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Abstract— Olfaction is a long distance sense, which is widely
used by animals for foraging or reproductive activities. Olfac-
tion plays a significant role in natural life of most animals.
For some animals, olfactory cues are far more effective than
visual or auditory cues in search for objects such as foods and
nests. Although chemical sensing is far simpler than vision or
hearing, navigation in a chemical diffusion field is still not well
understood. Therefore, this powerful primary sense has rarely
been used inside the robotics community. This paper presents
an effective olfactory-based planning and search algorithms
for using on mobile robots. Olfactory-based mobile robots
use odors as a guide to navigate and track in the unknown
environments. The planning algorithms are based on Bayesian
inference theory and artificial potential field methods. Inputs to
the algorithms include the measured flow and the detection or
non-detection events that happened at the robot location. This
methodology results in algorithms for predicting likelihood of
source location versus position. The robot would then optimize
a desired trajectory to navigate in the odor plume and locate
the odor source location.

I. INTRODUCTION

Olfaction is a long distance sense, which is widely used by

animals for foraging or reproductive activities [10]: homing

by Pacific salmon, homing by green sea turtles, foraging

by Antartic procellariiform seabirds, foraging by lobsters,

foraging by blue crabs, mating and foraging by insects. Ol-

faction plays a significant role in natural life of most animals.

For some animals, olfactory cues are far more effective than

visual or auditory cues in search for objects such as foods

and nests. Although odor sensing is far simpler than vision

or hearing, navigation in a chemical diffusion field is still not

well understood [18]. Therefore, this powerful primary sense

has rarely been used inside the robotics community. The

paper considers the development of an effective olfactory-

based planning and search algorithms for using on mobile

robots or autonomous vehicles. The goal of the robot will

be to locate the source of a chemical that is transported in a

turbulent fluid flow.

Olfactory-based robots use odors as a guide to navigate

and track in the unknown environments. At first thought this

olfactory-based navigational capability seems fairly trivial,

“as we have all experienced the intuitive reaction to turn to
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face up-wind when presented with the chemical signature of

barbecue on the grill or a bread bakery” [9]. However, in a

turbulent fluid flow environment, the turbulence of the fluid

medium continuously stretches and twists the filaments of the

odor plume. Even within the plume, the odor is distributed

in a highly patchy manner that would cause an intermittent

signal to be measure by a high bandwidth sensor. In addition,

the temporal and spatial variations in the flow velocity cause

the plume centerline to meander. Therefore, the olfactory-

based navigation over long distances in real-world turbulent

fluid fields is not trivial.

Robots with the olfactory-based navigation and search

capabilities would be of great significance, both for civil-

ian, military, and counter-terrorism applications, e.g., the

detection of chemical leaks, locating unexploded mines

and bombs, finding people in search and rescue operation,

and locating biologically interesting phenomenon such as

underwater hydrothermal vents. Additionally, robots with

olfaction can also be useful for applications currently carried

out by human with the collaboration of trained animals

that have well developed sense of smell (e.g. dogs). The

planning algorithm presented herein is relevant to the design

of olfactory-based mobile robots, but the general idea of this

algorithm could also be applied more broadly in the context

of searching with sporadic cues and partial information.

A. Problem Overview

Olfactory-based planning is complicated by the nature of

fluid flow and the resulting odor plume characteristics. An

initial approach to designing the olfactory-based planning al-

gorithms might attempt to calculate a concentration gradient

with subsequent plume tracing based on gradient following.

Gradient following based plume planning algorithms have

been proposed for a few biological entities that operate in low

Reynolds number environments [6]; however, gradient based

algorithms are not feasible in environments with medium to

high Reynolds numbers [11], [14], [22]. At low Reynolds

numbers, the evolution of the odor distribution in the flow is

dominated by molecular diffusion resulting in a odor concen-

tration field that is reasonably well-defined by a continuous

function with a peak near the source. At medium and high

Reynolds numbers, the evolution of the odor distribution in

the flow is turbulence dominated [27]. The flow contains

eddying motions of a wide range of sizes that produce a

patchy and intermittent distribution of the above threshold

chemical [14], [24]. For an image of the plume, the gradient

is time-varying, steep, and frequently in the wrong direction.

