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Abstract
Legged robots possess superior mobility compared to other machines, yet designing
controllers for them can be challenging. Classic control methods require engineers
to distill their knowledge into controllers, which is time-consuming and limiting
when approaching dynamic tasks in unknown environments. Conversely, learning-
based methods that gather knowledge from data can potentially unlock the
versatility of legged systems.

In this thesis, we propose a novel approach called CPG-Actor, which incor-
porates feedback into a fully differentiable Central Pattern Generator (CPG)
formulation using neural networks and Deep-Reinforcement Learning (RL). This
approach achieves approximately twenty times better training performance
compared to previous methods and provides insights into the impact of training
on the distribution of parameters in both the CPGs and MLP feedback network.

Adopting Deep-RL to design controllers comes at the expense of gathering
extensive data, typically done in simulation to reduce time. However, controllers
trained with data collected in simulation often lose performance when deployed
in the real world, referred to as the sim-to-real gap. To address this, we
propose a new method called Extended Random Force Injection (ERFI), which
randomizes only two parameters to allow for sim-to-real transfer of locomotion
controllers. ERFI demonstrated high robustness when varying masses of the
base, or attaching a manipulator arm to the robot during testing, and achieved
competitive performance comparable to standard randomization techniques.

Furthermore, we propose a new method called Roll-Drop to enhance the
robustness of Deep-RL policies to observation noise. Roll-Drop introduces dropout
during rollout, achieving an 80% success rate when tested with up to 25% noise
injected in the observations.

Finally, we adopted model-free controllers to enable omni-directional bipedal lo-
comotion on point feet with a quadruped robot without any hardware modification
or external support. Despite the limitations posed by the quadruped’s hardware,
the study considers this a perfect benchmark task to assess the shortcomings of sim-
to-real techniques and unlock future avenues for the legged robotics community.

Overall, this thesis demonstrates the potential of learning-based methods
to design dynamic and robust controllers for legged robots while limiting the
effort needed for sim-to-real transfer.
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Abstract

Legged robots possess superior mobility compared to other machines, yet designing
controllers for them can be challenging. Classic control methods require engineers to
distill their knowledge into controllers, which is time-consuming and limiting when
approaching dynamic tasks in unknown environments. Conversely, learning-based
methods that gather knowledge from data can potentially unlock the versatility
of legged systems.

In this thesis, we propose a novel approach called CPG-Actor, which incorporates
feedback into a fully differentiable CPG formulation using neural networks and Deep-
RL. This approach achieves approximately twenty times better training performance
compared to previous methods and provides insights into the impact of training on
the distribution of parameters in both the CPGs and MLP feedback network.

Adopting Deep-RL to design controllers comes at the expense of gathering
extensive data, typically done in simulation to reduce time. However, controllers
trained with data collected in simulation often lose performance when deployed
in the real world, referred to as the sim-to-real gap. To address this, we propose
a new method called ERFI, which randomizes only two parameters to allow for
sim-to-real transfer of locomotion controllers. ERFI demonstrated high robustness
when varying masses of the base, or attaching a manipulator arm to the robot
during testing, and achieved competitive performance comparable to standard
randomization techniques.

Furthermore, we propose a new method called Roll-Drop to enhance the
robustness of Deep-RL policies to observation noise. Roll-Drop introduces dropout
during rollout, achieving an 80% success rate when tested with up to 25% noise
injected in the observations.

Finally, we adopted model-free controllers to enable omni-directional bipedal
locomotion on point feet with a quadruped robot without any hardware modification
or external support. Despite the limitations posed by the quadruped’s hardware,
the study considers this a perfect benchmark task to assess the shortcomings of
sim-to-real techniques and unlock future avenues for the legged robotics community.

Overall, this thesis demonstrates the potential of learning-based methods to
design dynamic and robust controllers for legged robots while limiting the effort
needed for sim-to-real transfer.
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Qui se ultro morti offerant facilius reperiuntur quam
qui dolorem patienter ferant.

It is easier to find men who will volunteer to die than
to find those who are willing to endure pain with
patience.

— Gaius Iulius Caesar’s Commentarii de Bello
Gallico

1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Advancements in automation technology have the potential to transform numerous

industries by eliminating the need for human labor in physically repetitive and

hazardous tasks. This transition towards greater reliance on autonomous robots

is set to have a significant impact on sectors such as heavy industry, agriculture,

construction, and forestry. By freeing human workers from the burden of these

strenuous occupations, this new wave of automation holds the promise of ushering in

a new era of productivity and prosperity for society as a whole. However, for robots

to fully realize their potential in these domains, they require advanced cognitive

skills and agile control of their bodies, equivalent to those of humans. Moreover,

the emergence of versatile robotics solutions that can perform multiple physical

tasks with the same hardware, without requiring specific hand effectors or bodies,

1



2 1.1. Motivation

would enable the focus to shift towards developing intelligent machines instead

of solely engineering problems and solutions.

