
of the deformed FE mesh matches strictly the points from the
surface cloud C. The Schur complement JK−1

τ J> has a phys-
ical interpretation: It represents the compliance in points ri of
the biomechanical model located on the surface of the mesh,
computed step 12 of the algorithm). The off-diagonal non-zero
elements of the compliance matrix represents the mechanical
coupling between the points ri, as they are attached to the FE
mesh M. For more details about the compliance, see Peterlik
et al. (2011).

In case when the damping factor τ > 0, the Schur com-
plement is modified by matrix τIS . This modification can be
also interpreted physically: It corresponds to the attribution of
a non-zero compliance to each node pi of the point cloud C.
Although this artificial compliance is not justified directly by
the physical reality, as the point cloud C is a purely geometri-
cal structure, it can account for inaccuracies associated with the
extraction of the points in C. In other words, the non-zero com-
pliance introduced by τIS results in softened matching between
the surface of the FE mesh and the point cloud C.

Given this analysis, the damping coefficient τ can be re-
garded as a parameter complementary to the Young’s modulus
E: the values of E and τ influence the importance of the biome-
chanical model w. r. t. the constraints: for low values of both
E and τ, the constraints are strictly respected, so that model
is used mainly as an interpolator. If both E and τ are set to
very high values, the stiff model ignores highly compliant tar-
get points resulting in very bad matching between the mesh and
the surface cloud.

4. Validation Using Control Data

In the scenario considered in this paper, the intra-operative
image represented by a non-injected CBCT scan is used to ex-
tract the surface point cloud necessary to perform the fusion
with the pre-operative model. However, such data does not al-
low for quantitative validation because the non-injected intra-
operative image does not contain any reliable information about
the actual positions of the internal structures. Therefore, we
perform two types of validation: in the first one, described in
this section, we generate a synthetic CBCT image of a flank
configuration from a contrast-enhanced abdominal CT scan of
a real patient in supine position. The two images are then used
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Figure 3: The procedure used to obtain the semi-synthetic data: The liver if extracted from the contrast-enhanced CT (a) by segmentation and mesh generation
(S1), resulting in model (b). The biomechanical simulation (S2) is applied to deform the model (c). The red points illustrate the boundary conditions imitating the
ligaments. The initial and deformed FE meshes are used to warp (S3) the original CT. Finally, the warped image (d) is subjected to filtering and CBCT emulation
(S4), resulting in deformed low-contrast CBCT image (e).

as control data allowing for quantitative validation as described
in this section. The second validation, presented in the follow-
ing section, employs nine datasets of patients where both supine
and flank positions are available.

The motivation of the validation on control data is twofold:
first, we demonstrate the feasibility of the proposed registration
method in the clinical setting. For this purpose, we evaluate the
time needed to both process the input image data and perform
the registration. The second motivation is given by the fact that
in the case of semi-synthetic scenario, a quantitative assessment
of the registration method can be performed using ground truth,
represented by the simulated flank configuration.

4.1. Generation of Semi-synthetic Control Data
The simulated flank position is generated from a real

contrast-enhanced abdominal CT image acquired by Siemens
Somatom Sensation 64 scanner. The image was acquired in a
study approved by the University of British Columbia Clinical
Research Ethics Board (H08-02798). The generation process,
illustrated in Fig. 3, consists of following steps:

S1 The supine image is rotated by 90◦ along the cranio-caudal
axis to mimic the supine to flank rotation. The liver is seg-
mented manually using an interactive tool1. Two finite ele-
ment meshesMINIT

1 andMINIT
2 are generated from the seg-

mented map using the Delaunay refinement method pre-
sented in Boltcheva et al. (2009) and available in a freely-
accessible library2. The sizes of both meshes is given in
Table 1.

S2 The fine tetrahedral mesh MINIT
1 is used to simulate the

flank configuration. For this purpose, a gravitational force
parallel to the coronal plane is applied. The boundary con-
ditions are imposed so that they mimic anatomical con-
straints of the organ. The areas corresponding to the entry
of the portal and hepatic veins are identified as well as the
parts of the surface attached to ligaments. Since the lat-
ter cannot be extracted directly from the pre-operative CT,

1ITK-SNAP: http://www.itksnap.org
2CGAL: http://www.cgal.org/

anatomical atlas was used to determine the location of liga-
ments approximately. Finally, the surface nodes located in
the identified regions are fixed using homogeneous Dirich-
let boundary conditions. The deformations are modeled
using the MJED formulation of the hyperelastic StVenant-
Kirchoff material (Marchesseau et al., 2010) available in
an open-source simulation framework SOFA3. The homo-
geneous model was parametrized with the Young’s modu-
lus E=5 kPa and Poisson’s ratio ν=0.45. The coarse mesh
is not used directly in the biomechanical simulation, nev-
ertheless, it is deformed together with the fine mesh: at
the beginning of the biomechanical simulation, each node
of the coarse meshMINIT

2 is mapped to an element of the
fine meshMINIT

1 using barycentric mapping. AsMINIT
1 de-

forms by the simulation process, the coarse mesh follows
its deformation because of the mapping; see for exam-
ple Faure et al. (2012) for further details. Thus, the simula-
tion results in two deformed meshesMSIM

1 andMSIM
2 rep-

resenting the same deformation. The initial and deformed
configurations are depicted in Fig. 3b,c.

S3 The CT supine volume is warped using the displacement
field provided by the difference of nodal positions of the
initial fine mesh MINIT

1 and its deformed configuration
MSIM

1 . We employ advanced warping method presented
in Ručka and Peterlík (2017) in order to obtain a realis-
tic deformed image shown in Fig. 3d. Using the sparse
displacement field given by the differenceMSIM −MINIT,
the warping algorithm first generates dense displacement
field for each voxel of the image using radial basis func-
tion which is employed as interpolation inside the liver
volume and extrapolation outside. Then, the warped im-
age is generated by applying the dense displacement field
to the original supine CT volume.