Even so, such plume images are not available to the robots.

Due to the rate of spatial and temporal variations in the flow
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and plume relative to the maneuvering limitations of existing

robots, gradient computation and following is not practical.

If a dense array of sensors were distributed over an area

through which a turbulent flow was advecting odor and the

output of each sensor were averaged for a suitably long time

(i.e., several minutes), then this average odor distribution

would be Gaussian [29], [30]; however, the required dense

spatial sampling and long time-averaging makes such an

approach inefficient in a turbulence dominated environment

[25]. It is known that the instantaneous odor distribution

will be distinct from the time-averaged plume [14], [22].

The major differences include: the time-averaged plume

is smooth and unimodal while the instantaneous plume is

discontinuous and multi-modal; the time-averaged plume is

time invariant (assuming ergodicity) while the instantaneous

plume is time varying; instantaneous concentrations well-

above the time-averaged concentration will be detected much

more often than predicted by the Gaussian plume model.

Such time-averaged plumes are useful for long-term expo-

sure studies, but are not useful for studies of responses to

instantaneously sensed odor [11], [22]. One of the reasons

that olfaction is a useful long distance sense is the fact that

instantaneous concentrations well above the time-average

are available at significant distances from the source [13].

Turbulent diffusion results in filaments of high concentra-

tion odor at significant distances from the source, but also

results in high intermittency [2], [14], [23]. Intermittency

increases with downflow distance both due to the meander

of the instantaneous plume caused by spatial and temporal

variations in the flow and due to the increasing spread with

distance of the filaments composing the instantaneous plume.

High intermittency and large search areas motivate the need

to acquire as much information as is possible from each odor

detection event.

The challenge using olfaction on mobile robots is to

design effective algorithms to trace the odor plume and

determine the odor source location even though the odor

source concentration is not know, the advection distance of

the detected odor is unknown, and the flow varies with both

location and time.

B. Literature Overview

Various studies have developed biomimetic robotic plume

tracing algorithms based on olfactory sensing. The most

commonly used olfactory-based planning algorithms is

“chemotaxis”, which was introduced by Berg and Brown [7],

[8]. This strategy is based on the detection of a concentration

difference between two chemical sensors and a steering

mechanism toward the direction of higher concentration with

a constant moving speed. Chemotaxis-based planning strate-

gies yields smooth movement trajectories in the environment

that the concentration is high enough to ensure its difference

measured at two nearby locations is larger than typical

fluctuations. Belanger and Willis [4], [5] presented plume

tracing strategies inspired by moth behavior and analyze the

performance in a “wind tunnel-type” computer simulation.

The main goal of that study was to improve the understand-

ing of moth interaction with an odor stimulus in a wind

tunnel. Grasso et al. [13] evaluate biometric strategies and

challenge theoretical assumptions of the strategies by imple-

menting biometric strategies on their robot lobster. Li et al.

[17], [16] develop, optimize, and evaluate a counter-turning

strategy originally inspired by moth behavior. Vergassola et

al. [31], [20] proposed a search algorithm, “infotaxis”, based

on information and coding theory. For infotaxis, information

plays a role similar to concentration in chemotaxis. The

infotaxis strategy locally maximizes the expected rate of

information gain. Its efficiency was demonstrated using a

computational model of odor plume propagation and exper-

imental data on mixing flows. Infotactic trajectories feature

zigzagging and casting paths similar to those observed in

the flight of moths. Spears et al. [28], [32] developed a

physics-based distributed chemical plume tracing algorithm.

The algorithm uses a network of mobile sensing agents that

sense the ambient fluid velocity and chemical concentration,

and calculate derivatives based on formal principles from the

field of fluid mechanics.

The fundamental aspects of these research efforts are

sensing the chemical, sensing or estimating the fluid velocity,

and generating a sequence of searcher speed and heading

commands such that the motion is likely to locate the

odor source. Typical maneuvers include: sprinting upflow

upon detection, moving crosswind when not detecting, and

manipulating the relative orientation of a multiple sensor

array either to follow an estimated plume edge or to maintain

the maximum mean reading near the central sensor. In each

of these articles, the algorithms for generating speed and

heading commands use only instantaneous (or filtered) sensor

readings.

