1,372 research outputs found

    A new approach for the in-vivo characterization of the biomechanical behavior of the breast and the cornea

    Full text link
    The characterization of the mechanical behavior of soft living tissues is a big challenge in Biomechanics. The difficulty arises from both the access to the tissues and the manipulation in order to know their physical properties. Currently, the biomechanical characterization of the organs is mainly performed by testing ex-vivo samples or by means of indentation tests. In the first case, the obtained behavior does not represent the real behavior of the organ. In the second case, it is only a representation of the mechanical response of the indented areas. The purpose of the research reported in this thesis is the development of a methodology to in-vivo characterize the biomechanical behavior of two different organs: the breast and the cornea. The proposed methodology avoids invasive measurements to obtain the mechanical response of the organs and is able to completely characterize of the biomechanical behavior of them. The research reported in this thesis describes a methodology to in-vivo characterize the biomechanical behavior of the breast and the cornea. The estimation of the elastic constants of the constitutive equations that define the mechanical behavior of these organs is performed using an iterative search algorithm which optimizes these parameters. The search is based on the iterative variation of the elastic constants of the model in order to increase the similarity between a simulated deformation of the organ and the real one. The similarity is measured by means of a volumetric similarity function which combines overlap-based coefficients and distance-based coefficients. Due to the number of parameters to be characterized as well as the non-convergences that the solution may present in some regions, genetic heuristics were chosen to drive the search algorithm. In the case of the breast, the elastic constants of an anisotropic hyperelastic neo-Hookean model proposed to simulate the compression of the breast during an MRI-guided biopsy were estimated. Results from this analysis showed that the proposed algorithm accurately found the elastic constants of the proposed model, providing an average relative error below 10%. The methodology was validated using breast software phantoms. Nevertheless, this methodology can be easily transferred into its use with real breasts. In the case of the cornea, the elastic constants of a hyperelastic second-order Ogden model were estimated for 24 corneas corresponding to 12 patients. The finite element method was applied in order to simulate the deformation of the human corneas due to non-contact tonometry. The iterative search was applied in order to estimate the elastic constants of the model which approximates the most the simulated deformation to the real one. Results showed that these constants can be estimated with an error of about 5%. After the results obtained for both organs, it can be concluded that the iterative search methodology presented in this thesis allows the \textit{in-vivo} estimation the patient-specific elastic constants of the constitutive biomechanical models that govern the biomechanical behavior of these two organs.Lago Ángel, MÁ. (2014). A new approach for the in-vivo characterization of the biomechanical behavior of the breast and the cornea [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/44116TESI

    Comparison of registration strategies for USCT–MRI image fusion: preliminary results

    Get PDF
    Comparing Ultrasound Computer Tomography (USCT) to the well-known Magnetic Resonance Imaging (MRI) is an essential step in evaluating the clinical value of USCT. Yet the different conditions of the breast either embedded in water (USCT) or in air (MRI) prevent direct comparison. In this work we compare two strategies for image registration based on biomechanical modeling to automatically establish spatial correspondence: a) by applying buoyancy to the MRI, or b) by removing buoyancy from the USCT. The registration was applied to 9 datasets from 8 patients. Both registration strategies revealed similar registration accuracies (MRI to USCT: mean = 5.6 mm, median = 5.6 mm, USCT to MRI: mean = 6.6 mm, median = 5.7 mm). Image registration of USCT and MRI allows to delineate corresponding tissue structures in both modalities in the same or nearby slices. Our preliminary results indicate that both simulation strategies seem to perform similarly. Yet the newly developed deformation of the USCT volume is less computationally demanding: As the breast is subjected to buoyancy it can thereby serve as the unloaded state while for the contrary strategy we have to solve an inverse problem