In this context, mobility is a critical skill that would allow robots to undertake a

variety of tasks in diverse locations, with legs providing superior ability to navigate

various terrains, ranging from artificial environments to natural ones.

Thus, the aim of this thesis is to investigate locomotion to enable robots to

serve as reliable and effective mobility solutions in the near future.

Designing locomotion controllers involves navigating several pitfalls, including

the complicated kinematic structure of a robot, multiple unspecified contacts

with the environment, uncertain and partially known dynamics, and numerous

physical constraints. While traditional approaches based on dynamic models

have limitations in dealing with such complexities, learning-based methods have

shown competitive performances.

To facilitate the collection of training data in a practical amount of time, Deep-

RL methods often rely on simulators. In these simulations, complex objects are

approximated as rigid bodies connected by joints and powered by actuators. This

provides a potentially infinite data source and alleviates safety concerns with real

robots, while allowing for the efficient training of agents to accomplish a variety of

tasks, including locomotion control. Nonetheless, the gap between the simulated

and real worlds can degrade the performance of policies once they are deployed

to real robots. Consequently, multiple research efforts are being directed towards

closing this sim-to-real gap and achieving more efficient policy transfer.

This thesis leverages Deep-RL to create robust locomotion controllers introducing

innovative approaches to minimize hyper-parameter tuning and to address the

sim-to-real gap. Moreover, the efficacy of learning-based methods applied to

quadrupeds was pushed to the extreme by teaching quadruped robots bipedal

locomotion, this experiment demonstrated that the sim-to-real gap remains a

challenge in highly dynamic scenarios.

DRAFT Printed on April 21, 2024



1. Introduction 3

1.2 Contribution

The primary objective of this study was to develop more convenient methods for

designing, training, and deploying robust locomotion controllers for legged robots

using learning-based techniques.

We began by exploring the potential of CPGs for facilitating the process of

designing locomotion controllers, leveraging their inherent characteristics, such as

oscillatory behavior and robustness to perturbations. We developed a hopping

controller in simulation combining our custom differentiable CPGs formulation with

Deep-RL, this framework allowed us to easily include/train a Multilayer Perceptron

(MLP) to provide non-linear feedback to the oscillators.

Building on these simulation experiments, we focused on deploying locomotion

controllers on real machines, this time adopting purely model-free Deep-RL tech-

niques. In particular, we aimed to reduce the burden of hyper-parameters selection

and tuning required to address the sim-to-real gap, thereby obtaining very robust

policies at the expenses of tweaking only a couple of parameters.

Having observed the impressive robustness of Deep-RL on quadruped robots, we

sought to push the limits of these model-free controllers by adopting them to train

a policy for the bipedal locomotion of a quadruped robot. The resulting policy was

extremely performing in simulation, but the shortcomings of current sim-to-real

techniques were evident when transferred to the real robot.

The main scientific contributions of the work undertaken as part of this Doctor

of Philosophy study are:

• Development of a fully differentiable formulation of CPGs, allowing for direct

training of parameters using gradient-based optimization techniques, and

incorporation of an MLP network for feedback processing.

Chapter 3, Luigi Campanaro et al. “CPG-Actor: Reinforcement Learning

For Central Pattern Generators”. In: Towards Autonomous Robotic Systems:

22nd Annual Conference, TAROS 2021, Lincoln, UK, September 8–10, 2021,
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4 1.2. Contribution

Proceedings. Lincoln, United Kingdom: Springer-Verlag, 2021, pp. 25–35.

url: https: // doi. org/ 10. 1007/ 978-3-030-89177-0_ 3

• Introduction of a novel method, ERFI, for transferring locomotion controllers

trained in simulation to hardware by randomizing only two parameters,

eliminating the need for exhaustive system and distribution identification.

Chapter 4, Luigi Campanaro et al. Learning and Deploying Robust Locomo-

tion Policies with Minimal Dynamics Randomization. 2022. url: https:

// arxiv. org/ abs/ 2209. 12878

• Development of Roll-Drop, a method to improve the robustness of Deep-RL

based locomotion controllers to observation noise without exhaustive system

identification, achieving an 80% success rate with up to 25% noise injected.