S4 The warped image still contains a high level of detail since
it is generated from the contrast-enhanced CT. In order
to mimic the intra-operative scenario, its quality is de-
graded in two ways. First, we suppress the contrast of

3SOFA: http://www.sofa-framework.org
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Figure 4: The target registration error visualized using box plot (a,c) and histograms (b,d). On the left, TRE computed after registration employing the fine mesh
M1 and cloud C1 extracted from the manual segmentation. On the right, TRE evaluated after registration using the coarse meshM2 and cloud C2 obtained from the
fast semi-automatic registration. The box shows the mean with standard deviation, the whiskers depict the 25th and 75th percentiles and the red crosses represent
the outliers between the 75th percentile and the maximum TRE. Note the different range of y-axes in histograms.

the liver vascular structures: first, using the segmentation
map of the vessels in the warped image, we replace the
regions corresponding to theses structures in the intensity
image by a 3D patch extracted from the non-vascularized
parenchyma. Second, we apply the method presented
in Sharp et al. (2007): radio-graphs are digitally gener-
ated from the warped CT volume with suppressed vessel
contrast and then, a 3D CBCT volume is reconstructed us-
ing Feldkamp, Davis and Kress algorithm Feldkamp et al.
(1984). The resulting CBCT image has a resolution of
512 × 512 × 240 voxels; an axial slice of the volume is
shown in Fig. 3e.

Beside providing the displacement field necessary to synthe-
size the flank CBCT volume, the simulation performed in step
S2 also generates the ground truth represented by deformed
meshesMSIM

1 andMSIM
2 which are explored to assess the accu-

racy of the registration as explained in the following section.

meshM1 meshM2 cloud C1 cloud C2

# points 8,373 1,266 594 576

# tetrahedra 41,437 5,272 – –

Table 1: Characteristics of the FE meshes and point clouds used in the semi-
synthetic validation.

4.2. Validation Methodology
The semi-synthetic flank volume is used to assess the accu-

racy and feasibility of the registration proposed in 3. The vali-
dation procedure proceeds as follows:

Model reconstruction: The meshes MINIT
1 and MINIT

2 gener-
ated in step S1 described above are used by the biomechani-
cal model employed by the registration method. We recall that
only the fine mesh MINIT

1 was used to generate the synthetic
flank image, while the coarse mesh was not directly employed
in the simulation (S2). This mesh is utilized in the validation
in order to avoid a potential bias introduced by using the same
mesh to generate the synthetic data as well as to perform the
registration.

Surface extraction: For the sake of validation, two clouds are
extracted from the CBCT image generated in step S4. First,
similarly as in the case of the pre-operative model, the liver is
carefully segmented from the synthesized CBCT image using
interactive manual segmentation and the surface mesh is ex-
tracted from the segmented map using the method based on De-
launay refinement; this time only surface patches are extracted
since the volume elements are not needed. This process results
in a point cloud C1 composed of 594 points distributed over the
surface of the liver.

Since a lengthy manual segmentation would not be feasible in
the intra-operative clinical setting, we generate another cloud
C2 to demonstrate that the method is robust w. r. t. the segmen-
tation quality. For this purpose, the CBCT image is first down-
sampled to 256 × 256 × 60 voxels, i. e. the number of axial
slices is radically reduced in order to accelerate further pro-
cessing. Next, the liver is segmented from the low-resolution
image using a semi-automatic active-contour method (Yushke-
vich et al., 2006). Due to the noise, it is necessary to apply
several manual corrections, however, the time needed to obtain
the low-resolution segmented map of liver including the neces-
sary corrections does not exceed 10 minutes. Finally, the fast
Delaunay refinement method is applied to the low-resolution
liver resulting in a cloud C2 composed of 576 points generated
in less than 20 seconds.

Registration: Four surface-matching registrations are per-
formed using the two meshes MINIT

1 and MINIT
2 , each being

registered to two point clouds C1 and C2, resulting in four reg-
istered meshesMREG1

1 ,MREG2
1 ,MREG1

2 andMREG2
2 . In this val-

idation scenario, we do not focus on the parametrization of the
registration method which is studied on real data. Therefore,
we only report the values used for the registration: ν = 0.45,
E=5 kPa and τ = 0.09.

Error evaluation: Each registered mesh MREGc
m , c ∈ {1, 2},

m ∈ {1, 2}, generated by the registration process can be directly
compared to its counterpart MSIM

m obtained by the simulation
process in step S2. We recall that onlyMINIT

1 was used to gen-
erate the simulation, while MINIT

2 was only deformed to flank
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Figure 5: Four different views visualizing the spatial distribution of the target registration error over the liver volume.

configuration via mapping for the sake of the unbiased valida-
tion. Thus, four pairs (MSIM

m ,MREGc
m ) can be used to compute

the target registration error

TREn = ||xSIM
n − xREG

n || (11)

where xREG
n is the position of node n in the registered mesh

MREGc
m and xSIM

n is the position of the same node the ground-
truth meshMSIM

m .

In order to quantify the improvement brought by the registra-
tion method, we also compute the initial error using the unreg-
istered meshesMINIT

m :

IEn = ||xSIM
n − xINIT

n || (12)

where and xINIT
n is the position of the node n the initial unregis-

tered meshMINIT
m .

4.3. Results
As described in section 4.2, the validation on synthetic

data was performed on two different meshes M1 and M2 and
with two different clouds extracted by manual and fast semi-
automatic registration. The statistics (mean, median and maxi-
mum) of both the initial and target registration errors computed
over all the nodes of the registered meshes are presented in Ta-
ble 2. First, the initial error confirms important deformation
of the liver: for nodes fixed by the boundary conditions, the
initial displacement computed by the biomechanical simulation
remains zero. Other parts of the liver subjected to the gravity
force are significantly displaced up to more than 5 cm.

The reported results show that the registration method is ca-
pable of registering the tissue undergoing such significant de-
formation: the mean and median of the TRE is reduced un-
der 4.2 mm and maximum TRE decreases to values close to
1 cm. Comparing the results obtained using different meshes
reveals that the sensitivity of the method w. r. t. the 3D mesh
used for the biomechanical model is negligible. The sensitivity
w. r. t. the registration accuracy is higher, however, it remains
acceptable: the deterioration due to the fast segmentation of
low-resolution data of the both median and mean TRE remains
under 0.5 mm while the maximum TRE is increased by less
than 1.3 mm.

