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Abstract: Mobile robots that can effectively detect chemical effluents could be useful in a variety
of situations, such as disaster relief or drug sniffing. Such a robot might mimic biological systems
that exhibit chemotaxis, which is movement towards or away from a chemical stimulant in the
environment. Some existing robotic exploration algorithms that mimic chemotaxis suffer from the
problems of getting stuck in local maxima and becoming “lost”, or unable to find the chemical if
there is no initial detection. We introduce the use of the RapidCell algorithm for mobile robots
exploring regions with potentially detectable chemical concentrations. The RapidCell algorithm
mimics the biology behind the biased random walk of Escherichia coli (E. coli) bacteria more closely
than traditional chemotaxis algorithms by simulating the chemical signaling pathways interior to the
cell. For comparison, we implemented a classical chemotaxis controller and a controller based on
RapidCell, then tested them in a variety of simulated and real environments (using phototaxis as
a surrogate for chemotaxis). We also added simple obstacle avoidance behavior to explore how it
affects the success of the algorithms. Both simulations and experiments showed that the RapidCell
controller more fully explored the entire region of detectable chemical when compared with the
classical controller. If there is no detectable chemical present, the RapidCell controller performs
random walk in a much wider range, hence increasing the chance of encountering the chemical. We
also simulated an environment with triple effluent to show that the RapidCell controller avoided
being captured by the first encountered peak, which is a common issue for the classical controller.
Our study demonstrates that mimicking the adapting sensory system of E. coli chemotaxis can help
mobile robots to efficiently explore the environment while retaining their sensitivity to the chemical
gradient.

Keywords: chemotaxis; phototaxis; RapidCell; exploration; robot; E. coli; e-puck; navigation; obstacle

1. Introduction

Autonomous systems that can leverage the sense of smell would be useful in many situations that
are dirty, dangerous, or dull. Some examples include locating and rescuing victims trapped by rubble
during a disaster, sniffing for illegal drugs or explosives, detecting and locating the source of chemical
leaks on land or underwater, or even locating truffles in a forest. A robotic system that could quickly
and reliably locate the region containing an odor would be a benefit in these, and other, situations.

A taxis is a movement toward, or away from, some stimulus such as light (phototaxis),
airflow (anemotaxis), or a chemical (chemotaxis). Many organisms exhibit taxis behaviors, such as
Escherichia coli, the silkworm moth Bombyx mori, and the dung beetle Geotrupes stercorarius [3].
Taxes have long been utilized as a control strategy in robotic systems. From Braitenberg’s simple
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vehicles [4] to an entire chapter of the canonical Springer Handbook of Robotics [5], taxes are one of
a number of ways that biological systems have inspired roboticists. Some representative works are
described below.

Biomimetic algorithms take inspiration from the physiology and biology of various organisms.
Farrell et al. [6] take inspiration from the pheromone-tracing behavior of moths to control an
underwater autonomous vehicle (UAV) tracing a plume to its source. Bau et al. [7] take inspiration from
flying insects to track windborne odor plumes. Russell [8] moves underground, investigating taxes for
the control of burrowing robots searching for buried chemical sources. Bremermann [9] cast chemotaxis
as a potential solution to foraging optimization. Many researchers including Hossain [10–12] have
applied different chemotactic control algorithms to robots. Other good reviews of projects comparing
biomimetic control strategies can be found in [13] (2008) or more recently [14] (2012).

While pure chemotaxis works well for certain situations, roboticists also experiment with a variety
of hybrid schemes, sometimes combining biomimetic algorithms with those derived from artificial
intelligence research. For example, Nurzaman et al. [15] start with biological chemotaxis and Levy
walks individually, then study the combination of these behaviors in simulation and on a mobile robot
using sound waves as a chemical proxy. Grasso et al. [16] combine mean flow and chemical detection
strategies to enable RoboLobster to orient itself to a chemical source in turbulent flow.

Another group of researchers eschew direct biomimicry and attack the problem with
analytic algorithms drawn from autonomous vehicles and artificial intelligence research [6].
Farrell et al. [6,17,18] note that in water and other high-Reynolds-number fluids, chemical detection
is commonly binary—a chemical is detected or not detected at any point in time. They develop
algorithms for a UAV to home in on a chemical plume emitted into ocean water. Zhang et al. [19] give
a survey of strategies for chemical source localization in air, and derive a multi-stage algorithm for
tracing plumes upwind. Ji-Gong et al. [20] use a three-stage process including a history of air flow
directions over time to implement a path planning method to search an odor source, using range data
detected by the robot to dynamically modify the planned path.

In recent years, many researchers have again drawn from nature and tackled the problem from
the viewpoint of swarm robotics, where multiple robots are cooperatively searching for an attractant.
Yang et al. [21] subdivide the search space using a Voronoi tessellation and search each cell in the
tessellation using bacterial-style chemotaxis. Marjovi et al. [22] study optimal swarm formations for
plume-finding, and present a set of virtual forces that allow several robots to line up in an equi-spaced
diagonal line while also avoiding obstacles. Marques et al. [23] use a particle swarm to simulate a
mass of small robots tracing an upwind odor source. Swarms of robots can also be controlled with
particle swarm optimization (PSO) [23], gray wolf optimizer [24], or combinations of these [25,26].
Zarzhitsky et al. [27] leverage computational fluid dynamics to develop an algorithm for a particle
swarm simulation that outperforms biomimetic algorithms. Turduev et al. [28] compare decentralized
and asynchronous particle swarm optimization, bacterial foraging optimization, and ant colony
optimization to build a 2D map of the concentration of ethanol gas in an environment. Yang et al. [12]
draw from foraging algorithms to study target trapping.

Some projects directly compare methods drawn from various organisms in a particular application.
In a classic work, Russell et al. [3] compare chemotaxis algorithms inspired by the bacterium E. coli,
the silkworm moth Bombyx mori, and the dung beetle Geotrupes stercorarius, as well as a gradient-based
algorithm developed by the authors. They conclude that each is best in different situations.

