203,639 research outputs found

    Prepontine non-giant neurons drive flexible escape behavior in zebrafish

    Get PDF
    Many species execute ballistic escape reactions to avoid imminent danger. Despite fast reaction times, responses are often highly regulated, reflecting a trade-off between costly motor actions and perceived threat level. However, how sensory cues are integrated within premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are driven by a cluster of 38 prepontine neurons that are completely separate from the fast escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input and drive motor neurons, input and output pathways for delayed escapes are indirect, facilitating integration of cross-modal sensory information. These results show that rapid decision-making in the escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the vertebrate nervous system

    The emotional gatekeeper: a computational model of attentional selection and suppression through the pathway from the amygdala to the inhibitory thalamic reticular nucleus

    Get PDF
    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.R01MH057414 - NIMH NIH HHS; R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01NS024760 - NINDS NIH HHS; R01MH101209 - NIMH NIH HHS; R01 NS024760 - NINDS NIH HH

    Integrated systems analysis reveals a molecular network underlying autism spectrum disorders.

    Get PDF
    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology

    Ensemble tractography

    Get PDF
    Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wandell, Brian A.. University of Stanford; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados Unido

    Solitonic Effects of the Local Electromagnetic Field on Neuronal Microtubules

    Get PDF
    Current wisdom in classical neuroscience suggests that the only direct action of the electric field in neurons is upon voltage-gated ion channels which open and close their gates during the passage of ions. The intraneuronal biochemical activities are thought to be modulated indirectly either by entering into the cytoplasm ions that act as\ud second messengers, or via linkage to the ion channels enzymes. In this paper we present a novel possibility for subneuronal processing of information by cytoskeletal microtubule tubulin tails and we show that the local electromagnetic field supports information that could\ud be converted into specific protein tubulin tail conformational states. Long-range collective coherent behavior of the tubulin tails could be modelled in the form of solitary waves such as sine-Gordon kinks, antikinks or breathers that propagate along the microtubule outer\ud surface, and the tubulin tail soliton collisions could serve as elementary computational gates that control cytoskeletal processes. The biological importance of the presented model is due to the unique biological enzymatic energase action of the tubulin tails, which is experimentally verified for controlling the sites of microtubule-associated protein\ud attachment and the kinesin transport of post-Golgi vesicles

    Improving treatment of glioblastoma: new insights in targeting cancer stem cells effectively

    Get PDF
    Glioblastoma is the most common primary malignant brain tumour in the adult population. Despite multimodality treatment with surgery, radiotherapy and chemotherapy, outcomes are very poor, with less than 15% of patients alive after two years. Increasing evidence suggests that glioblastoma stem cells (GSCs) are likely to play an important role in the biology of this disease and are involved in treatment resistance and tumour recurrence following standard therapy. My thesis aims to address two main aspects of this research area: 1) optimization of methods to evaluate treatment responses of GSCs and their differentiated counterparts (non-GSCs), with a particular focus on a tissue culture model that resembles more closely the tumoral niche; 2) characterization of cell division and centrosome cycle of GSCs, investigating possible differences between these cells and non-GSCs, that would allow the identification of targets for new therapeutic strategies against glioblastomas. In the first part of my project, I optimized a clonogenic survival assay, to compare sensitivity of GSCs and non-GSCs to various treatments, and I developed the use of a 3-dimentional tissue culture system, that allows analysis of features and radiation responses of these two subpopulations in the presence of specific microenvironmental factors from the tumoral niche. In the second part, I show that GSCs display mitotic spindle abnormalities more frequently than non-GSCs and that they have distinctive features with regards to the centrosome cycle. I also demonstrate that GSCs are more sensitive than non-GSCs to subtle changes in Aurora kinase A activity, which result in a rapid increase in polyploidy and subsequently in senescence, with a consistent reduction in clonogenic survival. Based on these findings, I propose that kinases involved in the centrosome cycle need to be explored as a novel strategy to target GSCs effectively and improve outcomes of glioblastoma patients

    Role of hilar mossy cells in the CA3-dentate gyrus network during sharp wave-ripple activity in vitro