For the sake of better understanding of the error structure, the
histogram of TRE is plotted in Fig. 4 for two extreme cases: the
registration of fine mesh M1 to cloud C1 (extracted from the

manual segmentation) and coarse mesh M2 to cloud C2 (ex-
tracted from the fast semi-automatic segmentation). The his-
togram shows that 90% of nodes are registered with error under
6 mm and TRE exceeding 8 mm is observed in less than 4% of
nodes.

Further, a study of spatial distribution of the error was per-
formed: the visualization over the fine mesh is visualized in
several views in Fig. 5. The images indicate that the highest
error is concentrated in the areas with a significant uncertainty
related to segmentation of liver parenchyma. Typically, such
areas are located around the entry of the portal vein: in non-
injected images, it is often difficult to distinguish between the
liver parenchyma and the vessel. Similarly, the error is higher
in the left lobe which is very thin and it is difficult to distin-
guish the liver parenchyma from the stomach wall. This again
leads to higher inaccuracy in segmentation, which in turn yields
higher registration error. However, we recall that the goal of the
method is to predict the position of internal structures inside the
liver parenchyma, focusing mainly on the right part resected
during the right hepatectomy. The reported results confirm that
the method is capable of providing reliable information of dis-
placements and deformations of these internal areas.

Finally, the registration algorithm required from 15 to 20 it-
erations of the damped Newton-Raphson method. The time
needed to perform one iteration depends on the resolution of
the mesh: 5 s in the case of M1 and about 1 s in the case of
M1. Together with the initialization of the FE model, the time
needed to perform the surface-matching algorithm did not ex-
ceeded 120 s and 25 s forM1 andM2, respectively.

5. Validation Using Real Data

In the previous section, we provided the validation of the en-
tire registration process, focusing mainly on the intra-operative
pipeline composed on the extraction of the sparse representa-
tion (the point cloud) from the intra-operative images and the
surface-based registration. We assessed the accuracy of the
method w. r. t. the quality of the input data and demonstrated
that the method maintains the accuracy even if applied to data
reconstructed by fast registration techniques compatible with
clinical conditions.

In this section, we focus mainly on the surface-matching al-
gorithm which is the core of the registration pipeline. We evalu-
ate its robustness and accuracy on nine datasets, each composed
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initial error [mm]

mesh IEmean IEmed IEmax

M1 13.9 12.2 54.8

M2 14.4 13.0 52.4

target registration error [mm]

registration TREmean TREmed TREmax

M1 to C1 3.3 3.2 9.8

M1 to C2 3.8 3.7 11.0

M2 to C1 3.4 3.3 9.8

M2 to C2 4.1 4.0 11.1

Table 2: Statistics of the initial error computed using the simulated (ground-
truth) meshes MSIM

m and unregistered meshes MINIT
m in the upper table. The

lower table presents the statistics of the target registration error computed for
the combinations of meshes and clouds employed in the validation.

of a flank and supine pair of contrast-enhanced CT images ac-
quired on the same patient. The contrast enhancement intro-
duced by the intra-venous injection allows for the extraction of
vessel trees in both volumes. We employ topological matching
to construct correspondences between the two trees, which are
then used to compute the target registration error of the pro-
posed surface-based method. The accuracy of the method is
compared to a state-of-the-art intensity-based registration tech-
nique.

5.1. Validation Data

Nine data sets used for the evaluation were acquired in a
study approved by the University of British Columbia Clinical
Research Ethics Board (H08-02798). The contrast-enhanced
CT images were obtained according to a current diagnostic pro-
tocol and each patient was scanned in the flank and supine posi-
tion. The data sets were collected using three different scanners:
Siemens Somatom Sensation, GE Medical Systems LightSpeed
VCT and CT Toshiba Acquillion. Slightly different resolutions
were used during the acquisitions: the voxel size ranges be-
tween 0.6 and 0.9 mm in coronal and saggital directions, and
between 1.3 and 5 mm in the axial direction. Before further
processing, the supine image was rotated by 90◦ around the
cranio-caudal axis to compensate for the rigid component of
the body motion due to the supine-flank repositioning. Then,
the two volumes in supine–flank pair were aligned according to
an anatomical landmark: the bifurcation of the left and right
portal vein which is close to the liver center of mass and is
clearly visible in all data sets. After the initial rigid align-
ment, the sparse structures needed by the registration method
were extracted from both volumes in each dataset. First, semi-
automatic segmentation (Yushkevich et al., 2006) followed by
manual corrections was used to segment the liver from each
volume. Then, method based on the point sampling and Delau-
nay refinement (Boltcheva et al., 2009) was employed to con-
struct the volume tetrahedral mesh from the supine segmented

liver and the surface point cloud from the flank segmented liver.
Exclusively for the validation purposes, the portal or the hep-
atic vascular tree was segmented manually from each volume.
To facilitate the segmentation, the contrast of vessels was im-
proved by the anisotropic-diffusion filter (Enquobahrie et al.,
2007). The pairs of segmented trees were used to extract the
vascular features for which a topological matching was used
to establish correspondences between the flank and supine data
for each dataset. Before describing the validation pipeline in
detail, we present the algorithms for extractions of features and
topological matching.

5.2. Extraction of Features from Hepatic Vascularization

The manual extraction of features from medical data such as
the one presented in Reinertsen et al. (2007) usually provides
only a small number of features. In the case of tissues with
important vascularization such as liver, a set of features can be
extracted from vessel bifurcations (Lange et al., 2008). Nev-
ertheless, with decreasing diameter of vessels, the number of
bifurcations which can be reliably identified along a branch in
both input images diminishes, although the branch itself is still
visible. In what follows we describe an algorithm that over-
comes this limitation.