We define a basic chemotaxis algorithm as consisting of a gradient ascent with some probabilistic
elements that vary the mix between running and tumbling motion. “Running” is when the agent
moves in a straight line (as when ascending/descending the gradient), and “tumbling” is when it turns
randomly to point in a different direction. We recognize that basic chemotaxis algorithms are good for
finding the local maxima of chemical concentrations, under the assumption that the agent is able to
make an initial detection of the chemical. However, if the goal is to do a more complete exploration
of the full area with detectable chemical concentration, basic chemotaxis tends to be ineffective. The
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agent will often get stuck at a local maximum, or become “lost” in areas of zero or low chemical
concentration and become unable to find the chemical even after extended periods of time. Given these
issues with basic chemotaxis algorithms, we recognize the need for a more sophisticated algorithm
for mobile robots whose goal is to both find the source of a chemical (the point or points of highest
concentration) and also explore the full area where the chemical is detectable.

In previous work we used an algorithm called RapidCell [1], originally developed to describe the
interactions of chemotaxis proteins inside E. coli cells. We chose to incorporate RapidCell because it
provides a more realistic representation of the run/tumble behavior of E. coli, and thus can be used to
create robotic behaviors that are more sophisticated than those of basic chemotaxis. In [29] we coupled
RapidCell with the method of regularized Stokeslets [30] to simulate E. coli chemotaxis in a viscous fluid.
In subsequent work [31], we couple RapidCell with the lattice-Boltzmann method [32] to simulate how
engineered micro-particles utilize E. coli’s biased random walk to detect the location of high chemical
concentration contained in a confined zone with a narrow inlet or concentric multiringed inline
obstacles, mimicking tumor vasculature geometry. In [33], instead of imposing static concentrations
as in [29,31], we implement dynamic multiple concentrations of different chemicals to show how the
chemotactic behavior changes over time as the cells disturb and mix the chemicals.

The results of these previous efforts lead us to hypothesize that a chemical-sensing mobile robot
operating with a motion algorithm utilizing RapidCell would have the following advantages over
basic chemotaxis:

• The robot will more completely explore the environment in regions both with and without
detectable chemical.

• The robot will be less likely to get “lost” in areas of low or zero concentration.
• The robot will be less likely to get stuck at local concentration maxima.

In this work, we augment the RapidCell approach with a variation aimed at avoiding collisions
with obstacles in the environment, implement the algorithm in simulation and on a tabletop robot
(using phototaxis as a surrogate for chemotaxis), and compare with a basic chemotaxis algorithm
described in [2] using several metrics. In Section 2, we describe the experimental scenarios, the control
algorithms in use, and our metrics for success for the robot. Then, in Section 3 we provide representative
and summary results of the simulations and experiments conducted. We also provide a detailed
discussion of the results in Section 3. Finally, in Section 4 we draw some conclusions about the pros
and cons of the algorithms under consideration.

2. Materials and Methods

Our goal in this work was to compare the performance of a basic chemotaxis algorithm with a
novel motion algorithm that incorporates RapidCell. We applied these algorithms in a mobile robot
exploring an environment with a chemical concentration that varied with position. We tested both
algorithms in simulation and on a real robotic system, in environments with and without obstacles.
In addition, we explored three different types of chemical concentration distribution:

1. A homogeneous environment with no chemical effluent (we define effluent as a discharge of a
specific—desired or undesired—chemical into an area).

2. An environment with a single chemical effluent.
3. An environment with three chemical effluents.

The simulations and experiments are detailed in Figure 1. Notably absent from this set is an
experiment without effluent, but with obstacles. The minimal differences in qualitative behavior
between the experiment in the single effluent or triple effluent environment without obstacles (Cases 5
and 6) and with obstacles (Cases 10 and 11), and the very limited exploration about the initial positions
in the relevant simulations (Cases 1 and 7), led us to choose to not conduct this set of experiments.
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Figure 1. Different scenarios in this work.

The goal of our work was not (yet) to create or study a robotic system that actually samples a
chemical plume using some type of sensor. So, as an analog to such a system we used a small tabletop
robot equipped with an optical sensor that detects the brightness of the surface below it. To imitate the
chemical gradients, grayscale gradients were printed on posters on top of which the robot operated, as
seen in many other works (e.g., [34]). The robot itself was assumed to be 2 µm across, with the sensor
cluster located 1 µm from its centroid at the front end. Constant factors were used to scale between the
simulations and experiments. A square arena of 200 µm × 200 µm with Atot = 40,000 µm2 was used
for all simulations and experiments.

Twenty initial positions were chosen from a uniform distribution within the arena. The same
initial positions were used for each simulation. In the single-effluent experiments, only 12 of the
20 initial positions were in the region covered by the grayscale poster, so those 12 were used for
Cases 5 and 10. Figure 2 shows the initial positions as well as the region of detectable concentration
(concentrations above 1 mM) for the single-effluent environment. In the three-effluent experiments,
only 7 of the 20 initial positions were in the region covered by the grayscale poster, so those 7 were
used for Cases 6 and 11. Figure 2 also shows the initial positions as well as the region of detectable
concentrations (concentrations above 1 mM) for the triple-effluent experiment. These were the largest
posters (approx 91 cm2) that would fit in the experimental environment. In each case the robot had no
prior knowledge of the chemical present or the type, location, or presence of obstacles.

Figure 2. Twenty initial positions for all simulation trials marked as red asterisks. Some trials began
in detectable concentration (C > 1 mM—the outer blue circle) and some began outside. Positions
marked with blue squares on top of the asterisks fell outside the region covered by the grayscale poster.
Therefore, the remaining positions were used for all experimental trials.
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2.1. Chemical Effluent Models

In this section we give details about the chemical concentration profiles that were modeled.
Homogeneous/No Effluent Environment: As a control, each algorithm was first tested in a

homogeneous environment with no detectable chemical present. In the simulation (Cases 1 and 7), the
function C(x, y) which represents a chemical concentration was set to 0 at every (x, y) location. In the
experiment (Case 4), a white laminated poster with the size of the arena was created to represent this
environment. Due to noise and other non-ideal experimental conditions (room lighting, etc.), C was
low but not equal to zero at different locations on the poster.