    Get PDF
    Der Gyrus dentatus (DG) des Hippokampus wird als Eingangsstation für Informationen aus dem entorhinalen Kortex betrachtet. In das DG-Netzwerk sind zwei exzitatorische Zelltypen eingebettet: Körnerzellen, die Signale von dem entorhinalen Kortex empfangen, und Hilus-Mooszellen (MCs), die Signale von Körnerzellen als auch von feedback-Projektionen von CA3-Pyramidenzellen (PCs) empfangen. Postsynaptische Ziele von MC-Projektionen umfassen DG Körnerzellen und verschiedene Interneurone in der selben und in der kontralateralen Hemisphäre des Gehirns. Die Rolle von MCs während rhythmischer Populationsaktivität, und insbesondere während Sharp-Wave / Ripple-Komplexen (SWRs), ist bisher weitgehend unerforscht. SWRs sind prominente Ereignisse im Hippocampus während des Tiefschlafs (Slow wave sleep) und des ruhigen Wachzustandes, und sie sind an der Gedächtniskonsolidierung beteiligt. In der vorliegenden Arbeit, untersuchen wir mithilfe eines in-vitro-Modells von SWRs, inwieweit Mooszellen an SWRs in CA3 beteiligt sind. Mit CA3-Feldpotential-Ableitungen und gleichzeitigen ‚cell-attached‘ Messungen von einzelnen MCs konnten wir beobachten, dass ein wesentlicher Anteil von MCs (47%) während der SWRs in das aktive neuronale Netzwerk rekrutiert werden. Darüber hinaus fanden wir in MCs SWR-assoziierte synaptische Aktivität, bei denen sowohl die exzitatorischen als auch die inhibitorischen Komponenten phasenkohärent und verzögert zur Ripple Oszillation in CA3 auftreten. Simultane Patch-clamp Messungen von CA3-Pyramidenzellen und MCs zeigten längere exzitatorische und inhibitorische Latenzzeiten bei MCs, was die Hypothese einer von CA3 ausgehenden Feedback-Rekrutierung unterstützt. Unsere Daten zeigen zusätzlich, dass das Verhältnis exzitatorischer zu inhibitorischer Aktivität in MCs höher ist als in CA3-Pyramidenzellen, wodurch die MCs mit höherer Wahrscheinlichkeit während SWRs überschwellig aktiviert werden. Schließlich zeigen wir, dass ein signifikanter Anteil (66%) der getesteten Körnerzellen SWR-assoziierte exzitatorische Signale erhalten, im Vergleich zu MCs zeitlich verzögert, was auf eine indirekte Aktivierung von Körnerzellen durch CA3 PCs über MCs hinweist. Zusammengefasst zeigen unsere Daten die aktive Beteiligung von Mooszellen an SWRs und deuten auf eine funktionelle Bedeutung als Schaltstelle für das CA3- Gyrus dentatus Netzwerk in diesem wichtigen physiologischen Netzwerkzustand hin.The dentate gyrus (DG) is considered as the hippocampal input gate for the information arriving from the entorhinal cortex. Embedded into the DG network are two excitatory cell types –granule cells (GCs), which receive inputs from the entorhinal cortex, and hilar mossy cells (MCs), which receive input from GCs and feedback projections from CA3 pyramidal cells (PCs). The postsynaptic targets of MC projections are the GCs and hilar interneurons in both ipsilateral and contralateral hemispheres of the brain. The role of MCs during rhythmic population activity, and in particular during sharp-wave/ripple complexes (SWRs), has remained largely unexplored. SWRs are prominent field events in the hippocampus during slow wave sleep and quiet wakefulness, and are involved in memory consolidation and future planning. In this study, we sought to understand whether MCs participate during CA3 SWRs using an in vitro model of SWRs. With simultaneous CA3 field potential– and cell-attached recordings from MCs, we observed that a significant fraction of MCs (47%) are recruited into the active neuronal network during SWRs. Moreover, MCs receive pronounced, compound, ripple-associated synaptic input where both excitatory and inhibitory components are phase-coherent with and delayed to the CA3 ripple. Simultaneous patch recordings from CA3 pyramidal neurons and MCs revealed longer excitatory and inhibitory latencies in MCs, supporting a feedback recruitment from CA3. Our data also show that the excitatory to inhibitory charge transfer (E/I) ratio in MCs is higher than in the CA3 PCs, making the MCs more likely to spike during SWRs. Finally, we demonstrate that a significant fraction (66%) of tested GCs receive SWR-associated excitatory inputs that are delayed compared to MCs, indicating an indirect activation of GCs by CA3 PCs via MCs. Together, our data suggest the involvement of mossy cells during SWRs and their importance as a relay for CA3-dentate gyrus networks in this important physiological network state
    • …
    corecore