146 research outputs found

    Locomoção de humanoides robusta e versátil baseada em controlo analítico e física residual

    Get PDF
    Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.Os robôs humanoides são feitos para se parecerem com humanos, mas suas habilidades de locomoção estão longe das nossas em termos de agilidade e versatilidade. Quando os humanos caminham em terrenos complexos ou enfrentam distúrbios externos combinam diferentes estratégias, de forma inconsciente e eficiente, para recuperar a estabilidade. Esta tese aborda o problema de desenvolver um sistema robusto para andar de forma omnidirecional, capaz de gerar uma locomoção para robôs humanoides versátil e ágil em terrenos complexos. Projetámos e desenvolvemos motores de locomoção sem modelos e baseados em modelos. Formulámos os controladores usando diferentes abordagens, incluindo esquemas de controlo clássicos e ideais, e validámos o seu desempenho por meio de simulações e experiências reais. Estes frameworks têm estruturas hierárquicas compostas por várias camadas. Essas camadas são compostas por vários módulos que são conectados entre si para diminuir a complexidade e aumentar a flexibilidade dos frameworks propostos. Adicionalmente, o sistema pode ser implementado em diferentes plataformas de forma fácil. Acreditamos que o uso de aprendizagem automática sobre abordagens analíticas é a chave para abrir as portas para robôs humanoides saírem dos laboratórios. Propusemos um forte acoplamento entre controlo analítico e aprendizagem profunda por reforço. Expandimos o nosso controlador analítico com módulos de aprendizagem por reforço para aprender como regular os parâmetros do motor de caminhada (planeadores e controladores) de forma adaptativa e gerar resíduos para ajustar as posições das juntas alvo do robô (física residual). A eficácia das estruturas propostas foi demonstrada e avaliada em um conjunto de cenários de simulação desafiadores. O robô foi capaz de generalizar o que aprendeu em um cenário, exibindo habilidades de locomoção humanas em circunstâncias imprevistas, mesmo na presença de ruído e impulsos externos.Programa Doutoral em Informátic

    Analytic and Learned Footstep Control for Robust Bipedal Walking

    Get PDF
    Bipedal walking is a complex, balance-critical whole-body motion with inherently unstable inverted pendulum-like dynamics. Strong disturbances must be quickly responded to by altering the walking motion and placing the next step in the right place at the right time. Unfortunately, the high number of degrees of freedom of the humanoid body makes the fast computation of well-placed steps a particularly challenging task. Sensor noise, imprecise actuation, and latency in the sensomotoric feedback loop impose further challenges when controlling real hardware. This dissertation addresses these challenges and describes a method of generating a robust walking motion for bipedal robots. Fast modification of footstep placement and timing allows agile control of the walking velocity and the absorption of strong disturbances. In a divide and conquer manner, the concepts of motion and balance are solved separately from each other, and consolidated in a way that a low-dimensional balance controller controls the timing and the footstep locations of a high-dimensional motion generator. Central pattern generated oscillatory motion signals are used for the synthesis of an open-loop stable walk on flat ground, which lacks the ability to respond to disturbances due to the absence of feedback. The Central Pattern Generator exhibits a low-dimensional parameter set to influence the timing and the landing coordinates of the swing foot. For balance control, a simple inverted pendulum-based physical model is used to represent the principal dynamics of walking. The model is robust to disturbances in a way that it returns to an ideal trajectory from a wide range of initial conditions by employing a combination of Zero Moment Point control, step timing, and foot placement strategies. The simulation of the model and its controller output are computed efficiently in closed form, supporting high-frequency balance control at the cost of an insignificant computational load. Additionally, the sagittal step size produced by the controller can be trained online during walking with a novel, gradient descent-based machine learning method. While the analytic controller forms the core of reliable walking, the trained sagittal step size complements the analytic controller in order to improve the overall walking performance. The balanced whole-body walking motion arises by using the footstep coordinates and the step timing predicted by the low-dimensional model as control input for the Central Pattern Generator. Real robot experiments are presented as evidence for disturbance-resistant, omnidirectional gait control, with arguably the strongest push-recovery capabilities to date

    Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system

    Get PDF
    This paper proposes a control structure to resolve the issue of dynamically stepping over large obstacles in the B4LC control system. We reform the local control units LegSwing, LockHip and KneeF lexion respectively. The optimization module with Particle Swarm Optimization (PSO) method is employed to tune the parameters of those controllers by formulating locomotion stability. The optimization process and further validation are conducted on a 3-dimensional simulated bipedal robot. The simulation results reveal that the suggested approach enables robot to dynamically step over a large obstacle with 20cm height by 15cm width in a short time duration