Single Effluent: In this environment, there was a single chemical effluent centered in the arena.
In the simulation (Cases 2 and 8), the concentration detected by the robot was described with the
static function shown in Equation (1) with experimentally determined parameters M = 4000 (mM), D
= 0.0125 (µm2/s), and ts = 2000 (s), centered at (0, 0). This function is an approximation for a point
source of chemical effluent [35]. Other choices, for example, a Gaussian plume model [36], could also
be used. Figure 3 (left) shows a surface plot of the fixed time function with these parameters. The
concentration C was truncated at 1 mM, the assumed minimum value detectable by a chemical sensor.

C(x, y) =
M

4πDts
e(

−x2−y2
4Dts ) [mM] (1)

Figure 3. Left: Surface plot of static function (Equation (1)) to describe the single-effluent chemical
concentration in the arena. The peak of this one effluent is at the center (0, 0) µm. Right: Surface
and contour plots of static composite function to describe the three-effluent chemical concentration
imposed on the arena. The highest peak is located at the center (0, 0) µm while the two local peaks are
at (0, 80) µm and (80, 0) µm.

In the experiment (Cases 5 and 10), a grayscale circular pattern darker in the center was printed
on a laminated poster to represent the environment (see Figure 4b). A reflective sensor in the robot
was used to measure the reflected light at a given position. Then, the raw data from the sensor was
mapped to Equation (1) as described in Section 2.5.

Triple Effluent: In the third environment, the chemical concentration was a composite of three
functions: two similar functions to Equation (1) with the smaller parameter value M = 2000 mM and
centers at (80, 0) and (0, 80) were added to the original function. Figure 3 (right) shows a plot of this
concentration, which models three effluents in the simulations of Cases 3 and 9.
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(a)

(b) (c)

(d) (e)

Figure 4. The e-puck robot used in the experiment can be seen in (a), with and without the “lid” used
to make localization easier. The robots were tested on a grayscale gradient poster. Tests were done (b,d)
without additional obstacles and (c,e) with obstacles in the middle of the poster. (b,c) represent the
single-effluent environment while (d,e) represent the triple-effluent environment.

2.2. Obstacles

We added small 10 µm × 2 µm obstacles at the locations shown in Figure 5 for all simulations and
experiments, with some minor variations in the orientation of the individual obstacles.
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Figure 5. Obstacles shown as black rectangles are overlaid with the contour plots of the concentration
in Figure 3. Note that this is a zoomed-in view of the domain to clearly show the obstacle locations.

2.3. Control Algorithms

This section describes the basic chemotaxis algorithm and the RapidCell E. coli model/algorithm
used in this work.

Basic Chemotaxis Algorithm: For comparison to the RapidCell model described below,
we implemented the simple chemotaxis algorithm described in [2], in turn adapted from [37].
The algorithm, described in Figure 6, randomly turns with a bit of forward motion when the
concentration is decreasing, and moves forward with a bit of random turning when the concentration
is increasing. It is, in general, a straightforward hill-climbing algorithm, and tends to hover in a very
small region around the first local maximum detected.

While (TRUE)
I f ( currC >las tC )

Turn (+/− Random ( 5 ) )
MoveForward ( r +/− Random(5% r ) )

E lse
Turn(+/−Random ( 1 8 0 ) )
MoveForward (Random(5% r ) )

Figure 6. Basic chemotaxis algorithm, adapted from [2]. Angles are in degrees, and r represents the
length of a typical run.

RapidCell Algorithm: In the presence of a spatial gradient, E. coli move towards an attractant and
away from a repellent. Changes in the detected chemical concentration over time affect the interactions
of chemotaxis proteins inside the cell, which control the flagellar motors to rotate counter-clockwise
(CCW) or clockwise (CW). If all the flagella rotate CCW, they will form a bundle and push the cell to
run forward. If the cell wants to tumble, the flagellar bundle can be disintegrated by having at least one
flagellum switch from CCW to CW. The tumbling motion allows the cell to re-orient itself in a different
direction. In the absence of a chemical gradient, the cell performs a random walk consisting of short
episodes of smooth runs terminated by tumbles. However, when molecules of attractants or repellents
start binding to the receptors on the cell membrane, the cell will evaluate changes in the amount
of concentration. Using its cell signaling pathway, the cell can integrate the binding information it
receives into a sequence of chemotaxis-protein interactions that will control the rotations of the flagellar
motors and hence give the probability for the cell to run or tumble. So, the cell signaling pathway
can be thought of as a temporal mechanism which allows the cell to compare their current binding
state with the previous ones. An increase in the fraction of an attractant binding to receptors will raise
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the probability of CCW rotation, which will lead to extended runs (biased random walk). Note that
the cell signaling pathway and resulting behavior are different when the cell encounters a repellent
instead of an attractant. In this work, we do not consider repellents.

The RapidCell model [1] was originally developed to describe the interactions of these chemotaxis
proteins inside E. coli cells when sensing attractants. If we consider the RapidCell model as a function
(see Figure 7), the inputs are the concentration at the sensor of a robot (C), the methylation level (m) in
the previous time step, and the difference in time (∆t) from the last computation. Methylation can be
considered a memory mechanism in E. coli, as it builds up the more time the cell spends in an area
of detectable concentration. The outputs are the updated methylation level, and the motor bias mb.
The motor bias mb represents a probability of running; its values range from 0 to 1, with higher values
corresponding to a greater likelihood of running motion of bacteria. Further details regarding the
description of the RapidCell model and model parameters can be found in [1] and Appendix A.

Figure 7. RapidCell model as a function of current concentration C, methylation m, and time interval
∆t. The results are the updated methylation m and motor bias mb.