Most of previous research on olfactory-base robots focused

primarily on the understanding of the methods used by

biological entities to track plumes and the translation of those

biological approaches to strategies for robots plume tracing.

This paper builds on the previous results by augmenting such

biologically inspired strategies with sensing, computational,

and memory capabilities that may not be available to bio-

logical entities. For example, a biological entity may not be

capable of remembering precisely where it has been, where it

has previously detected odor, or what the recent flow history

was. The biological entity is therefore unable to construct a

‘map’ by synthesis of odor detection and flow information

over time and space. In contrast an engineered olfactory-

based robot can employ precisely these kinds of inputs and

approaches to improve the performance and robustness of

strategies based solely on biologically inspired approaches.

Such engineered and physics based approaches are presented

herein.

II. OLFACTORY BASED PLANNING

The basic idea of the olfactory-based planning problem

is as follows. A mobile robot is constrained to maneuver

within a search region. Within the region the robot should

search for a specified chemical, for which a binary sensor

is available. The mission starts with the robot searching
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the region for the chemical plume. A binary sensor outputs

1 if the chemical concentration is above threshold or 0

if the chemical concentration is below threshold. If above

threshold chemical is detected, the robot should trace the

chemical plume to its source and accurately declare the

source location. The assumptions made herein relative to the

chemical and flow are that the chemical is a neutrally buoyant

and passive scalar being advected by a turbulent flow. The

robot is assumed to be capable of sensing position, and flow

velocity.

In the spirit of information and coding theory, the

olfactory-based planning problem might be thought of as a

message sent by the source and transmitted to the robot with

strong noise due to the random nature of odor propagation in

the turbulent medium [31]. Therefore, our planning method-

ology is based on the Bayesian inference methods, which

are commonly used decoding methods in the information

and coding theory, to decode this message to estimate the

unknown source location. Using the Bayesian methodology,

the source-likelihood map is propagated through time and

updated in response to both detection and nondetection

events. Then, Artificial Potential Field (APF) method is used

to plan optimal paths for the robot to locate the chemical

source.

The basic idea of the approach is described as follows.

The search area is subdivided into an (n × m) array of

rectangular cells. An odor plume model in the turbulent

flow was developed from the fact that the odor filament

movement in the flow is a random walk superimposed on

the drift downflow advection [3]. From this stochastic odor

plume model, a source likelihood map was generated given

the detection and non-detection events. Each cell in the

search area holds a Likelihood Value (LV) that represents

the confidence of the algorithm in the existence of the

chemical source at that location. This representation was

derived from the certainty grid concept that was originally

developed by Moravec and Elfes [21]. Based on ideas from

the literature of APF, each cell in the source likelihood map

will generate a virtual attractive force on the robot. The sum

of all virtual forces determines the subsequent direction and

speed of travel. Once the robot moves to a new cell, the odor

detection or non-detection information will be used to update

the source likelihood map, so that a new potential field will

be generated based on the updated source likelihood map.

This APF based chemical plume tracing method is discussed

further in Section II-C.

A. Odor Plume Model

One of the goal of olfactory-based navigation is to locate

the odor source. We begin by developing an understanding

of models for the distribution of odor plume in a turbulent

flow. Unfortunately, it is very difficult (even impossible)

to describe the instantaneous structure of odor plume in

a turbulent flow. Alternatively, by developing probabilistic

descriptions of the spatial and temporal evolution of the odor

plume, we will be able to use the information sensed on the

robot to estimate likely source locations.

For short-time-scale studies, various authors [3] model

odor filament movement as a random walk (due to velocity

fluctuation) superimposed on the downflow advection (due to

mean velocity). Similar ideas were used in [12] to produce

the plume simulation model used for debugging and initial

evaluation of the chemical plume tracing algorithms. Based

on such ideas, the position of a odor filament is modeled as

Ẋ(t) = U(X, t) + N(t) (1)

where X = (x, y) is the odor filament location, U =
(ux, uy) is the mean flow velocity, and N = (nx, ny) is

a random process with zero mean and (σ2
x, σ2

y) variance.