Chapter 5, Luigi Campanaro et al. “Roll-Drop: accounting for observation

noise with a single parameter”. In: Proceedings of The 5th Annual Learning

for Dynamics and Control Conference. Ed. by Nikolai Matni, Manfred Morari,

and George J. Pappas. Vol. 211. Proceedings of Machine Learning Research.

PMLR, 15–16 Jun 2023, pp. 718–730. url: https: // proceedings. mlr.

press/ v211/ campanaro23a. html

• Development of a the first bipedal omni-directional controller for quadruped

robots with point-feet, trained in simulation and validated against hardware

execution data.

Chapter 6

• Development of the first bipedal controller for quadruped robots with point

feet that can take 11 steps in the real world without hardware modifications.

Chapter 6

To summarise, legged robots are versatile machines with superior mobility, but

their complex controllers are difficult to design. Classic methods require engineers to

distill their knowledge into the controllers, which can be time-consuming and limiting

DRAFT Printed on April 21, 2024

https://doi.org/10.1007/978-3-030-89177-0_3
https://arxiv.org/abs/2209.12878
https://arxiv.org/abs/2209.12878
https://proceedings.mlr.press/v211/campanaro23a.html
https://proceedings.mlr.press/v211/campanaro23a.html


1. Introduction 5

when approaching dynamic tasks in unknown environments. Conversely, learning-

based methods gather knowledge from data, and have the potential to unlock the

versatility of legged systems. This thesis followed the latter path to address several

challenges in locomotion with the following contributions: a CPG-Actor architecture

combining differentiable formulations, neural networks, and Deep-RL for joint CPG

and MLP feedback learning; the ERFI method for streamlined sim-to-real transfer

of locomotion controllers; Roll-Drop, a technique addressing observation noise in

sim-to-real; and a model-free controller enabling omni-directional bipedal locomotion

of quadruped robots in simulation, and for eleven steps on the real machine.
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Ut est rerum omnium magister usus.

Experience is the teacher of all things.

— Gaius Iulius Caesar’s De Bello Civili

2
Preliminaries

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Modern legged robots . . . . . . . . . . . . . . . . . . . . 8
2.3 Platform systems overview . . . . . . . . . . . . . . . . . 10

2.3.1 ANYbotics ANYmal B . . . . . . . . . . . . . . . . . . . 11
2.3.2 ANYbotics ANYmal C . . . . . . . . . . . . . . . . . . . 11
2.3.3 Unitree A1 . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Model-based approaches . . . . . . . . . . . . . . . . . . 12
2.4.1 Hierarchical Controllers . . . . . . . . . . . . . . . . . . 13
2.4.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Learning-based control approaches . . . . . . . . . . . . 16
2.5.1 Central Pattern Generators . . . . . . . . . . . . . . . . 17
2.5.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . 20
2.5.3 Sim-to-real Transfer . . . . . . . . . . . . . . . . . . . . 25
2.5.4 Domain Randomization . . . . . . . . . . . . . . . . . . 25
2.5.5 Domain Adaptation . . . . . . . . . . . . . . . . . . . . 26
2.5.6 Model-based Deep-RL . . . . . . . . . . . . . . . . . . . 26
2.5.7 Reward shaping, imitation learning, and AMP . . . . . 27

2.1 Introduction

The field of legged robotics has experienced a significant surge in interest in

recent years, resulting from the availability of affordable hardware, particularly

quadrupeds, on the market.

7



8 2.2. Modern legged robots

One of the key challenges in legged robotics is orchestrating the relative motions of

the limbs, footholds, and reflex generation in the presence of external perturbations.

This challenge remains a major area of focus, and researchers have proposed various

techniques to address locomotion, with the two major approaches, model-based

and learning-based, discussed in detail in sections 2.4 and 2.5.

2.2 Modern legged robots

In the 1980s, Marc Raibert’s Leg Lab at MIT developed some of the first legged

machines that exhibited dynamic behaviors closer to animals. These included a 3-D

one leg hopper that could dynamically balance [4], a 3-D biped robot that could

perform back-flips [5], and a quadruped robot controlled with a single virtual leg [6].

Some years later, Honda was working on ASIMO [7], a 52 kg humanoid robot

equipped with various sensors, including cameras and microphones. ASIMO was

capable of walking at a speed of 1.6 km/h.

Following the success of the Leg Lab at MIT, Raibert left academia and founded

Boston Dynamics, which has produced some of the most capable and recognizable

robots, including BigDog, Petman [8], Atlas, LS3, Spot, Wildcat, SpotMini, Handle,

and Stretch. Initially, many of these robots were equipped with combustion engines

and hydraulic actuators, which made them noisy.