    Analytical derivation of elasticity in breast phantoms for deformation tracking

    Get PDF
    Patient-specific biomedical modeling of the breast is of interest for medical applications such as image registration, image guided procedures and the alignment for biopsy or surgery purposes. The computation of elastic properties is essential to simulate deformations in a realistic way. This study presents an innovative analytical method to compute the elastic modulus and evaluate the elasticity of a breast using magnetic resonance (MRI) images of breast phantoms.An analytical method for elasticity computation was developed and subsequently validated on a series of geometric shapes, and on four physical breast phantoms that are supported by a planar frame. This method can compute the elasticity of a shape directly from a set of MRI scans. For comparison, elasticity values were also computed numerically using two different simulation software packages.Application of the different methods on the geometric shapes shows that the analytically derived elongation differs from simulated elongation by less than 9% for cylindrical shapes, and up to 18% for other shapes that are also substantially vertically supported by a planar base. For the four physical breast phantoms, the analytically derived elasticity differs from numeric elasticity by 18% on average, which is in accordance with the difference in elongation estimation for the geometric shapes. The analytic method has shown to be multiple orders of magnitude faster than the numerical methods.It can be concluded that the analytical elasticity computation method has good potential to supplement or replace numerical elasticity simulations in gravity-induced deformations, for shapes that are substantially supported by a planar base perpendicular to the gravitational field. The error is manageable, while the calculation procedure takes less than one second as opposed to multiple minutes with numerical methods. The results will be used in the MRI and Ultrasound Robotic Assisted Biopsy (MURAB) project

    A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time

    Full text link
    [EN] This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 man, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (< 0.2 s).This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R and DPI2013-40859-R with the support of European FEDER funds.Martínez Martínez, F.; Rupérez Moreno, MJ.; Martínez-Sober, M.; Solves Llorens, JA.; Lorente, D.; Serrano-Lopez, A.; Martinez-Sanchis, S.... (2017). A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Computers in Biology and Medicine. 90:116-124. https://doi.org/10.1016/j.compbiomed.2017.09.019S1161249

    Towards an in-plane methodology to track breast lesions using mammograms and patient-specific finite-element simulations

    Get PDF
    In breast cancer screening or diagnosis, it is usual to combine different images in order to locate a lesion as accurately as possible. These images are generated using a single or several imaging techniques. As x-ray-based mammography is widely used, a breast lesion is located in the same plane of the image (mammogram), but tracking it across mammograms corresponding to different views is a challenging task for medical physicians. Accordingly, simulation tools and methodologies that use patient-specific numerical models can facilitate the task of fusing information from different images. Additionally, these tools need to be as straightforward as possible to facilitate their translation to the clinical area. This paper presents a patient-specific, finite-element-based and semi-automated simulation methodology to track breast lesions across mammograms. A realistic three-dimensional computer model of a patient''s breast was generated from magnetic resonance imaging to simulate mammographic compressions in cranio-caudal (CC, head-to-toe) and medio-lateral oblique (MLO, shoulder-to-opposite hip) directions. For each compression being simulated, a virtual mammogram was obtained and posteriorly superimposed to the corresponding real mammogram, by sharing the nipple as a common feature. Two-dimensional rigid-body transformations were applied, and the error distance measured between the centroids of the tumors previously located on each image was 3.84 mm and 2.41 mm for CC and MLO compression, respectively. Considering that the scope of this work is to conceive a methodology translatable to clinical practice, the results indicate that it could be helpful in supporting the tracking of breast lesions

    Biomechanical Modeling and Inverse Problem Based Elasticity Imaging for Prostate Cancer Diagnosis

    Get PDF
    Early detection of prostate cancer plays an important role in successful prostate cancer treatment. This requires screening the prostate periodically after the age of 50. If screening tests lead to prostate cancer suspicion, prostate needle biopsy is administered which is still considered as the clinical gold standard for prostate cancer diagnosis. Given that needle biopsy is invasive and is associated with issues including discomfort and infection, it is desirable to develop a prostate cancer diagnosis system that has high sensitivity and specificity for early detection with a potential to improve needle biopsy outcome. Given the complexity and variability of prostate cancer pathologies, many research groups have been pursuing multi-parametric imaging approach as no single modality imaging technique has proven to be adequate. While imaging additional tissue properties increases the chance of reliable prostate cancer detection and diagnosis, selecting an additional property needs to be done carefully by considering clinical acceptability and cost. Clinical acceptability entails ease with respect to both operating by the radiologist and patient comfort. In this work, effective tissue biomechanics based diagnostic techniques are proposed for prostate cancer assessment with the aim of early detection and minimizing the numbers of prostate biopsies. The techniques take advantage of the low cost, widely available and well established TRUS imaging method. The proposed techniques include novel elastography methods which were formulated based on an inverse finite element frame work. Conventional finite element analysis is known to have high computational complexity, hence computation time demanding. This renders the proposed elastography methods not suitable for real-time applications. To address this issue, an accelerated finite element method was proposed which proved to be suitable for prostate elasticity reconstruction. In this method, accurate finite element analysis of a large number of prostates undergoing TRUS probe loadings was performed. Geometry input and displacement and stress fields output obtained from the analysis were used to train a neural network mapping function to be used for elastopgraphy imaging of prostate cancer patients. The last part of the research presented in this thesis tackles an issue with the current 3D TRUS prostate needle biopsy. Current 3D TRUS prostate needle biopsy systems require registering preoperative 3D TRUS to intra-operative 2D TRUS images. Such image registration is time-consuming while its real-time implementation is yet to be developed. To bypass this registration step, concept of a robotic system was proposed which can reliably determine the preoperative TRUS probe position relative to the prostate to place at the same position relative to the prostate intra-operatively. For this purpose, a contact pressure feedback system is proposed to ensure similar prostate deformation during 3D and 2D image acquisition in order to bypass the registration step

