911 research outputs found

    Gas Source Localization Strategies for Teleoperated Mobile Robots. An Experimental Analysis

    Get PDF
    Gas source localization (GSL) is one of the most important and direct applications of a gas sensitive mobile robot, and consists in searching for one or multiple volatile emission sources with a mobile robot that has improved sensing capabilities (i.e. olfaction, wind flow, etc.). This work adresses GSL by employing a teleoperated mobile robot, and focuses on which search strategy is the most suitable for this teleoperated approach. Four different search strategies, namely chemotaxis, anemotaxis, gas-mapping, and visual-aided search, are analyzed and evaluated according to a set of proposed indicators (e.g. accuracy, efficiency, success rate, etc.) to determine the most suitable one for a human-teleoperated mobile robot. Experimental validation is carried out employing a large dataset composed of over 150 trials where volunteer operators had to locate a gas-leak in a virtual environment under various and realistic environmental conditions (i.e. different wind flow patterns and gas source locations). We report different findings, from which we highlight that, against intuition, visual-aided search is not always the best strategy, but depends on the environmental conditions and the operator’s ability to understand how gas distributes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Reactive Planning for Olfactory-Based Mobile Robots

    Get PDF
    Abstract-Olfaction is a long distance sense, which is widely used by animals for foraging or reproductive activities. Olfaction plays a significant role in natural life of most animals. For some animals, olfactory cues are far more effective than visual or auditory cues in search for objects such as foods and nests. Although chemical sensing is far simpler than vision or hearing, navigation in a chemical diffusion field is still not well understood. Therefore, this powerful primary sense has rarely been used inside the robotics community. This paper presents an effective olfactory-based planning and search algorithms for using on mobile robots. Olfactory-based mobile robots use odors as a guide to navigate and track in the unknown environments. The planning algorithms are based on Bayesian inference theory and artificial potential field methods. Inputs to the algorithms include the measured flow and the detection or non-detection events that happened at the robot location. This methodology results in algorithms for predicting likelihood of source location versus position. The robot would then optimize a desired trajectory to navigate in the odor plume and locate the odor source location

    Exploration-Exploitation Model of Moth-Inspired Olfactory Navigation

    Full text link
    Navigation of male moths toward females during the mating search offers a unique perspective on the exploration-exploitation (EE) model in decision-making. This study uses the EE model to explain male moth pheromone-driven flight paths. We leverage wind tunnel measurements and 3D tracking using infrared cameras to gain insights into male moth behavior. During the experiments in the wind tunnel, we add disturbance to the airflow and analyze the effect of increased fluctuations on moth flights in the context of the proposed EE model. We separate the exploration and exploitation phases by applying a genetic algorithm to the dataset of moth 3D trajectories. First, we demonstrate that the exploration-to-exploitation rate (EER) increases with distance from the source of the female pheromone, which can be explained in the context of the EE model. Furthermore, our findings reveal a compelling relationship between EER and increased flow fluctuations near the pheromone source. Using the open-source pheromone plume simulation and our moth-inspired navigation model, we explain why male moths exhibit an enhanced EER as turbulence levels increase, emphasizing the agent's adaptation to dynamically changing environments. This research extends our understanding of optimal navigation strategies based on general biological EE models and supports the development of advanced, theoretically supported bio-inspired navigation algorithms. We provide important insights into the potential of bio-inspired navigation models for addressing complex decision-making challenges

    An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search

    Get PDF
    Robots have been used to model nature, while nature in turn can contribute to the real-world artifacts we construct. One particular domain of interest is chemical search where a number of efforts are underway to construct mobile chemical search and localization systems. We report on a project that aims at constructing such a system based on our understanding of the pheromone communication system of the moth. Based on an overview of the peripheral processing of chemical cues by the moth and its role in the organization of behavior we emphasize the multimodal aspects of chemical search, i.e. optomotor anemotactic chemical search. We present a model of this behavior that we test in combination with a novel thin metal oxide sensor and custom build mobile robots. We show that the sensor is able to detect the odor cue, ethanol, under varying flow conditions. Subsequently we show that the standard model of insect chemical search, consisting of a surge and cast phases, provides for robust search and localization performance. The same holds when it is augmented with an optomotor collision avoidance model based on the Lobula Giant Movement Detector (LGMD) neuron of the locust. We compare our results to others who have used the moth as inspiration for the construction of odor robot