    Understanding the fundamentals of bipedal locomotion in humans and robots

    Get PDF
    Walking is a robust and efficient method of moving around the world, which would greatly enhance the capabilities of humanoid robots, although they cannot match the performance of their biological counterparts. The highly nonlinear dynamics of locomotion create a vast state-action space, which makes model-based control difficult, yet biological humans are highly proficient and robust in their motion while operating under similar constraints. This disparity in performance naturally leads to the question: what can we learn about locomotion control by observing humans, and how can this be used to develop bio-inspired locomotion control in mechatronic humanoids? This thesis investigates bio-inspired locomotion control, but also explores the limitations of this approach and how we can use robotic platforms to move towards a better understanding of locomotion. We first present a methodology for measuring and analysing human locomotion behaviour, specifically disturbance recovery, and fit models to this complex behaviour to represent it in as simple as possible such that it can be easily translated into a simple controller for reactive motion. A minimum-jerk Model Predictive Control algorithm at the Centre of Mass (CoM) best captured human motion during multiple recovery strategies instead of using one controller for each strategy, which is common in this area. Capturing this simple CoM model of complex human behaviour shows that bio-inspiration can be an important tool for controller development, but behaviour varies between and even within individuals given similar initial conditions, which manifests as stochastic behaviour. Coupled with the ability to only measure expressed behaviours instead of direct control policies, this stochasticity presents a fundamental limit to using bio-inspiration for control purposes, as only indirect inferences can be made about a complex, stochastic system. To overcome these barriers, we investigate the use of mechatronic humanoid robots as a means to explore invariant aspects of the vast dynamic state-space of locomotion which are described by physical laws, and are therefore not subject to the stochastic behaviour of individual humans, that apply to both biological and mechatronic humanoid forms. We present a pipeline to explore the invariant energetics of humanoid robots during stepping for push recovery, where the most efficient stepping parameters are identified for a given initial CoM velocity and desired step length. Using this to explore the stepping state-space, our analysis finds a region of attraction between disturbance magnitude and optimal step length surrounded by a region of similarly efficient alternatives which corresponds to the stochastic behavior observed in humans during push recovery, which we would be unable to identify without reproducibility, direct access to internal measurements and known full body dynamics, which is not available in humans. We expand this paradigm further to investigate the invariant energetics of continuous walking using a full-body humanoid by exploring the state-space of step-length and step-timing to identify the most efficient sub-spaces of these parameters which describes the most efficient way to walk. Through analysis of this state-space, we provide evidence that the humanoid morphology exhibits a passive tendency towards energy-optimal motion and its dynamics follow a region of attraction towards Cost of Transport-optimal motion. Overall, these findings demonstrate the utility of robotics as a tool with which to explore certain aspects of legged locomotion and the results gained from our methodology suggest that humans do not need to explore a vast state-action space to learn to walk, they need only internalise simple heuristics for the natural dynamics of stepping that are easy to learn and can produce rapid, reactive and efficient stepping without costly decision-making processes

    LeggedWalking on Inclined Surfaces

    Full text link
    The main contribution of this MS Thesis is centered around taking steps towards successful multi-modal demonstrations using Northeastern's legged-aerial robot, Husky Carbon. This work discusses the challenges involved in achieving multi-modal locomotion such as trotting-hovering and thruster-assisted incline walking and reports progress made towards overcoming these challenges. Animals like birds use a combination of legged and aerial mobility, as seen in Chukars' wing-assisted incline running (WAIR), to achieve multi-modal locomotion. Chukars use forces generated by their flapping wings to manipulate ground contact forces and traverse steep slopes and overhangs. Husky's design takes inspiration from birds such as Chukars. This MS thesis presentation outlines the mechanical and electrical details of Husky's legged and aerial units. The thesis presents simulated incline walking using a high-fidelity model of the Husky Carbon over steep slopes of up to 45 degrees.Comment: Masters thesi

    Streamlined sim-to-real transfer for deep-reinforcement learning in robotics locomotion

    Get PDF
    Legged robots possess superior mobility compared to other machines, yet designing controllers for them can be challenging. Classic control methods require engineers to distill their knowledge into controllers, which is time-consuming and limiting when approaching dynamic tasks in unknown environments. Conversely, learning- based methods that gather knowledge from data can potentially unlock the versatility of legged systems. In this thesis, we propose a novel approach called CPG-Actor, which incor- porates feedback into a fully differentiable Central Pattern Generator (CPG) formulation using neural networks and Deep-Reinforcement Learning (RL). This approach achieves approximately twenty times better training performance compared to previous methods and provides insights into the impact of training on the distribution of parameters in both the CPGs and MLP feedback network. Adopting Deep-RL to design controllers comes at the expense of gathering extensive data, typically done in simulation to reduce time. However, controllers trained with data collected in simulation often lose performance when deployed in the real world, referred to as the sim-to-real gap. To address this, we propose a new method called Extended Random Force Injection (ERFI), which randomizes only two parameters to allow for sim-to-real transfer of locomotion controllers. ERFI demonstrated high robustness when varying masses of the base, or attaching a manipulator arm to the robot during testing, and achieved competitive performance comparable to standard randomization techniques. Furthermore, we propose a new method called Roll-Drop to enhance the robustness of Deep-RL policies to observation noise. Roll-Drop introduces dropout during rollout, achieving an 80% success rate when tested with up to 25% noise injected in the observations. Finally, we adopted model-free controllers to enable omni-directional bipedal lo- comotion on point feet with a quadruped robot without any hardware modification or external support. Despite the limitations posed by the quadruped’s hardware, the study considers this a perfect benchmark task to assess the shortcomings of sim- to-real techniques and unlock future avenues for the legged robotics community. Overall, this thesis demonstrates the potential of learning-based methods to design dynamic and robust controllers for legged robots while limiting the effort needed for sim-to-real transfer

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    • …
    corecore