The random process N will be assumed to be Gaussian (i.e.,

normally distributed).

Using the model of eqn. (1), it would be possible to derive

forward algorithms that allow theoretical computation of the

plume location if the source location is known.

B. Source Likelihood Map

While the previous section discussed the plume distribu-

tion map when the source location and flow are known,

the problem we are trying to solve is actually the inverse

problem: Given a flow record and a history of odor detection

or non-detection events along the vehicle trajectory, where

is the odor source likely to be [26]? This inverse problem is

known to be difficult based only on concentration and ve-

locity measurements from fixed and sparely located sensors.

In order to describe the statistics of the spatial evolution

of the plume, we first consider a simple case: if the source

released a odor filament at time tl, what will the temporal

and spatial distribution of this odor filament location be at

any time tk > tl? Integrating eqn. (1), we can obtain,

X(tl, tk) =

∫ tk

tl

U(X(τ))dτ +

∫ tk

tl

N(τ)dτ + Xs (2)

where X(tl, tk) is the odor filament location at time tk given

that the odor filament was released from a source located at

Xs = (xs, ys) at time tl. The mean odor filament location

at time tk is X̄(tl, tk) =
∫ tk

tl

U(X(τ))dτ + Xs. Define

W(tl, tk) =
∫ tk

tl

N(τ)dτ which is a Gaussian noise process

with zero mean and variance [(tk − tl)σ
2

x, (tk − tl)σ
2

y ]. Note,

the variance of W(tl, tk) increases linearly with (tk − tl).
Therefore, the odor filament position X(t l, tk) distribution at

time tk is a Gaussian distribution with mean X̄(tl, tk), and

variance [(tk − tl)σ
2
x, (tk − tl)σ

2
y ].

Now if the robot detects this odor filament at location Xv

in cell Cj at time tk, what is the probability that the source

is located in some cell Ci? Solving eqn. (2) for the possible

source location yields

Xs(tl, tk) = Xv(tk)−

∫ tk

tl

U(X(τ))dτ −

∫ tk

tl

N(τ)dτ (3)

where the vehicle location is in cell Cj and Xj is the center

of cell Cj . We will use the center of each cell to represent

the cell position throughout the whole paper. In fact, because

the cell size is comparable to the size of the vehicle and

small compared to the search area, when the vehicle is in
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cell Cj , we will assume that Xv(tk) = Xj = (xj , yj). Since

we only have the flow sensor measurements at discrete times

{ti}
k
i=0

and only at the vehicle location,
∫ tk

tl

U(X(τ)dτ must

be approximated as
∑k−1

i=l U(Xv(ti))dt. This approximation

introduces additional error, since the flow vector does vary

with location. Let V(tl, tk) = (vx(tl, tk), vy(tl, tk)) =
∑k−1

i=l U(Xv(ti))dt, then eqn. (3) will become

Xs(tl, tk) = Xj − V(tl, tk) − W(tl, tk). (4)

Note that, in eqn. (4) the quantity Xj − V(tl, tk) is a

computable variable (i.e. Xj is determined by the current

vehicle location and V(tl, tk) can be computed from the

flow velocity record) and the quantity W(t l, tk) is a zero

mean Gaussian random variable. Therefore, Xs(tl, tk) is a

Gaussian random variable with mean Xj − V(tl, tk) and

variance (tk − tl)σ
2.

Let Pi represent the probability of the source being at

some location Xi. Then Pi is computed as the probability

of the W(tl, tk) that makes Xi a solution of eqn. (4).

The previous discussion considered the simple, but un-

realistic case, where the source releases a single chemical

filament. If chemical is continuously released from a sta-

tionary source during the time period t ∈ [t0, tk), then there

will be F = N(tk−1 − t0) chemical filaments in the air at

time tk. When the robot detects chemical in cell Cj at time

tk, it is not immediately possible to determine the time t l

when the chemical filament was released from the source. In

fact, the time t0 at which the chemical release starts is also

not known, but is typically much earlier than the mission

start time. The value of tl affects how far the likelihood map

will be integrated back through time. When compute P i, we

must account for all possible release times tl. Therefore, the

source likelihood vector π is computed as the summation of

source probability vector P at different released time t l.