Later, researchers at the Italian Institute of Technology (IIT) began working

on HyQ, a 90 kg hydraulically actuated quadruped robot with an external power

supply [9]. The experience gained from HyQ led IIT to develop a more compact

version called HyQ2Max [10]. In 2019, they introduced HyQReal, which featured

an on-board power supply.

As electric motors and batteries improved, researchers began to focus on this

technology. One of the first examples was StarlETH, which featured twelve Series-

Elastic Actuators (SEAs) that made it robust, energy-efficient, and capable of

accurately measuring torque at the joints [11]. It demonstrated trotting at 0.7

m/s [12] and performed multiple dynamic maneuvers [13]. The development of
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2. Preliminaries 9

StarlETH led to the ANYmal robot [14], which demonstrated 1.5 m/s locomotion

and versatility in industrial scenarios [15] and international robotic competitions [16].

In 2013, a game-changing design for electric actuators was proposed [17], which

incorporated a low-ratio planetary gear set and a large-gap-radius motor for superior

power density. Based on this design, Cheetah 2 demonstrated highly dynamic

maneuvers [18, 19] that previous robots could not achieve with other electrical

actuators. Its successor, Cheetah Mini, demonstrated even more dynamic maneuvers,

including back-flips [20] and abrupt changes in direction [21]. The new planetary

gear motors developed at MIT have also led to the production of cheaper machines

by several companies, including Unitree Robotics and Deep Robotics.

In addition to Raibert’s lab, other research groups were interested in bipedal

locomotion. For example, ATRIAS [22] demonstrated dynamically stable stepping

in 3D without external support using a spring-mass model. Its successor, Cassie,

was built by the spin-off company Agility Robotics from Oregon State University

and demonstrated impressive skills, such as walking blindly over stairs [23] and

transitioning through several bipedal gaits [24]. The current iteration, Digit, is

equipped with arms for manipulation [25].

While this thesis omits many other robots that have contributed to the progress of

legged robotics, the emphasis on high-power machines is motivated by their potential

to carry out useful tasks. High-power legged machines are characterized by motors

that can exert high torque (∼30 N m to 80 N m, relatively to their weights ∼12 kg

to 50 kg) and high velocities (∼10 rad s−1 to 20 rad s−1), as depicted in Figure 2.1.

In order to achieve navigation autonomy in real-world applications, legged

robots must be equipped with advanced batteries, sensors, and robot arms, as

shown in Figure 2.2. This additional equipment adds weight to the robot and places

constraints on its shape and structure. Moreover, human-scale mobility is often

required to navigate places built for human utilization or to explore disaster sites. As

such, the focus on high-power machines in this thesis is driven by the need for legged

robots that are capable of performing useful tasks in challenging environments.
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10 2.3. Platform systems overview

Figure 2.1: a) BigDog, b) LS3, c) WildCat, d) Spot Classic, e) Asimo, f) HyQ, g)
StarlETH, h) ANYmal B, i) Cassie, j) Cheetah Mini, k) Handle, l) HyQ Real, m) Digit

Figure 2.2: Laser scanners, depth cameras, battery packs, and robotic arms are some of
the most common payloads legged robots mount to be autonomous and carry out useful
tasks.

2.3 Platform systems overview

The platforms used in this study consists of three different robots: the ANYbotics

ANYmal B, the ANYbotics ANYmal C, and the Unitree A1. These are all quadruped
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robots, each with its own set of capabilities and limitations (e.g. SEAs), which

were carefully considered when designing the policies to ensure transferability from

the simulation environments to the real world.

2.3.1 ANYbotics ANYmal B

The ANYmal B is a quadruped robot that uses SEAs for its motors. SEAs are a

type of actuator that combines a motor with a spring, which provides mechanical

compliance to the system and this compliance allows the ANYmal B to absorb

impact loads and improve its dynamic performance. The SEAs on the ANYmal

B have a maximum speed of 12 rad/s and a maximum torque of 40 Nm, this

gives it a running speed of 0.8 m/s and a payload capacity of 5 kg. The robot

is powered by a 48 V battery that provides an endurance of 1.5-2 hours. The

ANYmal B is also equipped with a variety of sensors, including joint encoders,

joint-torque sensors, IMU, Lidar, cameras, and a depth sensor, these sensors allow

it to accurately control its motion and avoid obstacles.

2.3.2 ANYbotics ANYmal C

ANYmal C is the next generation of ANYbotics’ autonomous legged robot, designed

specifically for industrial inspection tasks. It features more powerful motors (80 Nm)

and a higher payload (10 kg) than its predecessor, the ANYmal B. Additionally,

ANYmal C is equipped with a variety of sensors, including LIDAR, depth cameras,

and a pan-tilt inspection module with a visual and thermal camera (optional).