First, the algorithm performs skeletonization of the seg-
mented tree, i. e. it converts the image into a topological tree
composed of branches represented by centerlines of the ves-
sels. The skeletonization presented in Antiga and Ene-Iordache
(2003) necessitates the construction of surface mesh, typically
extracted from centerlines via marching cubes. However, the
resulting skeleton often suffers from incompleteness as the
method is very sensitive to the quality of the segmentation: as
soon as the branch becomes too thin, the construction of the
skeleton is interrupted and ignores the remaining part of the
tree. Therefore, we employ a method based on the iterative
Dijkstra minimum cost spanning tree presented in Verscheure
et al. (2013) and extended in Plantefève et al. (2016). The
method is applied directly to the binary map of the vascular
structure which is converted into a weighted 3D graph where
each voxel belonging to the segmented volume is represented
by a weighted node. The method constructs the skeleton in two
steps: first, the spanning tree is constructed iteratively starting
from the root voxel. The edges between voxels are constructed
recursively using a sorted heap: in each step, the head of the
heap having the minimal weight is marked and all its unmarked
neighbors are inserted into the heap. The sorting weight of a
voxel is defined as 1

rb
which is the shortest distance of the voxel

from the boundary of the binary map. This quantity is precom-
puted before the construction starts by an image filter. For each
visited voxel, its distance from the tree root dr is stored.

In the second phase of the algorithm, the centerlines are ex-
tracted recursively from the spanning tree:

• The 0-order path P0 is constructed as the shortest path con-
necting the root and the voxel with the highest dr in the graph.

• Any n-order path Pn for n > 0 is extracted in three steps.
First voxel expansion is performed, so that for each voxel r
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Open segment

Open segment

Closed segment

Closed segment

Figure 6: Left: the pipeline showing the extraction and matching of vascular features. The contrast-enhanced CT images (a) are used to extract the topological trees
(b) via skelenotization and Bézier curve fitting which provide feature matching (c). Right: the scheme depicts the vessel tree matching: first, the correspondences
between the bifurcations (in green) are established via coarse matching of tree topologies. Then, fine matching is performed for each close and open segment
depicted in red and blue, respectively.

of the path Pn−1, a set Vr of all voxels accessible from r is
constructed. Second, a voxel t ∈ Vv having the maximum
value dr is found. Finally, the new path is constructed as the
shortest path from r to t, denoted as (r, t).

After the skeletonization, a Bézier curve is fitted to each seg-
ment. The parametric Bézier representation has two advan-
tages: first, it performs smoothing of centerlines which is im-
portant since the graph-based skeletonization often results in
zig-zag shapes. Second, it allows for sampling an arbitrary
number of points along the branches represented by continuous
curves.

The skeletonization and curve fitting result in a skeleton
given as a tree composed of smooth segments which are of two
types: a closed segment connects two bifurcation points while
an open segment is attached only to one bifurcation point; the
other end of the segment correspond to the termination point of
given branch. A schematic illustration of the skeleton is given
in Fig. 6.

5.3. Topological and Geometrical Matching of Skeletons
The skeleton composed of parametric curves representing the

vessel centerlines is constructed for both the flank and supine
configuration of each dataset. Although both trees represent
the vascularization of the same patient, their topology may dif-
fer due to the errors in segmentation which can miss some
branches suffering from insufficient vesselness. We first per-
form topological matching between supine and flank skeleton
in each dataset: we perform a semi-automatic method similar
to that proposed by Lange et al. (2008). The method system-
atically tests possible matching hypotheses between the bifur-
cations by searching for corresponding paths. If a topological
inconsistency is found, the hypothesis is rejected. If multiple
hypotheses are accepted, they are examined interactively. Since
the number of bifurcations is rather small (typically up to 20),
the topological matching is fast and in spurious cases, it can be
done manually.

The topological matching provides correspondences between
the bifurcation points, thus it results in a coarse matching be-
tween segments which constitute both trees. Since the segments
are represented by parametric curves, i. e. functions of a param-
eter t ∈ 〈0, 1〉, it is possible to construct a fine matching as
follows.

• Let S(t) be a closed segment of the supine tree and F (t)
the topologically matching closed segment in the flank tree.
Since the two segments match topologically, [S(0),F (0)]
and [S(1),F (1)] are valid feature correspondences where the
features are the matching end points (bifurcations) of the seg-
ments. Moreover, an arbitrary number of feature correspon-
dences [S(u),F (u)] can be constructed straightforwardly for
any chosen values of u ∈ 〈0, 1〉.

• Let S(t) be an open segment in the supine tree and F (t) its
matching segment in the flank tree. It is not important if F
is closed or open: as S(t) is open, only one topological cor-
respondence exists between the two segments: [S(0),F (0)].
In this case, it is not possible to perform fine matching us-
ing the sampling of parameters, because the terminal point
S(1) does not correspond to the terminal point F (1); e. g.
the supine segment is much shorter due to worst contrast of
the input supine image. In this case, we propose to employ
Euclidean distances to establish the fine mapping. We first
discretize both samples by short lines. Next, we compute the
length of each line and thus we approximate the total length
of each segment. Let us suppose that S is shorter. We project
S onF as follows: based on the approximative distance mea-
sure given by the discretization, we find e ∈ 〈0, 1〉 such that
dist(S(0),S(1)) ' dist(F (0),F (e)). We then replace F with
a new shortened segment F̃ which corresponds to the frac-
tion of F for t ∈ 〈0, e〉. We rescale the parameter of F̃ so that
F̃ (1) = F (e). Then, S and F̃ are treated as closed segments
and the fine matching is performed as described above.

The fine matching illustrated in Fig. 6 results in a set of feature
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FE mesh size cloud feature number of
dataset |elem.| |nodes| size source features
P1 4,674 1,068 893 hepatic 774
P2 7,636 1,828 1,029 hepatic 1,053
P3 5,691 1,279 959 portal 1,093
P4 6,473 1,428 1,027 portal 466
P5 5,939 1,365 1,006 portal 717
P6 5,891 1,313 944 hepatic 901
P7 5,631 1,281 1,003 portal 915
P8 5,883 1,328 952 portal 525
P9 6,585 1,456 1,105 portal 877

Table 3: Geometric characteristics of the data used in the surface-based registra-
tion and number of features utilized to compute the initial and target registration
errors for both the surface- and the intensity-based methods.

pairs {(s f , t f )} where s f is the position of a feature extracted
from the vascularization in the supine volume and t f is the po-
sition of (approximately) the same feature in the flank volume.