πi =

k
∑

l=0

Pi(tl) (5)

If k > 50, we only account for up to 50 steps backward

propagation. Therefore, π is always less than or equal to 50.

By calculating the probability of source at the location X i

for i ∈ [1, N ], we will obtain a source likelihood vector π.

The details of calculating source likelihood map could be

found in [26].

C. Chemical Plume Tracing via Artificial Potential Field

Methods

In the past decades, APF methods are rapidly gaining

popularity in obstacle avoidance applications for mobile

robots due to its mathematical simplicity and elegance. It is

based on well-understood physical principles and has been

successfully implemented on collections of robots. The idea

of imaginary forces acting on a robot has been suggested

by Andrews and Hogan [1], and Khatib [15]. In a potential

field, the robot is attracted to the target while being repelled

by obstacles in the workspace. The sum of all forces serves

Fig. 1. The virtual force concept: Active cells generate attractive forces
onto the robot. The numbers in each cell are the Likelihood Values (LV)
of that cell. The black dot marks the source location. The circle indicates
robot location. Robot is running from right to the left.

as the input force driving the robot to its desired destina-

tion while avoiding collisions with obstacles. Typically, the

attractive potential fields and the repulsive potential fields

are formulated separately, and the total potential field of the

workspace is obtained by linear superposition of the two

fields.

The potential field concept is applied to the olfactory-base

navigation problems as shown in Fig. 1. It works as follows:

As the vehicle moves, a window of w×w cells accompanies

it, overlying a square region of W. We call this region the

“Active Window”, and cells that momentarily belong to the

active region are called “active cells”. In Fig. 1 the size

of the window is 10 × 10 cells, and the window is always

centered about the robot’s position. Each active cell generates

a virtual attractive force on the vehicle. The magnitude of

this force is proportional to LV (LV is proportional to the

source likelihood vector π) and inversely proportional to the

distance between the cell and the center of the vehicle. For

Cell Ci the virtual force is

Fi =
LVi

d

(

Xv − Xi

d

)

, (6)

where LVi is the likelihood value of Ci, d = ‖Xv −Xi‖ is

the distance between cell Ci and the robot. All virtual forces

add up to yield resultant virtual force F,

F =
∑

i∈W

Fi. (7)

The direction and magnitude of F are used as the reference

for the robot’s heading and speed command.
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Fig. 1 shows a simple example of APF based chemical

plume tracing. For illustrative purpose , the search area is

a very small area, 20 × 20 cells. The chemical source is

located in cell C10,18, which is indicated by a black dot.

The wind is mostly in “y-” direction with small variations

between 240 and 300 degrees. The plume depicted in Fig.

1 is greatly simplified. Realistic plumes may meander, are

intermittent or patchy distributions of chemical, and do not

have a uniformly increasing width as a function of the

distance from the chemical source. The robot starts the search

from the cell C20,6 and moves in the cross flow direction,

i.e., the speed vector of robot is in “x-” direction. In the

current snapshot, the robot is located in cell C14,6, and it

detects chemical in this cell. Based on this detect event and

previous no detection events happened in cell C15−20,6, a

source likelihood map is calculated. Therefore, each cell in

the active window will have a likelihood value. In Fig. 1,

LVs are label at the center of each cell. Note, each cell in

the active window should have a likelihood value. However,

for illustrative purpose, only the 4×4 cells around robot are

labeled with likelihood values. Each active cell generates a

virtual attractive force, which is proportional to likelihood

value and inversely proportion to the distance between the

cell and the center of the vehicle. The summation of all the

attractive forces, F, is in the direction of 120 degree. This

is the direction that will maximize the likelihood of locating

the chemical source.

Perhaps the best-known and most often-cited problem with

APF is the problem of local minima or trap situations [19].

When a local minimum appears the robot is blocked and

it can not continue with the exploration (e.g., inside a U-

shaped obstacle). Local minima can be created by a variety of

different obstacle configurations, and different types of traps

can be distinguished. In our applications, since the chemical

plume is dynamically changing over time and space, it will

not create trap situations for the robot. Even if trap-situations

do happen, it can be resolved by heuristic or global recovery.