Obstacle Detection and Avoidance: Obstacle detection and avoidance behavior was added to
both the basic and RapidCell chemotaxis algorithms. At each run–tumble decision, a forward-facing
obstacle sensor is checked. If an obstacle is in front of the robot, a random turn is performed
regardless of the current concentration. If no obstacle is found, the existing chemotaxis is performed.
This hierarchical decision-making is reminiscent of many multi-layer controllers, including the
classical subsumption architecture [38], and was not expected to qualitatively alter the behavior
of either controller.

2.4. Simulation Setup

The basic chemotaxis and RapidCell-based controllers were first implemented in the Player/Stage
robotic simulation environment [39]. A spatial scale factor of 1 µm = 1 m was used in simulation due
to the resolution limits built into Player/Stage. Each controller was allowed to run for 10,000 control
iterations in each trial.

2.5. Experimental Setup

In the experimental cases for the single-effluent and triple-effluent environments, a grayscale
pattern was printed on a laminated poster shown in Figure 4b,d. For the environment with obstacles,
Figure 4c,e show how the obstacles were added to the arena. In addition, walls were placed as a barrier
around the arena to prevent the e-pucks from running off the testing table since they are recognized as
obstacles for the robots.

In order to test the performance of each controller on a real robot, we then paired the basic and
RapidCell controllers with a custom e-puck driver. E-pucks are small, fist-sized two-wheeled robots
shown in Figure 4a and introduced in [40]. They are equipped with a number of sensors, including
three TCNT1000 [41] infrared-pair sensors on the bottom near their front. These sensors are used to
detect the reflectivity of the surface below the e-puck. White and highly reflective surfaces read as
high values for these sensors, while darker surfaces read low.

The center light sensor was used to perform chemotaxis in these experiments. The sensor reading
was calibrated to mimic the concentration detection sensors of E. coli via Equation (2) in Cases 5 and
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10, and Equation (3) in Cases 6 and 11. The differing ink darkness of the posters led to a different
mapping between “darkness” and “concentration”:

C(s) = 2 × e0.008×(1000−s), [mM] (2)

C(s) = 1 − 0.001 × s, [mM] (3)

where s is the raw sensor reading (0–1024). Therefore, darker spots towards the center of the effluent
had low values for the raw sensor reading (s) which represent high chemical concentration (C).
The spatial variation of C over several experimental runs in the single-effluent and triple-effluent
environments can be seen in Figure 8.

Figure 8. Left: Interpolated surface of concentration C to show how the raw sensor reading (shown as
red dots) was calibrated via Equation (2) at different locations on the single-effluent poster shown in
Figure 4b. Right: Interpolated surface of concentration C to show how the raw sensor reading (shown
as red dots) was calibrated via Equation (3) at different locations on the triple-effluent poster shown in
Figure 4d.

The e-puck is also equipped with eight outward-looking infrared sensors for obstacle detection
and avoidance. The front four sensors were used for this work. The effluent image was approximately
200 µm in diameter, and the poster approximately 90 cm square, so a scaling factor of 1:4500 was
assumed between simulation and experimentation for both experiments.

The basic chemotaxis algorithm was allowed to run for 100 iterations, and the RapidCell algorithm
for 500 iterations, to give each time to explore any effluent present. It was observed that in every case
when the basic chemotaxis algorithm found detectable chemical, it converged on a local maximum
by 100 iterations. An overhead webcam was used to take images of the arena after each control cycle.
Each cycle consisted of 0.5 s of run-time plus 5 s in order to give the overhead webcam time to take an
image and save it to hard disk. With the lid shown in Figure 4a, a simple two-dimensional template
matching was used to locate the e-puck in each image, and an orthographic projection was used to
localize the robot within the arena, similar to [42].

For each cycle of the basic chemotaxis control loop, the robot took a sample of the chemical
concentration. The e-puck then used Equation (2) or Equation (3) to map the grayscale sensor input to
a particular chemical concentration value, while the simulated robot determined the concentration
through an a-priori fixed function and the current position obtained from the simulator. The
concentration was then sent to the chemotaxis model, which generated a Turn and MoveForward
velocity in the basic chemotaxis algorithm presented in Figure 6.

For the RapidCell control loop: when the controller was started, the robot took a large number
of samples of the initial concentration of the chemical and passed it through the RapidCell model.
This allowed the methylation m, and other parameters to adjust to the initial environment. After this
initialization, the robot began the RapidCell control loop. In each cycle of the loop, the robot took a
sample of the chemical. The concentration was then sent to the chemotaxis model, which generated
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an updated methylation value m and motor bias mb, which was a number between 0.0 and 1.0. The
motor bias was treated as the probability of a run on that control cycle.

2.6. Measurements of Success

We assumed the goal of the robot was to explore all locations within the region of interest with
detectable chemical concentration. We propose the following measurements of success as we compared
the results from the basic chemotaxis algorithm and the RapidCell algorithm.

There are several regions that we reference below, which we formally define here:

Definition 1. The Region of Interest is the entire rectangular area from −100 µm to 100 µm in both horizontal
and vertical directions, possibly containing chemical effluent. The total area of this region is Atot = 40,000 µm2.

Definition 2. The Capture Region is, for the RapidCell controller, an area the robot will remain in once it has
entered. Informally, the robot is captured in this region. It can be thought of (roughly) as the region where the
effluent concentration is detectable.

Definition 3. The Peak Region is the area immediately adjacent to (within 1–2 body lengths of the robot) the
maximum concentration of effluent.

We also define a replicate as an iteration of the simulation or experiment with a particular initial
position (all the initial positions are shown in Figure 2).

Average Percentage (AP): For each replicate of a case described in Figure 1, we divided the region
of interest into square bins of dimensions 1 µm × 1 µm. Then, we recorded the number of bins with
detectable concentration that the robot had visited for the cases with effluent. In the environment with
no effluent, we simply counted all the bins the robot had visited. The bin was recorded only at the
discrete timestep and not along the path the robot took between timesteps. We defined those bins as
explored; see Figure 9 for an example. Then, we computed the percentage of the explored bins from the
total number of bins Atot and took the average of these percentages (AP) from all the replicates of this
case. The performance of all the cases in Figure 1 using the two controllers with respect to this AP
measure are summarized in Table 1.