5.4. Validation Methodology

For each supine-flank pair, the validation employs the algo-
rithms of feature extraction and matching as follows:

R1 Both the sparse representations needed for the registration
procedure as well as the set of matched feature pairs are
extracted from the flank and supine image as described in
sections 5.1, 5.2 and 5.3.

R2 The liver mesh reconstructed from the supine image is
registered to the surface point cloud extracted from the
flank image using the surface-based registration presented
in section 3. At the beginning of the registration, the
positions {s f } of features extracted from the supine data
are mapped using barycentric mapping to the undeformed
mesh. As the mesh deforms during the registration pro-
cess, these positions are displaced to {s̃ f } which in fact
represent the predicted positions of the selected features in
flank configuration.

R3 For each feature f , the target registration error TRE is
computed as

TRE f = ||s̃ f − t f || (13)

where s̃ f is the position of the feature f computed by the
registration and t f is the position of the same feature ex-
tracted from the flank image. In order to quantify the ini-
tial difference between the supine and flank data, the initial
error is computed using the non-registered positions s f of
features:

IE f = ||s f − t f ||. (14)

The geometric characteristics of the FE meshes and points
clouds, together with the number of features used to com-
pute the error metrics are presented in Table 3.

Beside the evaluation of the registration error, we also present
a comparison to an intensity-based method (Modat et al., 2009,

(a) (b)

Figure 7: Visualization of liver and vascular tree from dataset P2: (a) Initial
configurations after rigid alignment. (b) Configurations after the surface-based
registration

2010) and implemented in NiftyReg packages publicly avail-
able on the Internet.4 Unlike the proposed registration scheme,
NiftyReg does not require extraction of sparse representation
but is directly applied to the input images, i. e. the rigidly
aligned flank and supine volumes. During the registration, it
aims at minimizing a similarity metric (SSD or NMI) and the
optimization process is regularized by four penalty terms: elas-
tic energy, bending energy, L2-norm of displacement and log-
penalty of the Jacobian of the computed transformation. The
influence of each term is given by a weight: we1 and we2 as-
sociated with the elastic energy term and wB, wL and wJ , each
associated with one of the other three regularization terms. Be-
side the registered image, NiftyReg also exports the registration
transformation. We use it to transform the positions s f of fea-
tures in the supine configuration in order to obtain the registered
feature positions s̃Nifty

f . Therefore, we evaluate the target regis-
tration error TRENifty using the Eq. 14.

5.5. Results

The results presented in Table 4 show both the initial and
target registration errors (IE and TRE, respectively) obtained
for all flank–supine pairs. The table also reports the error de-
noted as TRENifty achieved by the intensity-based registration.
Further details about the statistics of IE, TRE and TRENifty are
visualized in Fig. 8.

First, the initial error IE evaluated on features extracted from
rigidly-aligned data prior to the deformable registration con-
firms important deformation of the liver due to the supine-flank
repositioning. Except for dataset P9, the mean initial error al-
ways exceeds 1 cm. The most significant initial deformations
are observed in datasets P2, P6, and P7 where the mean and
maximum error are close to or over 2 cm and 4 cm, respectively.
A screen shot of a typical registration scenario is presented in
Fig. 7 showing the flank and supine liver configurations before
and after the surface-based registration.

The statistics of the target registration error TRE confirms
the assessment performed on the semi-synthetic control data
presented in section 4. In all cases, the maximum registra-
tion error is reduced under 1 cm and the mean error decreases

4http://sourceforge.net/projects/niftyreg
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Figure 8: The statistics of the registration error computed in the points sampled from the vascularization. For each data set, the graph shows the initial feature
displacements computed before the deformable registration (left red box), the target registration error computed after intensity-based registration (middle green
box) and similarly the target registration error evaluated after the surface-based registration (right blue box). Each box shows the mean with standard deviation, the
whiskers depict the 25th and 75th percentiles and red crosses represent the outliers between the 75th percentile and the maximum TRE.

(a) (b) (c)

Figure 9: Error histograms evaluated for dataset P2: (a) the initial error, (b) the target registration error obtained by the intensity-based registration, (c) the target
registration error achieved by the surface-matching registration.

under 4.5 mm. The evaluation of the intensity-based registra-
tion reveals, that the method is also capable of reducing the
target registration error significantly. However, only in dataset
P8 with the least significant deformations the values compa-
rable to those obtained by the surface-based registration are
achieved. In seven datasets, the maximum target registration
error remains over 14 mm.

In order to better understand the distribution of the error, the
IE and TRE histograms are plotted in Fig. 9. In the case of
the surface-based method, the TRE in 75% of features remains
under 5 mm. However, in case of the intensity-based method,
the same percentile is close to 15 mm.

The performance of the surface-based registration depends
on the number of iterations of the damped Newton-Raphson
method. Using the geometries listed in Table 3, the number of
iterations never exceeded 60 and the time needed to perform
single iteration remained under 1.2 s on a PC equipped with
Intel i7-3770 CPU running at 3.4 GHz. Therefore, given the
sparse representations of the source and target image data, the
time necessary to perform the surface-based algorithm is re-
mains under 70 s.

In the case of the intensity-based method, the time needed
to compute the transformation heavily depends on the choice
of the regularization terms: when computed on CPU (Intel i7-

3770), the time varies between 1 and 30 minutes. For some
regularization terms, a GPU version exists reducing the compu-
tation time to 2 minutes.