III. EXAMPLES

This section presents examples of the application of the

algorithms that are contained in the body of this paper. In

both examples, the search region is a rectangle defined by

x ∈ [0, 100]m and y ∈ [−50, 50]m. The cellular subdivision

of this rectangle uses m = 100, n = 100 so that N = 10000
cells.

Fig. 2 and Fig. 3 show the source likelihood map at two

different times during the simulation. Each figure shows the

coordinates of each corner in the corresponding corner. The

map is computed over the entire region for each figure.

The area of interest is the smaller rectangle indicated by

the dashed line. The regular grid of arrows indicate the

local flow velocity at the tail of the arrow at the time the

plot was generated. The plume resulting from a continual

release of odor, turbulent diffusion, and advection by the

fluid flow is the grey scale meandering path that begins at

(x, y) = (30, 0). The plume simulation model is described

in [12]. The flow field is defined by the simulation model

Fig. 2. Map representation of π at t = 43s. The trail of dark arrows moving
from near the top edge down toward the plume indicates the trajectory that
the vehicle followed.

and varies with both space and time as a function of time

varying boundary conditions.

Fig. 2 shows a robot trajectory (The robot trajectory is

indicated by the trail of blue arrows starting in x = 50m

and y = −45m at t = 0. The direction of each arrow

indicates the robot heading.) and a plot of source likelihood

map π at time t = 43s. The array of colored rectangles

indicates the size of source likelihood π in each cell, where

darker cells have higher likelihood of containing the chemical

source. The plume shape is time-varying as determined by

the advection of the time-varying flow field. In this figure,

the robot has just detected the plume. The source likelihood

map were updated based on both detection and non-detection

events. The map of π has its maximum immediately upwind

of the robot location. The map of π decreases rapidly in

the crosswind directions and more slowly in the upwind

direction. The map spreads out as it proceeds farther upwind.

Fig. 3 shows a robot trajectory and a plot of source

likelihood map π at time t = 83s. In this figure, the robot

lost contact with the plume and tried to recover the contact

with the plume near the source. After several such recover

processes, the source likelihood map would accurately indi-

cate the source location.

IV. CONCLUSIONS

This paper presents an effective olfactory-based planning

and search algorithms for mobile robots operating in a

turbulent flow containing a chemical plume. The derivation

of the approach used a model where the chemical-filament

movement in the flow is a random walk superimposed on the

downflow advection. Then, based on artificial potential field

methods, the robot would optimize a desired robot trajectory

to navigate in the odor plume and locate the odor source

location. The algorithms presented herein incorporate ideas

from physics and engineering that more fully utilized the

available sensor and computational resources to achieve bet-

ter performance than strategies based solely on biologically

inspired approaches.

4379



Fig. 3. Map representation of π at t = 83s. The trail of dark arrows moving
from near the top edge down toward the plume indicates the trajectory that
the vehicle followed.

V. FUTURE WORKS

Currently the algorithms are only evaluated using software

simulations. However software simulations do not always

show the actual real-world behavior of a system. Future work

is still necessary to validate the algorithms performance in

the natural environment on actual mobile robots. The first

test will be a small indoor robot; if that succeeds, then it

will be followed by a larger outdoor robot.

Olfactory navigation without obstacle avoidance, however,

provides only limited capabilities to the autonomous vehicles

in a real-world mission. For an autonomous vehicle to

succeed at advanced maneuvers, a solid baseline of obstacle

avoidance is mandatory. Since the APF method is based

on a simple and powerful physical principle, it has an

embedded obstacle avoidance capability. Besides the source

likelihood map generates attractive forces, each obstacle

exerts a repulsive force. Obstacles are either a priori known,

(and therefore the repulsive force may be computed off-line)

or on-line detected by the on-board sensors (and therefore

the repulsive force is on-line evaluated). Once the on vehicle

test of the olfactory based algorithms has been sufficiently

demonstrated, then more advanced obstacle avoidance be-

haviors could be added. However, the presence of obstacles

may block the air flow, generate more turbulence, and change

the distribution of chemical in the environment. Therefore,

the mapping algorithms presented in this paper may need to

be changed significantly.
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