Figure 9. Explored bins are those with detected concentration that were visited. This simulation
environment had one effluent concentration in the center (0, 0) of the region of interest (as shown in
Figure 3) and contained no obstacles. The basic chemotaxis algorithm (a) did not explore as much area
(average percentage (AP) = 0.86%) as the RapidCell model (b, AP = 15.23%).
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Success Rate (SR): Due to the randomness in both algorithms and the existence of some initial
positions outside the region of detectable chemical in the single effluent environment, we propose
the success rate, which is the percent of replicates with positive concentration at the terminus of their
run over the total number of replicates for each case and each controller. The higher the success rate,
the better the controller in finding locations of positive concentrations in the region of interest without
getting completely lost. Performance with respect to this measurement is summarized in Table 2.

Table 1. Average percentage (AP).

Case Simulation
Basic Algorithm (%)

Simulation
RapidCell (%)

Experiment
Basic Algorithm (%)

Experiment
RapidCell (%)

No effluent
without obstacles 0.04 4.13 0.24 0.86

No effluent
with obstacles 0.06 3.64 - -

Single effluent
without obstacles 0.32 13.08 0.17 1.05

Single effluent
with obstacles 0.31 8.31 0.14 1.10

Triple effluent
without obstacles 0.56 12.02 0.13 1.04

Triple effluent
with obstacles 0.56 12.81 0.14 1.11

Table 2. Success rate (SR).

Case Simulation
Basic Algorithm (%)

Simulation
RapidCell (%)

Experiment
Basic Algorithm (%)

Experiment
RapidCell (%)

Single effluent
without obstacles 50 100 100 100

Single effluent
with obstacles 50 85 100 100

Triple effluent
without obstacles 85 100 86 100

Triple effluent
with obstacles 85 100 100 100

3. Results and Discussion

Both the basic chemotaxis and RapidCell controllers were exercised in simulation and on the
table-top robots. This section describes the results of those simulations and experiments.

3.1. Simulation without Obstacles

In the first set of simulations (Cases 1–3 in Figure 1), the robot was placed according to the 20
initial positions described in Figure 2. No obstacles were placed in the environment with the robot.

Simulation in Homogeneous/No Effluent Environment (Case 1): In the homogeneous
environment, the simulated robot with the basic controller continually tumbled, with only a 5% forward



Biomimetics 2019, 4, 69 12 of 27

motion on each control cycle. The resultant tracks, an example of which is shown in Figure 10a, show
the limited degree of exploration that occurred with the basic chemotaxis algorithm in the absence of
detectable concentration. In Figure 10b, the RapidCell chemotaxis algorithm performed an unbiased
random walk, exploring a larger portion of the environment than the basic algorithm.

Figure 10. Case 1: Without obstacles, in the homogeneous/no effluent environment, typical trajectories
of the simulated robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis
controller. In each trajectory, the initial position is shown as a blue circle and the terminal position
is shown as a blue “X”. Positions corresponding to concentrations less than 1 mM are shown in
dashed green, otherwise shown in red. The detected concentration was zero in both controllers for
this environment.

Simulation in Single-Effluent Environment (Case 2): In the single-effluent case, when the robot
encountered a detectable chemical, it quite efficiently moved toward the peak of the effluent using the
basic chemotaxis algorithm, as shown in the trajectory in Figure 11a. It then proceeded to tumble in
the small area (relative to the RapidCell controller) about the peak region of the chemical.

Figure 11b shows an example trajectory of the robot using the RapidCell chemotaxis algorithm
in the same environment. From its initial position the robot performed biased random walk towards
the center of concentration. The robot continued in approximately a favorable direction as long as it
detected chemical, then rebounded randomly within the capture region defined in Section 2.6. When it
moved outside the limit of detectable chemical (shown by the green trajectories), it tumbled until it
detectd the chemical again.

Figure 11c demonstrates that the basic controller was very effective at remaining near the peak
concentration once it found it. Comparatively, the detected concentration fluctuated much more in
Figure 11d because the RapidCell algorithm did not become stuck at the peak concentration and
more thoroughly explored the environment. The capture region from the RapidCell controller was
significantly larger than the peak region identified by the basic controller.
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Figure 11. Case 2: Without obstacles, in the single-effluent environment, typical trajectories of the
simulated robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller.
The contour plot represents the concentration distribution shown in Figure 3 (left) where the outmost
level curve represents the concentration at 1 mM. In each trajectory, the initial position is shown as a
blue circle and the terminal position is shown as a blue “X”. Positions corresponding to concentrations
less than 1 mM are shown in dashed green, otherwise shown in red. The recorded concentrations
associated with each scheme are shown in (c,d) respectively.

Simulation in Triple-Effluent Environment (Case 3): In the multiple effluent case in Figure 12a,
if the initial position was outside the detectable limit of the basic chemotaxis controller, the robot often
never found the chemical. The concentration profile for this case can be found in Figure 3 (right).
However, if the robot found chemical, it climbed the gradient toward the closest local maximum, as
expected for the basic controller.

Figure 12b shows the trajectory of a single representative replicate of the simulation using the
RapidCell chemotaxis algorithm. Note that the behavior was quite random, but the same patterns of
wide exploration could be observed. After approaching the capture region using biased random walks,
the robot performed random walks inside the region, exploring the area with detectable concentration
until the simulation ended.

The detected concentrations for the basic and RapidCell algorithms are plotted in Figure 12c and
Figure 12d, respectively. The robot operating with the basic algorithm got stuck at a local maximum
at location (80, 0) µm (in this case, not the global maximum at location (0, 0) µm). In contrast,
the RapidCell algorithm was able to explore the areas of all three effluents.
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Figure 12. Case 3: Without obstacles in the environment and with triple effluents, the trajectories
of the simulated robot running (a) the basic chemotaxis controller on the xy plane, (b) the RapidCell
chemotaxis controller. (c,d) show the recorded concentrations associated with each scheme, respectively.
The contour plot represents the concentration distribution shown in Figure 3 (right) where the outmost
level curve represents the concentration at 1 mM. The same region of interest of 200 µm × 200 µm was
used for this environment. Thus, only trajectories within that region of interest are plotted.