6. Discussion

6.1. Parametrization of Registration Methods

The important aspect of any registration technique is its
parametrization: if the method depends on a large number of
parameters and/or it is necessary to find the optimal patient-
specific parametrization to achieve an acceptable accuracy of
the registration, its deployment in an intra-operative scenario is
highly questionable. First, in order to determine the parame-
ters, it is necessary to have an access to the cost function used
to quantify the optimality of given parametrization. In this pa-
per, the cost function is represented by the TRE computed ei-
ther from the ground truth in the case of synthetic data or from
the vascular features extracted from both the supine and flank
images for the sake of validation. However, in a clinical sce-
nario, the cost function is typically unavailable. Moreover, op-
timizing for parameters requires iterative execution of the reg-
istration procedure. Again, this is not desirable in the intra-
operative scenario as it would dramatically increase the time
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initial surface-based intensity-based
set IEmean IEmax TREmean TREmax TRENifty

mean TRENifty
max

P1 11.9 35.9 4.5 8.7 7.8 19.3
P2 19.1 48.5 3.4 8.5 11.4 39.8
P3 11.9 29.8 4.0 9.7 4.9 15.0
P4 17.7 33.3 4.3 7.3 11.1 19.8
P5 13.0 32.1 3.7 7.9 7.0 14.9
P6 20.7 39.3 4.1 8.0 9.8 24.4
P7 22.4 51.4 3.9 8.8 8.2 22.5
P8 7.2 16.9 3.3 8.3 3.5 8.5
P9 11.0 26.7 2.8 6.2 5.8 13.4
P* 15.0 51.4 3.8 9.7 7.7 39.8

Table 4: Statistics (in [mm]) of the initial and registration errors computed
for each dataset as well as across all the datasets (bottom line). The results
were obtained for an optimal parametrization presented in Tab. 5; the questions
related to the parametrization of both methods is discussed in section 6

Intensity-based method Surface-based method
set non-zero weights metric ν E [kPa] τ

P1 we1 = 0.25 SSD 0.45 4.0 0.03
P2 wJ = 0.075 SSD 0.45 0.5 0.09
P3 wJ = 0.75 NMI 0.30 1.0 0.09
P4 wJ = 0.125 NMI 0.45 9.5 0.06
P5 wJ = 0.6 NMI 0.45 2.0 0.02
P6 we1 = 0.05, we2 = 0.8 NMI 0.45 8.0 0.01
P7 we1 = 0.05, we2 = 0.25 SSD 0.40 8.0 0.03
P8 we1 = 0.15 NMI 0.45 0.1 0.001
P9 we1 = 0.05, we2 = 0.85 NMI 0.45 3.0 0.1

Table 5: The optimal parametrization for each supine–flank pair for both inten-
sity based (left) and surface-based (right) methods. These parametrization have
been used to achieve the results reported in Table 4. For the intensity-based
method, only the non-zero values of regularization weights are reported.

needed for execution of the method. Therefore, to make a regis-
tration method compatible with the intra-operative setting, it is
necessary to find a generic parametrization, i. e. a parametriza-
tion which is not patient-specific but yields an acceptable per-
formance for any dataset.

The results presented in terms of TRE in Table 4 were
achieved for optimal parametrizations reported in Table 5.
These values were found via parametric studies executed for
each data set. In the following section, we exploit the results
of these studies to find the generic parametrization for each
method.

6.2. Parametrization of the Surface-based Method
The proposed surface-matching registration method requires

three parameters related to the biomechanical model and the
solution method: Young’s modulus E, Poissons’s ratio ν and
damping parameter τ described in section 3.2. Since a homoge-
neous model is employed, the Young’s modulus and Poisson’s
ratio are constant over the volume.

We recall that in the proposed scenario, the role of the biome-
chanical model is to penalize the elastic energy of the defor-
mation. During the registration, the deformation of the model
is driven by positional constraints of the surface nodes and the

set TREmean (diff.) [mm] TREmax (diff.) [mm]
P1 4.6 (+0.1) 9.0 (+0.3)
P2 3.6 (+0.2) 9.0 (+0.5)
P3 4.0 (0.0) 10.1 (+0.4)
P4 4.2 (-0.1) 8.8 (+1.5)
P5 3.6 (-0.2) 8.0 (+0.1)
P6 4.3 (+0.2) 9.5 (+1.5)
P7 4.9 (+1.0) 10.8 (+2.0)
P8 3.3 (0.0) 10.2 (+1.9)
P9 2.9 (0.1) 6.6 (+0.4)

Table 6: Target registration error computed by surface-matching method
parametrized with the generic parametrization where for each dataset, E=3 kPa,
τ = 0.02 and ν=0.45. The table also show the difference w. r. t. to the values of
the registration error achieved for the optimal parametrizations presented in Ta-
ble 4.

observed quantity is also represented by positional data, the dis-
placement of the points where the registration error is evaluated.
Problems of this type are known as displacement—zero traction
problems and in general, the solution of such problems does
not depend on the absolute value of the elastic modulus (Wit-
tek et al., 2009). However, in the proposed method, the surface
displacements are not prescribed strictly due to the damping
coefficient τ. This quantity has its own physical interpretation
and plays a complementary role w. r. t. the Young’s modulus as
explained in section 3.4.

In order to explore the influence of all the parameters on
the accuracy of the method, we have performed a sensitivity
study consisting of about 2,700 evaluation of the TREfor differ-
ent parametrizations of the method. The parametrizations were
generated systematically for all combinations of 4 different val-
ues of ν ∈ {0.2, 0.3, 0.4, 0.45}, 26 different values of E chosen
from the interval 〈100 Pa, 50 kPa〉 and 26 different values of τ
chosen from the interval 〈0.001, 2.0〉. First, we observed that
typically the best registration results are obtained for Poisson’s
ratio ν ∈ {0.4, 0.45} being close to ν = 0.49̄ representing the
incompressibility. Moreover, the overall influence of ν on the
resulting error is very small: the variations of TREmax evaluated
for different values of ν does not exceed 1 mm in all data sets
and the impact on the TREmean is less than 0.2 mm.