    Deformable Model for 3D Intramodal Nonrigid Breast Image Registration with Fiducial Skin Markers

    Get PDF
    We implemented a new approach to intramodal non-rigid 3D breast image registration. Our method uses fiducial skin markers (FSM) placed on the breast surface. After determining the displacements of FSM, finite element method (FEM) is used to distribute the markers’ displacements linearly over the entire breast volume using the analogy between the orthogonal components of the displacement field and a steady state heat transfer (SSHT). It is valid because the displacement field in x, y and z direction and a SSHT problem can both be modeled using LaPlace’s equation and the displacements are analogous to temperature differences in SSHT. It can be solved via standard heat conduction FEM software with arbitrary conductivity of surface elements significantly higher than that of volume elements. After determining the displacements of the mesh nodes over the entire breast volume, moving breast volume is registered to target breast volume using an image warping algorithm. Very good quality of the registration was obtained. Following similarity measurements were estimated: Normalized Mutual Information (NMI), Normalized Correlation Coefficient (NCC) and Sum of Absolute Valued Differences (SAVD). We also compared our method with rigid registration technique

    Comparing Regularized Kelvinlet Functions and the Finite Element Method for Registration of Medical Images to Sparse Organ Data

    Full text link
    Image-guided surgery collocates patient-specific data with the physical environment to facilitate surgical decision making in real-time. Unfortunately, these guidance systems commonly become compromised by intraoperative soft-tissue deformations. Nonrigid image-to-physical registration methods have been proposed to compensate for these deformations, but intraoperative clinical utility requires compatibility of these techniques with data sparsity and temporal constraints in the operating room. While linear elastic finite element models are effective in sparse data scenarios, the computation time for finite element simulation remains a limitation to widespread deployment. This paper proposes a registration algorithm that uses regularized Kelvinlets, which are analytical solutions to linear elasticity in an infinite domain, to overcome these barriers. This algorithm is demonstrated and compared to finite element-based registration on two datasets: a phantom dataset representing liver deformations and an in vivo dataset representing breast deformations. The regularized Kelvinlets algorithm resulted in a significant reduction in computation time compared to the finite element method. Accuracy as evaluated by target registration error was comparable between both methods. Average target registration errors were 4.6 +/- 1.0 and 3.2 +/- 0.8 mm on the liver dataset and 5.4 +/- 1.4 and 6.4 +/- 1.5 mm on the breast dataset for the regularized Kelvinlets and finite element method models, respectively. This work demonstrates the generalizability of using a regularized Kelvinlets registration algorithm on multiple soft tissue elastic organs. This method may improve and accelerate registration for image-guided surgery applications, and it shows the potential of using regularized Kelvinlets solutions on medical imaging data.Comment: 17 pages, 9 figure

    A Comparison of Numerical Methods used for\ud Finite Element Modelling of Soft Tissue\ud Deformation

    Get PDF
    Soft tissue deformation is often modelled using incompressible nonlinear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular, the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. We investigate the effect of these choices on the accuracy of the computed solution, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. We set up model problems with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). We find that the choice of pressure basis functions are vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general that it is important to take the expected regularity of the solution into account when choosing a numerical scheme
    corecore