3.2. Experiments without Obstacles

The same controllers (basic and RapidCell) used with the Player/Stage simulation were paired
with an e-puck mobile robot for experimental evaluation. Proximity sensors were used to avoid walls
bounding the arena, in order to ensure the robot did not fall off the table top.

Experiments with Homogeneous/No Effluent Environment (Case 4): A plain white laminated
poster with no black ink was used for the homogeneous experiments. Figure 13 shows a single
representative run in this environment. The basic chemotaxis controller explored more compared to
the simulation (Case 1), but the experimental RapidCell controller clearly explored more than the basic
controller.

Experiments with Single-Effluent Environment (Case 5): The experimental results were similar
to the corresponding simulation results (Case 2). The basic controller generally traveled toward darker
regions and explored the region in close proximity to the single peak. The RapidCell controller on the
other hand explored the entire region of detectable intensity after encountering detectable chemical.
Figure 14 plots one representative replicate of Case 5.
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Figure 13. Case 4: Without obstacles, in the homogeneous/no effluent environment, typical trajectories
of the e-puck robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis
controller. In each trajectory, the initial position is shown as a blue circle and the terminal position is
shown as a blue “X”. Positions corresponding to concentrations less than 1 mM are shown in dashed
green, otherwise shown in red.

Figure 14. Case 5: Without obstacles, in the single-effluent environment, typical trajectories of the
e-puck robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller.
In each trajectory, the initial position is shown as a blue circle and the terminal position is shown
as a blue “X”. Positions corresponding to concentrations less than 1 mM are shown in dashed green,
otherwise shown in red. The recorded concentrations associated with each scheme are shown in
(c,d) respectively.
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3.2.1. Triple-Effluent Environment

Experiments with Triple-Effluent Environment (Case 6): The experimental results were similar
to the corresponding simulation results (Case 3). The basic controller generally traveled toward darker
regions and explored the region in close proximity to the nearest peak. The RapidCell controller on the
other hand explored the entire region of detectable intensity after encountering detectable chemical.
Figure 15 plots one representative replicate of Case 6.

Figure 15. Case 6: Without obstacles, in the triple-effluent environment, typical trajectories of the
e-puck robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller.
In each trajectory, the initial position is shown as a blue circle and the terminal position is shown
as a blue “X”. Positions corresponding to concentrations less than 1 mM are shown in dashed green,
otherwise shown in red. The recorded concentrations associated with each scheme are shown in
(c,d) respectively.

3.3. Simulation with Obstacles

This set of simulations adds the obstacles shown in Figure 5 to the arena.
Simulation in Homogeneous/No Effluent Environment, with Obstacles (Case 7): Figure 16

shows the case where no chemical was present. Figure 16a shows that the basic controller tumbled
continuously in a very small area about the initial location. Figure 16b shows that the RapidCell
controller performed an unbiased random walk about the environment, encountering no chemical.

Simulation in Single-Effluent Environment, with Obstacles (Case 8): The basic chemotaxis
controller in this situation behaved similarly to a standard hill-climbing algorithm [43]. The effluent
profile is shown in Figure 3 (left). Figure 17 shows an example trajectory in this environment. The basic
controller again quickly locked in on the peak and meandered in a very small area around it, with
brief detours for obstacles. The larger capture region of the RapidCell controller made the detours for
obstacles more obvious.
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Figure 16. Case 7: With obstacles, in the homogeneous/no effluent environment, typical trajectories
of the simulated robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis
controller. In each trajectory, the initial position is shown as a blue circle and the terminal position is
shown as a blue “X”. Positions corresponding to concentrations less than 1 mM are shown in dashed
green, otherwise shown in red.

Figure 17. Case 8: With obstacles, in the single-effluent environment, typical trajectories of the
simulated robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller.
The contour plot represents the concentration distribution shown in Figure 5 (left) where the outmost
level curve represents the concentration at 1 mM. In each trajectory, the initial position is shown as a
blue circle and the terminal position is shown as a blue “X”. Positions corresponding to concentrations
less than 1 mM are shown in dashed green, otherwise shown in red. The recorded concentrations
associated with each scheme are shown in (c,d) respectively.
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Simulation in Triple-Effluent Environment, with Obstacles (Case 9): In this environment, there
was a more complex profile as shown in Figure 3 (right), in addition to obstacles. Figure 18 shows
an example trajectory in this environment. The basic algorithm was relatively unchanged, heading
directly for the nearest peak. The RapidCell algorithm visited all three peaks while avoiding obstacles.
The obstacles simply injected a new tumble-point in the trajectory, with no overall impact on the
search pattern.

Figure 18. Case 9: With obstacles, in the triple-effluent environment, typical trajectories of the
simulated robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller.
The contour plot represents the concentration distribution shown in Figure 5 (right) where the outmost
level curve represents the concentration at 1 mM. In each trajectory, the initial position is shown as a
blue circle and the terminal position is shown as a blue “X”. Positions corresponding to concentrations
less than 1 mM are shown in dashed green, otherwise shown in red. The recorded concentrations
associated with each scheme are shown in (c,d) respectively.

3.4. Experiments with Obstacles

As in the simulations above, four obstacles were added to the single-effluent environment
poster to evaluate their impact on the physical implementations of the basic chemotaxis and
RapidCell algorithms.

Experiment with Single Effluent, with Obstacles (Case 10): Figure 19 shows a slightly more
exploratory path than seen in simulation for the basic controller (Case 8). In some replicates, this took
the robot to detectable chemical. In others, it took the robot away from the chemical concentration. For
the RapidCell controller, the robot’s adherence to the capture region was still noticeable, but the robot
also successfully avoided the obstacles placed within the center.
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Figure 19. Case 10: With obstacles, in the single-effluent environment, typical trajectories of the e-puck
robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller. In each
trajectory, the initial position is shown as a blue circle and the terminal position is shown as a blue “X”.
Positions corresponding to concentrations less than 1 mM are shown in dashed green, otherwise shown
in red. The recorded concentrations associated with each scheme are shown in (c,d) respectively.