This allows it to accurately map its environment and detect defects in equipment.

ANYmal C is also more rugged and reliable than the ANYmal B, making it ideal

for use in harsh industrial environments. It is IP67 water and dustproof, and can

operate for up to 2 hours on a single battery charge.

2.3.3 Unitree A1

The Unitree A1 is a 12kg quadruped robot with a maximum running speed of 3.3m/s

(11.88km/h) and a maximum payload of 5kg. The robot’s kinematics are based on
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12 2.4. Model-based approaches

a four-bar linkage system with actuated joints at the hip, knee, and ankle. It has

12 independent brushless DC motors with a maximum joint torque of 33.5N.m and

a maximum joint speed of 21rad/s. The motors are powered by a 24V battery and

have an endurance of 1-2.5 hours. It is equipped with a depth camera for obstacle

avoidance and a variety of sensors, including foot-end pressure sensors (not used

for the applications discussed in this thesis), IMUs, and encoders.

2.4 Model-based approaches

Generating feasible motions for legged robots is a challenging task, as the movements

of the base are not directly generated but instead result from the interaction between

the limbs and the environment. To achieve the desired behavior, the contact forces

must be carefully generated, while also accounting for constraints such as the fact

that a force can only be generated if the feet are touching the ground, and that

feet can only push, not pull, into it.

Crafting valid trajectories for the body, feet, and forces can be a laborious task

due to the complexity of respecting these constraints. A wide range of control models

exist for legged robots, ranging from simplified templates to full rigid body models.

The rigid body dynamics model of a quadrupedal system can be expressed in

the form of generalized equations of motion:

Mu̇ + h = ST τj + JT λ, (2.1)

where M ∈ R(6+nj)×(6+nj) is the mass matrix relative to the joints, h ∈ R6+nj

comprises Coriolis, centrifugal and gravity terms, ST = [0nj×6 Inj×nj
]T , and J is the

Jacobian which maps the contact forces λ ∈ Rnf at nf = 4 feet to generalized forces.

The representation of a dynamical system with Equation (2.1) is based on

the assumption that the bodies in the system do not deform when subjected

to external forces. As more assumptions are introduced, the resulting models

become simpler and faster to compute, but their accuracy decreases. Continuing on

this line of simplification, neglecting the momentum produced by joint velocities

and assuming that the full-body inertia remains similar to the one in nominal
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joint position results in a less accurate model known as the Single Rigid Body

Dynamics (SRBD). Adding more assumptions to the SRBD, as: the height of

the Center of Mass (CoM) is constant, the angular velocity and acceleration of

the base are zero, and that footholds are at a constant height, lead to the Linear

Inverted Pendulum (LIP) model.

In the following sections, I categorized model-based control approaches for

legged robots into two groups based on the complexity of the model employed.

However, there is a gray area where trajectories are optimized adopting simplified

models [26, 27].

The first group is a modular controller design, in which each module utilizes a

template or heuristic. The second group is optimal control, which aims to compute

a trajectory that minimizes a single high-level cost function. While this approach

can result in highly optimized movements, it typically requires more computational

resources than the modular approach. Overall, choosing the appropriate control

model for a particular task involves balancing the complexity of the model with

the available computational resources.

An additional variant involves the combination of trajectory optimization

approaches with data-driven methods. In their work [28], the authors employed a

Neural Network (NN) to expedite the convergence of a non-linear programming

solver aimed at generating trajectories that anticipate obstacles for a quadruped

robot. This procedure entailed generating diverse data sets for various tasks

using offline trajectory optimization techniques. Following this step, a NN was

trained in a supervised manner to provide a meaningful initialization for the Model

Predictive Controller (MPC).

2.4.1 Hierarchical Controllers

Orchestrating the coordinated and effective motion of the limbs is a challenging

task. To address this challenge, methods have been adopted that solve smaller,

more tractable sub-problems. Controllers are assigned to each sub-problem, and

new modules can be easily swapped in to generate different behaviors. Hierarchical
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14 2.4. Model-based approaches

architectures, which are interpretable by humans, scalable, and easier to maintain,

are often used for this purpose.

One well-known example of modular controllers is the LIP model, which was

initially developed by [29] to approximate the locomotion of single-leg hoppers.

However, this method is not limited to controlling single-leg machines, and has been

extended to biped and quadruped robots by incorporating virtual feet. These models

simplify complex systems by assuming symmetries or low acceleration/velocity of

the links, which reduces the complexity of the control problem.