    Effective Exploration Behavior for Chemical-Sensing Robots

    Get PDF
    Mobile robots that can effectively detect chemical effluents could be useful in a variety of situations, such as disaster relief or drug sniffing. Such a robot might mimic biological systems that exhibit chemotaxis, which is movement towards or away from a chemical stimulant in the environment. Some existing robotic exploration algorithms that mimic chemotaxis suffer from the problems of getting stuck in local maxima and becoming “lost”, or unable to find the chemical if there is no initial detection. We introduce the use of the RapidCell algorithm for mobile robots exploring regions with potentially detectable chemical concentrations. The RapidCell algorithm mimics the biology behind the biased random walk of Escherichia coli (E. coli) bacteria more closely than traditional chemotaxis algorithms by simulating the chemical signaling pathways interior to the cell. For comparison, we implemented a classical chemotaxis controller and a controller based on RapidCell, then tested them in a variety of simulated and real environments (using phototaxis as a surrogate for chemotaxis). We also added simple obstacle avoidance behavior to explore how it affects the success of the algorithms. Both simulations and experiments showed that the RapidCell controller more fully explored the entire region of detectable chemical when compared with the classical controller. If there is no detectable chemical present, the RapidCell controller performs random walk in a much wider range, hence increasing the chance of encountering the chemical. We also simulated an environment with triple effluent to show that the RapidCell controller avoided being captured by the first encountered peak, which is a common issue for the classical controller. Our study demonstrates that mimicking the adapting sensory system of E. coli chemotaxis can help mobile robots to efficiently explore the environment while retaining their sensitivity to the chemical gradient

    Chemical Signal Guided Autonomous Underwater Vehicle

    Get PDF

    Robotic Olfactory-Based Navigation with Mobile Robots

    Get PDF
    Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods. A. Adaptive Bio-inspired Navigation via Fuzzy Inference Systems. In nature, animals use olfaction to perform many life-essential activities, such as homing, foraging, mate-seeking, and evading predators. Inspired by the mate-seeking behaviors of male moths, this method presents a behavior-based navigation algorithm for using on a mobile robot to locate an odor source. Unlike traditional bio-inspired methods, which use fixed parameters to formulate robot search trajectories, a fuzzy inference system is designed to perceive the environment and adjust trajectory parameters based on the current search situation. The robot can automatically adapt the scale of search trajectories to fit environmental changes and balance the exploration and exploitation of the search. B. Olfactory-based Navigation via Model-based Reinforcement Learning Methods. This method analogizes the odor source localization as a reinforcement learning problem. During the odor plume tracing process, the belief state in a partially observable Markov decision process model is adapted to generate a source probability map that estimates possible odor source locations. A hidden Markov model is employed to produce a plume distribution map that premises plume propagation areas. Both source and plume estimates are fed to the robot. A decision-making model based on a fuzzy inference system is designed to dynamically fuse information from two maps and balance the exploitation and exploration of the search. After assigning the fused information to reward functions, a value iteration-based path planning algorithm solves the optimal action policy. C. Robotic Odor Source Localization via Deep Learning-based Methods. This method investigates the viability of implementing deep learning algorithms to solve the odor source localization problem. The primary objective is to obtain a deep learning model that guides a mobile robot to find an odor source without explicating search strategies. To achieve this goal, two kinds of deep learning models, including adaptive neuro-fuzzy inference system (ANFIS) and deep neural networks (DNNs), are employed to generate the olfactory-based navigation strategies. Multiple training data sets are acquired by applying two traditional methods in both simulation and on-vehicle tests to train deep learning models. After the supervised training, the deep learning models are verified with unseen search situations in simulation and real-world environments. All proposed algorithms are implemented in simulation and on-vehicle tests to verify their effectiveness. Compared to traditional methods, experiment results show that the proposed algorithms outperform them in terms of the success rate and average search time. Finally, the future research directions are presented at the end of the dissertation

    Bio-Inspired Search Strategies for Robot Swarms

    Get PDF

    Information-based search for an atmospheric release using a mobile robot: algorithm and experiments

    Get PDF
    Finding the location and strength of an unknown hazardous release is of paramount importance in emergency response and environmental monitoring, thus it has been an active research area for several years known as source term estimation. This paper presents a joint Bayesian estimation and planning algorithm to guide a mobile robot to collect informative measurements, allowing the source parameters to be estimated quickly and accurately. The estimation is performed recursively using Bayes’ theorem, where uncertainties in the meteorological and dispersion parameters are considered and the intermittent readings from a low-cost gas sensor are addressed by a novel likelihood function. The planning strategy is designed to maximize the expected utility function based on the estimated information gain of the source parameters. Subsequently, this paper presents the first experimental result of such a system in turbulent, diffusive conditions, in which a ground robot equipped with a low-cost gas sensor responds to the hazardous source stimulated by incense sticks. The experimental results demonstrate the effectiveness of the proposed estimation and search algorithm for source term estimation based on a mobile robot and a low-cost sensor
    • …
    corecore