Experiment with Three Effluents, with Obstacles (Case 11): Figure 20 shows a slightly more
exploratory path than seen in simulation for the basic controller (Case 9). In some replicates, this took
the robot to detectable chemical. In others, it took the robot away from the chemical concentration. For
the RapidCell controller, the robot’s adherence to the capture region was still noticeable, but the robot
also successfully avoided the obstacles placed within the center.

Resulting Measurements of Success
The results gave a consistent outcome—the RapidCell controller more effectively explored the

regions with detectable chemical. The basic controller located the nearest peak of detectable chemical
encountered, and got “stuck” there. Table 1 shows that the average percentage (AP) measure of the
RapidCell controller was higher than the basic controller for all the cases, that is, the RapidCell
controller traversed a much larger percentage of the region of interest than the basic controller.
Figures 21–23 show the trajectories associated with all valid initial positions listed in Figure 2. As a
reminder, the AP measure is the average amount of the environment explored in each replicate, not a
total amount over all of the replicates. It is one way to quantify the success in exploration.

When started in a region without detectable chemical, the basic controller primarily tumbles,
leading to a highly localized exploration of the region thus reducing the chance of encountering
the chemical plume. The RapidCell controller implements a biased random walk in this situation,
increasing the success rate as shown in Table 2. The success rate (SR) reveals whether the robot
was able to find the chemical concentration and remain in the capture region at the end of the
simulation/experiment. Figures 21–23 visually reinforce that the RapidCell algorithm was superior to
the basic algorithm at more thoroughly exploring the environments in the experimental case. A similar
observation was made for the simulations.
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Figure 20. Case 11: With obstacles, in the triple-effluent environment, typical trajectories of the e-puck
robot running (a) the basic chemotaxis controller, and (b) the RapidCell chemotaxis controller. In each
trajectory, the initial position is shown as a blue circle and the terminal position is shown as a blue “X”.
Positions corresponding to concentrations less than 1 mM are shown in dashed green, otherwise shown
in red. The recorded concentrations associated with each scheme are shown in (c,d) respectively.

Figure 21. Summary of experimental runs on white poster for all 12 initial positions with (left) basic
chemotaxis controller and (right) RapidCell controller. Each run is shown in a different color.
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Figure 22. Summary of experimental runs with single effluent for all 12 initial positions that began on
the area covered by the poster: (a) Basic controller, no obstacles; (b) RapidCell controller, no obstacles;
(c) Basic controller, with obstacles; (d) RapidCell controller, with obstacles.

The presence of obstacles did not significantly alter these behaviors. Both controllers were able to
incorporate obstacle detection and avoidance without affecting their primary behavior.
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Figure 23. Summary of experimental runs with triple effluents for all seven initial positions that
began on the area covered by the poster: (a) Basic controller, no obstacles; (b) RapidCell controller,
no obstacles; (c) Basic controller, with obstacles; (d) RapidCell controller, with obstacles.

4. Conclusions

We presented two algorithms for mobile robots that combine chemotaxis with obstacle avoidance
with the goal of exploring a region potentially containing chemical effluent while avoiding collisions
with obstacles. The basic chemotaxis algorithm combines gradient ascent behavior with some random
turning. The RapidCell algorithm is more biomimetic: RapidCell better simulates the behavior of real
E. coli bacteria with a model of the intracellular signaling pathway, including a type of memory that
guides the cells towards more favorable directions. We tested both algorithms in the same scenarios in
simulation and experimentally with a real mobile robot platform.

We observed, both in simulation and experimentation, that the memory of the RapidCell model for
chemotaxis caused a more thorough exploration of detectable chemical, without necessarily identifying
the peak, while the basic chemotaxis algorithm tended to explore only around the nearest local maxima.
The RapidCell controller also more fully explored homogeneous environments, increasing the chances
of encountering detectable chemical. Therefore, the basic algorithm is better suited to identifying and
remaining at the nearest source of chemical effluence, since it tends to get “stuck” at the first local
maximum it encounters. The RapidCell algorithm is a better choice if the goal is a more thorough
exploration, including in areas where there might be no detectable chemical. The presence of obstacles
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in the environment impeded both controllers approximately equally, not changing the qualitative
behavior of either controller appreciably.

Future work includes attaching a chemical sensor that will allow the robot to determine chemical
concentrations in air. In addition, a more robust and realistic simulation environment will be created
using computational fluid dynamics with a gaseous attractant and the presence of moving air to more
closely simulate the real-world applications of this system. We will also experiment with swarms of
robots to more quickly explore the environment. Finally, various other taxis algorithms from related
studies could be implemented for comparison and optimization.

Author Contributions: Conceptualization: K.N.; methodology: K.N. and H.N.; software: K.N. and Davison;
investigation: K.N., D.F., and T.D.; data processing: K.N. and H.N.; writing—original draft preparation, K.N.;
writing—review and editing: K.N. and H.N.

Funding: This work was supported in part by FASTER Grant SURF—National Science Foundation DUE S-STEM
Award 1153796 to Frasch. We thank Trinity University for the Mach Fellowship to Davison, and the provision of
computational resources.