In the hierarchical framework, the models represent only a single aspect of

control. For instance, the inverted pendulum model is used to compute only the foot

placement position or the virtual foot position (for biped and quadruped robots),

and multiple small controllers operate in concert to maintain balance.

Following Raibert’s findings, the introduction of the Zero-Moment Point (ZMP) [30]

better formalized the adoption of fake contact points to control the motion of the

CoM. This fast and effective approach was applied to real hardware locomotion, and

additional evidence of its efficacy is shown in [31], which was the state-of-the-art

controller for rough terrain locomotion for over ten years.

In this work, the authors proposed a cascade of different components: the

footstep planner calculates optimal foothold choices for the next four steps, the pose

finder optimizes the 6-D pose of the robot body - given the 3-D locations of the

stance feet - to maximize kinematic reachability and to avoid configurations that

collide with the terrain. The body trajectory generator uses the next four planned

footholds to create smooth and ZMP-stable body trajectories. The foot trajectory

planner, given a stable body trajectory and the desired footstep locations, generates

a trajectory for the swing leg that avoids collisions with the terrain. Finally, the

controller executes the plan with accuracy and robustness to perturbation, resorting

to PID Control, Inverse Dynamics, and Force Control.

Later works such as [26] proposed a hierarchical controller that can execute

dynamic gaits on quadruped robots, including trot, pace, dynamic lateral walk, as

well as gaits with full flight phases as jumping, pronking, and running trot with
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smooth transitions among the gaits. The controller is based on an online zero-

moment point motion planner that continuously updates the reference trajectory as

a function of the contact schedule and the state of the robot. The desired footholds

are obtained by solving a separate optimization problem, and the resulting motion

plans are tracked by a hierarchical whole-body controller.

In [32], the authors developed a controller for the quadruped MIT Cheetah

capable of running at a maximum speed of 6 m/s. The motion generation and

tracking are organized into three modules: a programmable virtual leg provides

instantaneous reflexes to external disturbances and facilitates self-stabilizing, a

tunable stance-trajectory design adjusts impulse at each foot-end in the stance

phase according to the equilibrium-point hypothesis, and a gait-pattern modulation

imposes a desired pattern based on proprioceptive feedback.

Another proposed framework in [33] consists of two modules: the generation

of elliptic trajectories for the feet based on task space CPGs and controlling the

stability of the whole robot via a null space-based attitude control for the trunk

and a push recovery algorithm (based on the capture point).

Despite the advantages of hierarchical controllers, their complexity requires a

lengthy and tedious development process. They must be modified drastically for

every new task, and crawling or other maneuvers that require different contact

points may necessitate significant controller modifications. Additionally, hierarchical

controllers often consider the legs massless, neglecting their dynamic effects and

performing poorly in dynamic maneuvers. Lastly, modular controllers must optimize

contact scheduling, which is a combinatorial problem beyond the capabilities of

current algorithms, resulting in controllers based on heuristics or hand-coded

contact scheduling.

2.4.2 Optimal Control

In response to the limitations of hierarchical controllers, which necessitate de-

signing specific control architectures for the given task and tuning each sub-
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module, researchers have increasingly turned to optimization algorithms to elicit

emerging behaviors.

Typically, these algorithms take the form of an optimal control problem aimed at

achieving long-term optimization of a scalar cost function. This involves considering

a controllable, discrete-time, dynamical system represented by xn+1 = f(xn, un),

where xn denotes the system state at time n and un represents the control inputs.

The main objective of optimal control is to specify a metric that evaluates the

controlled system’s performance and to determine the control inputs un at each

time that optimize this performance.

However, the high dimensionality of locomotion renders designing trajectories

with solvers from scratch impractical, necessitating simplifications or initial solutions

to attain convergence within a reasonable time frame. For example, as is the

case with hierarchical controllers, pre-specifying the contact points (such as the

feet) allows to ignore selecting the body and limbs for such tasks, speeding

up optimization.

Dynamic Programming (DP) is one of the numerical methods adopted to solve

the optimal control problem, in this case the original problem is decomposed into a

collection of simpler sub-problems, which are solved individually, and their solutions

are stored. This iterative process estimates the value function through consecutive

Bellman updates, DP and RL share a common approach that involves leveraging

value functions to organize and structure the search for good policies [34]. Interest

in DP-based approaches has recently increased, with studies applying them to

controlling humanoids [35] and quadruped robots [36–39].

2.5 Learning-based control approaches

Learning-based control methods offer a promising alternative to classic control

approaches by enabling the learning of effective controllers directly from experience,

without relying on approximations of the robot’s dynamics or engineering behav-

iors. Notably, learning-based techniques retrieve information about a controller’s

performance in simulation to optimize one or more task-representing functions,
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leading to highly dynamic and effective controllers. These methods typically employ

a parameterized control policy representation, with learning achieved through

optimization of these parameters via maximization of a loss function, such as

the reward. The subsequent sections will explore two prominent learning-based

control techniques: CPGs and Deep-RL.