The sensitivity of the registration method is depicted in
Fig. 10 where the maximum target registration error TREmax is
plotted as a 2D function of Young’s modulus and Poisson ratio.
The first two plots showing the sensitivity in datasets P2 and P3
are typical representatives since very similar valley evoking the
reciprocal function was observed also for P1, P4, P5, P7 and
P9. In the case of P6, the shape of the function is slightly differ-
ent as the accuracy deteriorates for high values of the damping
coefficient τ in combination with low Young’s modulus. This
can be explained by higher sensitivity of given data set w. r. t.
τ: the left bottom quadrant of the plot for P6 is similar to the
shape observed for P2. Finally, the dataset P8 shows a different
pattern: In this case, error surface is flat except for low values of
τ = 0.001 in combination with E>10 kPa. This dataset is par-
ticular: the initial difference between the flank and supine con-
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(a) (b) (c) (d)

Figure 10: Examples of the sensitivity analysis of the shape-matching registration w. r. t. the Young’s modulus E and damping coefficient τ for datasets P2 (a), P3
(b), P6 (c) and P8 (d). The combination of parameters resulting in the optimal values of TREmax reported in table 4 is marked with +. In all cases, the Poisson’s
ratio is set to ν = 0.45.

figuration is relatively small when compared to other datasets
and it is the only dataset where the surface- and intensity-based
method give comparable results. These observations suggest
that in the case of P8, the role of the model is limited to a sim-
ple interpolator and in that case, the method is insensitive to
damping, thus, it is not necessary to account for the inaccura-
cies related to the segmentation. The parameter sensitivity stud-
ies confirm the complementary role of Young’s modulus and the
damping coefficient. Despite this complementarity, performing
a parameter reduction by replacing the pair (E, τ) with a single
parameter is not straightforward since while E is a parameter
of the mechanical model, τ is a coefficient introduced by the
iterative solution method.

Further, the generic parametrization w. r. t. the maximum tar-
get registration error over the datasets d ∈ {P1, . . .P9} is pro-
posed as follows. Let εd(E, τ) denotes the TREmaxof the dataset
d, being defined as a function of the parameters E and τ. Fur-
ther, let εopt

d are the optimal values of TREmax found for each
dataset, i. e. the values reported in Table 4.

Then, the generic parametrization Egen and τgen is computed
by minimization

arg min
E,τ

∑
d

|εd(E, τ) − εopt
d | (15)

i. e., Egen and τgen are chosen so that the difference w. r. t. the
optimal parametrization found for each dataset is minimized.

The generic parametrization computed over nine supine-
flank datasets is given by E=3 kPa and τ = 0.02. The target reg-
istration errors obtained with this parametrization is presented
in Table 6 for each dataset together with the difference w. r. t.
the error achieved with the optimal parametrization presented
in Table 4. Since the generic parametrization was constructed
w. r. t. the maximum target registration error TREmax, this quan-
tity increased for every dataset. The most significant difference
w. r. t. the optimal parametrization is observed in datasets P7
and P9 but also in these cases, it does not exceed 2 mm. The
differences in TREmean are much less important: only in patient
P7 the difference attains 1 mm; in other cases it remains un-
der 0.3 mm and in P4 and P5 the generic parametrization (con-

structed w. r. t. TREmax) even slightly improves the mean target
registration error.

Based on the available patient data, it is possible to conclude
that using the generic parametrization to perform the registra-
tion of each flank–supine pair does not deteriorate the accu-
racy of registration. This result indicates that when it comes to
parametrization, the method is compatible with a clinical intra-
operative scenario.

6.3. Parametrization of the Intensity-based Method

We performed a parameter sensitivity analysis study also for
the intensity-based registration method. In this case, the space
was large due to the higher number of parameters given by 5
regularization weights listed in section 5.4 and the possibility
to choose from two similarity metrics. Moreover, the execution
time needed for single registration varies significantly between
1 and 30 minutes. For these reasons, it was not possible to
perform the systematic search comparable to the one performed
for the surface-based method.

Instead, we first performed the registration for 3,124 dif-
ferent parametrization sampled sparsely from the paramet-
ric space: each parametrization was given by the com-
bination of all parameters set to one of the values from
{0.0, 0.0001, 0.001, 0.01, 0.1}. We observed that some combina-
tions resulted in over-constraining regularization, i.e., the reg-
istration transformation remained closed to identity. Alterna-
tively, some combinations contained redundant terms: for ex-
ample, in case of non-zero weights of the elastic terms, non-
zero bending energy term does not influence the result signifi-
cantly since the bending is already penalized by the elastic en-
ergy term. Based on this coarse initial study, we have selected
tree pairs of regularization parameters for which we performed
systematic sweeps: (we1, we2), (wB,wJ) and (wB,wL) and for
each parameter pair we computed registration for combination
of parameters. Elastic and Jacobian energy weights we1, we2
and wJ were sampled over the entire admissible interval 〈0, 1〉
with step of 0.02. Since the registration accuracy exhibited
much higher sensitivity w. r. t. wB this parameter was sampled
from the interval 〈0, 0.0015〉 with step 3.10−5.
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Figure 11: Examples of the sensitivity analysis of the intensity-based registration w. r. t. elastic regularization parameters (wE1,wE2) for datasets P1 (a) and P6 (b),
and w. r. t. to Jacobian and bending energy regularization parameters (wB, wJ) for datasets P2 (c) and P9 (d). The combination of parameters resulting in the optimal
values of TREmax reported in table 4 is marked with +. In case of elastic regularization, the combinations for which wE1 + wE2 ≥ 1 simply maintain the unregistered
form of the source image.

In all datasets, the highest accuracy was attained with nor-
malized mutual information similarity metric. While the regu-
larization with non-zero coefficients we1 and we2 of the elastic
energy term gives better results in datasets P5, P6, P7, the reg-
ularization with non-zero wB and wJ yields higher accuracy in
P2, P3 and P4. For the rest (P1, P8, P9), comparable results
were obtained for both types of regularization. The regular-
ization employing the L2 norm of displacement field was not
capable to achieve the optimal accuracy in any dataset for any
wL > 0.

The examples of TREmax visualized as a function of either
(we1, we2) or (wB,wJ) are visualized in Fig. 11. The plots
indicate that the choice of optimal parametrization is highly
patient-specific. Moreover, the irregular shape of the error sur-
face does not allow for choosing a reliable generic parametriza-
tion yielding close-to-optimal accuracy in all datasets. When
compared to the parametrization of the surface-based method
where such generic parametrization was successfully estab-
lished for nine supine–flank pairs, the necessity of a patient-
specific parametrization of the intensity-based method reduces
the compatibility of this technique with the intra-operative set-
ting.