Acknowledgments: Thanks to Frank Healy at Trinity University for many interesting and informative discussions
on the chemical signaling pathway of E. coli. We gratefully acknowledge Joseph Auchter at Southwest Research
Institute for his help with organizing the materials and reviewing the manuscript. Thanks to Robert Bierman at
Stanford Univervity for permission to reuse his Figure A1 in the Appendix A to explain the signaling pathway
of E. coli. Thanks also to Mary Love at RICOH USA, INC. at Trinity University for printing the posters for
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. RapidCell Model for Intracellular Signaling Pathway of E. coli Chemotaxis

The RapidCell model [1] was originally developed to describe the interactions of chemotaxis
proteins inside E. coli cells, as shown in Figure A1. In this figure, chemotactic behavior is initiated
through binding of chemoattractant molecules C (triangles) to the methyl-accepting chemotaxis
proteins (MCP) on the bacterial cell membrane. MCP conformation changes are transmitted to the
chemotaxis protein CheA through CheW. Next the phosphoryl group of CheA-P is transferred to CheY
and CheB. Note that an increase of attractant inhibits the histidine kinase CheA activity. Therefore
CheY is unphosphorylated which causes flagellar motors to rotate CCW (i.e., the cell runs). Meanwhile,
subsequent methylation (CH3) at the receptor returns CheA activity to its original level: CheR adds
methyl groups to the receptor (+CH3), while phosphorylated CheB removes the methyl groups
(−CH3). This means that the presence of the methyl groups excites the autophosphorylation by CheA,
which counteracts the effect that attractant binding has on phosphorylation. Therefore, although
an E. coli cell tries to optimize its running mode (up the attractant gradient or down the repellent
gradient), its adaptive feedback response helps to adjust its trajectory so that it can stay within a
favorable environment.

In this study, we used the RapidCell model to control the behavior of chemotactic robots to detect
and localize chemical sources. To describe the intracellular signaling pathway of E. coli, the RapidCell
model involves Equations (A1)–(A6).

fr(m) = εr(m) + ln

(
1 + C/Ko f f

r
1 + C/Kon

r

)
for r = s, a (A1)

F = na fa(m) + ns fs(m) (A2)

Ac =
1

1 + eF (A3)

[CheY-P] = 3
kYks Ac

kYks Ac + kZ[CheZ]tot + γY
(A4)

dm
dt

= a(1 − Ac)[CheR]− bAc[CheB] (A5)

mb = (1 + (1/mb0 − 1)([CheY-P]H)−1 (A6)
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Figure A1. The intracellular signaling pathway of E. coli for chemotaxis. As the chemical
molecules (represented as triangular shapes) or chemoattractants bind to the the methyl-accepting
chemotaxis proteins (MCP) on the bacterial cell membrane, they activate chemical signaling among
Che regulator proteins. P represents phosphoryl group, transferred among signaling components.
+CH3 and −CH3 represent the methylation and demethylation, respectively, of membrane-bound
chemoattractant receptor clusters. Running behavior for bacteria occurs when flagella rotate in a
concerted counter-clockwise (CCW) direction; otherwise, the flagellar motor switches to clockwise
(CW) rotation, resulting in tumbling behavior.

In these equations, m is receptor methylation; fr is the total free energy difference between “on”
and “off” states of the receptor at the specific methylation level; εr(m) is the offset energy, linearly
interpolated between the values reported in Table A1; Kon/o f f

r is the dissociation constant for the
chemoattractant in the “on” or “off” state; F is the total free energy difference; fa is the free energy
difference for Tar; fs is the free energy difference for Tsr; Tar and Tsr are two major receptors in E. coli;
Ac is the probability of the cluster activity; CheY-P is the concentration of phosphorylated CheY; kY,
kZ, and γY are rate constants; ks is a scaling coefficient; [CheZ]tot is the total CheZ concentration; a and
b are methylation scaling factors; mb is the motor bias; mb0 is the basal motor bias; and H is the motor
Hill coefficient.

Equations (A1) and (A2) represent the total free energy difference between “on” and “off” states of
the receptors and its mean field approximation, respectively. Equation (A3) calculates the activation of
clusters as a function of the total free energy difference and Equation (A4) calculates the concentration
of phosphorylated CheY as the CheA kinase is activated by the receptors. Equation (A5) computes
methylation rate that controls the activation of receptors. Equation (A6) calculates the motor bias
corresponding to the probability of the running motion of bacteria. Notice that the motor bias (mb) is
generalized as inversely related to the concentration of CheY-P and its values may range from 0 to 1
with higher values corresponding to a greater likelihood of running motion of bacteria. To determine
whether a cell will run or tumble, a uniform random number x is generated between 0 and 1; and if x
< mb, the particle runs. Otherwise, it tumbles. The values of the parameters used in these equations
are reported in Table A2. Further details regarding the description of the RapidCell model and model
parameters can be found in [1].

Table A1. Offset energies εr(m) to different methylation levels m [1].

m 0 1 2 3 4 5 6 7 8

εr(m) 1.0 0.5 0.0 −0.3 −0.6 −0.85 −1.1 −2.0 −3.0
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Table A2. Descriptions and values of predetermined parameters in RapidCell model [1].

Parameter Description Value

na Number of Tar receptors per cluster 6
ns Number of Tsr receptors per cluster 12
Kon

a Dissociation constant in the on state of Tar receptors 0.012 µM
Ko f f

a Dissociation constant in the off state of Tar receptors 0.0017 µM
Kon

s Dissociation constant in the on state of Tsr receptors 106 µM
Ko f f

s Dissociation constant in the off state of Tsr receptors 100 µM
[CheR]tot Total CheR concentration 0.16 µM
[CheB]tot Total CheB concentration 0.28 µM
[CheZ]tot Total CheZ concentration *
mb0 Basal motor bias 0.65
H Motor Hill coefficient 10.3
a Scaling factor for methylation 0.0625
b Scaling factor for demethylation 0.0714
kZ Rate constant 30/[CheZ]tot µM−1s−1

kY Rate constant 100 µM−1s−1

ks Scaling coefficient 0.45 µM
γY Rate constant 0.1 s−1

(*) indicates that the total [CheZ]tot concentration does not need to be specified explicitly since it is canceled
with itself when multiplying with kZ in Equation (A4).

When the chemotaxis controller is started, the robot takes a large number of samples of the initial
concentration of the chemical attractant and passes it through the RapidCell model. This allows the
methylation, CheY-P and other parameters to adjust to the initial environment. After this initialization,
the robot begins the chemotaxis control loop.
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