2.5.1 Central Pattern Generators

CPGs are neural circuits that can produce rhythmic patterns in the absence

of sensory inputs [40, 41]. They have been observed in both invertebrates and

vertebrates. In the latter, the locomotor system is organized such that the spinal

CPGs are responsible for producing basic rhythmic patterns, while higher-level

centers such as the motor cortex, cerebellum, and basal ganglia modulate these

patterns according to environmental conditions. This distributed organization

presents several interesting features, such as reducing time delays in control loops

by using short feedback from the spinal cord and reducing the dimensionality of

the descending control signals by allowing a few inputs from higher-level centers

to control the whole spine, as shown in Figure 2.3.

In the field of control engineering, artificial CPGs are implemented in the form

of cyclic graphs that generate rhythmic patterns for control, Equation (2.2).

θ̇t
i = 2πνi(dt

i) + ζt
i

ζt
i = ∑

j rt−1
j wij sin(θt−1

j − θt−1
i − ϕij)

r̈t
i = ai(ai

4 (ρi(dt
i)− rt−1

i )− ṙt−1
i )

xt
i = rt

i cos(θt
i)

(2.2)

where ·t describes the value at the t-th time-step, θi and ri are the scalar state

variables representing the phase and the amplitude of oscillator i respectively, νi

and ρi determine its intrinsic frequency and amplitude as function of the input

command signals di, and ai is a positive constant governing the amplitude dynamics.

The effects of the couplings between oscillators are accounted in ζi and the specific

coupling between i and j are defined by the weights wij and phase ϕij. The

signal xi represents the burst produced by the oscillatory centre used as position

reference by the motors.
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Figure 2.3: In the work presented in [42] the robot has ten motors that control the six
hinge joints of the spine and four rotational joints for the limbs. The CPGs consists of
two parts: body CPGs and limb CPGs. The body CPGs have 16 oscillators that control
the spine motors, while the limb CPGs have four oscillators that control the limb motors.
The CPGs receive signals from the brain stem that determine the setpoints for the motor
controllers, which in turn control the motor torques to achieve the desired angles. The
gait of the robot can be modified by adjusting the signals sent to the CPGs.

Unlike the deep learning community, which aims for a general representation for

multiple purposes, the CPG community looks for a configuration that sufficiently

describes the behavior of a specific animal or robot. As a result, CPGs require

more experience and craftsmanship to be designed and tuned.

Models of CPGs have been used to control a variety of different types of robots

and modes of locomotion, including swimming robots [42], quadruped walking

robots [43, 44], hexapods, octapods, biped robots [40], and modular robots [45, 46].

The optimization of CPG-based controllers usually occurs in simulation through

techniques such as Genetic Algorithms (GA) [40], Particle Swarm optimization

(PSO) [46, 47], or expert hand-tuning [43, 44, 48, 49].

Prior work has evaluated the performance of CPGs for blind locomotion over flat

ground [47]. However, navigating on rough terrain requires sensory feedback (e.g.

to handle early or late contact), as shown in [44], where a hierarchical controller

based on CPGs relied on a state machine to activate feedback. In particular,

stumbling correction and leg extension reflexes were impulses triggered by the state
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machine, while the attitude control relied on information such as the contact status

of each leg, the joint angles read by encoders, and the rotation matrix indicating the

orientation of the robot’s trunk. All of this data was processed in a virtual model

control fashion and then linearly combined with the CPG equations. The angle of

attack between the leg and terrain, which is useful for accelerating/decelerating

the body or locomoting on slopes, was controlled by the sagittal hip joints and

linearly combined with the CPG equations to provide feedback.

Similarly to [44], [49] also adopted feedback, this time based on gyroscope

velocities and optical flow from a camera, to modify the CPGs output to maintain

balance. The authors first tuned CPGs in an open-loop setting and then trained a

NN with PSO to provide feedback while keeping the CPGs parameters fixed. Their

method relied on a simple NN with seven inputs, four from the camera/optical

flow and three from the gyroscope, and a single hidden layer.

In [50], the authors demonstrated how leg coordination can self-organize through

a CPG model, with spontaneous gait transitions [51] between the most energy-

efficient patterns exhibited only by changing the intrinsic angular velocity of

oscillators in the CPG model without any pre-programmed gait patterns.