6.4. Surface-based Registration in Intra-operative Setting

Finally, we briefly discuss the deployment of the surface-
based method in a clinical scenario. Since the construction
of the 3D mesh is done pre-operatively, the procedure is not
time-critical. However, this is not the case for the surface point
cloud which must be extracted rapidly during the intervention
as the first phase of the registration pipeline. Given a segmented
map of an organ, a high-quality cloud point can be extracted
in less than 20 seconds using the Delaunay refinement algo-
rithm. Similarly, the surface-matching algorithm applied to the
biomechanical model and the surface cloud point takes about
1 minute. Therefore, the time needed for the intra-operative
segmentation remains the only critical factor.

In section 4, we demonstrated that liver can be segmented
semi-automatically from the simulated CBCT volume in less

than 10 minutes using low-resolution image, while preserving
the acceptable accuracy of the surface-based registration. We
believe that this procedure could be further improved in terms
of both the speed and accuracy. For example, a fully automatic
atlas-based segmentation of CBCT images is proposed in Li
et al. (2012, 2014). Further, the image acquisition systems in-
cluding the intra-operative scanners make use of algorithms of
automatic segmentation (Heizmann et al., 2010). Finally, the
recent advances in machine learning show promising results in
the area of automatic segmentation of medical images (Christ
et al., 2017).

7. Conclusions and Future Work

In this paper, we presented a model-based registration
method based on a combination of co-rotational formulation of
linear elasticity and iterative closest point. The method was
proposed in the context of surgical navigation where an intra-
operative modality provides the information about the actual
shape of the organ, but it gives no information about the loca-
tion of the important internal structures. As the case study, we
focused on right hepatectomy which requires an update of the
resection plan taking into account the supine-flank reposition-
ing of the patient which results in large deformations of the liver
parenchyma.

After describing the registration method together with nec-
essary data processing in section 3, we first provided a valida-
tion employing control data 4. The goal of the assessment was
twofold: (i) to quantify the registration error using a ground
truth and (ii) to demonstrate the compatibility of the proposed
method with the clinical setting. First, we presented a detailed
description of the control data generation where a real contrast-
enhanced CT image acquired in supine position is transformed
to low-contrast CBCT image mimicking the flank position.
Then, two different FE meshes having different size of elements
were reconstructed from the pre-operative image and two dif-
ferent point clouds were extracted from the synthesized image
using manual and fast semi-automatic segmentation. Finally,
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the registration was performed for four combinations of meshes
and point clouds in order to evaluate the impact of the input
data quality on the accuracy of the method. Since the ground
truth represented by a deformed model used in the generation
of the CBCT image was available, initial and target registration
errors were computed in the nodes of the FE mesh employed
by the biomechanical model. Despite very large deformations
yielding the maximum and mean initial error exceeding 13 mm
and 50 mm, respectively, the method was capable to perform
a physically valid registration: The mean and maximum target
registration error were reduced under 4.1 mm and 11.1 mm, re-
spectively.

In the second validation procedure, the error of the registra-
tion method was evaluated on nine pairs of real supine–flank
images. In this case, a dedicated validation platform was pro-
posed, based on a topological and geometrical matching of vas-
cular trees extracted from the input images. Similarly as in
the case of control data, the initial and target registration er-
rors were computed. It was observed that in all patients, the
maximum and mean target registration error were reduced to
less then 10 mm and 4.5 mm, respectively. The method was
compared to an intensity-based technique which aims at mini-
mizing a similarity metric. However, only in one supine–flank
pair, the results comparable to the surface-matching algorithm
and in datasets with large initial error (mean > 17 mm and max.
> 30 mm), intensity-based method was not capable to perform
a reliable registration with acceptable accuracy.

Finally, a discussion dealing with the parametrization of the
registration method was presented. It was shown that while in
the surface-based method, a generic parametrization could be
found, yielding a close-to-optimal for all tested datasets. Sim-
ilar result was not achieved for the intensity-based registration
where the parametrization seems to be patient-specific, thus the
applicability of the method to intra-operative scenarios remains
questionable.

As future work, we will aim at shortening the time needed
to extract the intra-operative surface. We believe that using the
state-of-the-art machine learning techniques, the extraction of
the surface cloud can be significantly accelerated.

Appendix

Here, we show the definition of the vector ge of the ele-
ment internal forces and the local matrix Ke assembled for each
element of the model mesh M in every step of the Newton-
Raphson method. Given a tetrahedral P1 element e equipped
with four linear interpolation functions ϕv(qx, qy, qz) = av +

bvqx + cvqy + dvqz, v ∈ {1, 2, 3, 4}. The coefficients av, bv, cv, dv

are obtained solving the following system for each right-hand
side unit vector:

1 qx
1 qy

1 qz
1

1 qx
2 qy

2 qz
2

1 qx
3 qy

3 qz
3

1 qx
4 qy

4 qz
4




a
b
c
d

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (16)

where (qx
v , q

y
v, qz

v) is the 3D position of vertex v.

Then, based on the discretized formulation of linear elastic-
ity, the strain-displacement matrix is defined as

Be =



b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4
0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4


(17)

and stress-strain matrix is given by

De =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(18)

where λ and µ are Lamé coefficients defined in terms of Young’s
modulus E and the Poisson ratio ν as

λ =
Eν

(1 + ν)(1 − 2ν)
µ =

E
2 + 2ν

. (19)

In the co-rotational approach, it is necessary to compute the
rotation matrix re of the element e given its actual deformation.
This is done by first computing the transformation between the
original shape of the element and the actual shape given by 3
edges of the element attached to the same node. This transfor-
mation contains both the rotation and the deformation of the
element and the rotational component is obtained using SVD
decomposition which yields the 3×3 rotation matrix re which is
then organized into 12×12 matrix Re which consists of 4 copies
of re along its diagonal. For further details see (Nesme et al.,
2005).

Putting it all together, the element internal forces are given
by a vector of length 12 computed as

ge =

∫
Ve

R>e B>e DeBeReuedV = veR>e B>e DeBeReue (20)

and the element tangent stiffness is given by a 12×12 matrix

Ke =

∫
Ve

R>e B>e DeBeRedV = veR>e B>e DeBeRe. (21)

In both definitions, the integral over the volume of the element
is computed as multiplication by the element volume ve, since
the integrand does not depend on the position within the P1
tetrahedron thanks to the linearity of the interpolation functions.
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