In robotics, CPGs offer several advantages, such as the ability to generate smooth

output, and the ease of introducing sensory feedback without causing discontinuities

in the output. Moreover, CPGs can encode arbitrary limit cycles, which can be

useful for controlling various types of locomotion in robots.

However, despite their benefits, designing CPGs for a particular locomotor

problem remains a challenge, and there is currently no standardized methodology

for doing so. Additionally, proving the stability of the entire CPG-robot system is

a difficult task, and designing effective feedback signals is an ongoing challenge [40].

Overall, while CPGs have shown promise for controlling a variety of different

types of robots and modes of locomotion, there is still much work to be done

in optimizing their performance and refining the design process. Future research

in this area will likely focus on developing more effective design methodologies,
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and exploring new feedback injection techniques to enhance the capabilities of

CPGs in robotics applications.

2.5.2 Reinforcement Learning

The objective of reinforcement learning is to determine the optimal policy for a

Markov Decision Process (MDP). The MDP is characterized by a tuple {S,A, P, r, γ},

where S ∈ Rn and A ∈ Rm represent the state space and action space, respectively.

The state transition probability P : S×A×S → [0, 1] , with P (st+1 | st, at) denoting

the probability of st+1 given that at state st, the system takes the action at. The

reward function r : S × A→ R assigns a scalar reward for each system transition,

and γ ∈ [0, 1] is the discount factor. The goal of reinforcement learning is to learn

a policy π that is parameterized by θ, where πθ (a|s) denotes the probability of

taking at given st, that solves the following optimization problem:

max
θ

Jrl(θ) =E
[ ∞∑

t=0
γtr(st, at)

]
subject to st+1 ∼ P (. | st, at)

at ∼ πθ(. | st)

Policy gradient algorithms [52] are commonly used to tackle this problem.

These algorithms estimate ∇θJrl using on-policy samples, i.e., data collected from

the current stochastic policy.

Prior to pursuing the search for an optimal policy, it can be advantageous to

contemplate techniques for evaluating the effectiveness of a specified policy. In the

domain of RL, value functions serve as a key concept, offering an estimation of the

expected future returns of a policy given a particular state [34].

The (state) value function, Equation (2.3), of a policy π, typically denoted by

V π(s), provides an estimate of agent’s expected return from following π starting

at a given state s.

V π(s) = E
[ ∞∑

t=0
γtr(st, at)

]
, (2.3)
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The V π(st) can be estimated, through consecutive interactions with the environ-

ment, in different ways: using Monte Carlo methods waiting until the actual return

Gt is known, or by bootstrapping adopting Temporal Difference (TD) methods,

which instead waits only until the next time-step to update the V π(st).

In practice, for Monte Carlo methods V π(st) is updated as: V π(st) ← V π(st) +

α[Gt − V π(st)], while for TD methods V π(st) is updated as: V π(st) ← V π(st) +

α[Rt+1 − γV π(st+1)− V π(st)].

A way to interrelate Monte Carlo and TD methods consists in averaging the n-

steps updates, this average would contain all the n-steps updates, each weighted

proportionally to λn−1 where λ ∈ [0, 1]; this algorithm is called TD(λ),

Deep-Reinforcement Learning

Classic RL algorithms rely on a tabular representation of the value function, which

limits their applicability to tasks with small numbers of states and actions. The

main issue is not only the memory required to store large tables, but also the

time and data needed to accurately fill them. When dealing with continuous

variables or images, most encountered states will not be present in the table, making

generalization a crucial aspect of the learning process [34].

A vivid illustration of this concept emerges when examining a 7 Degree of

Freedom (DOF) manipulator. Upon discretizing its action space, considering values

of ai = {−k, 0., k} for each joint, the resulting action space expands to 37 = 2187

permutations. This challenge is widely recognized as the curse of dimensionality,

illustrating the exponential growth in complexity.

To overcome these limitations, modern RL methods rely on function approxima-

tors, which is the essential ingredient for extending the capabilities of classic RL

algorithms. Modern Deep-RL uses NNs as the primary method for implementing

these parametrizations [34].

Physical control tasks, especially those involving legged robots, provide a tangible

example of the complexities arising from the continuous and high-dimensional nature

of action and observation spaces. These intricacies extend to other domains such
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as robotics manipulation, self-driving cars, and more. The pioneering work of

[53] tackled these challenges by synthesizing insights from [54] and [55], resulting

in policies capable of effectively handling continuous action spaces across diverse

domains, even when learning from raw pixel data.

In recent years, Deep-RL has demonstrated outstanding results in several

domains ([56–59]), including robotics. Specifically, in the area of legged locomotion,

this technique has become increasingly popular. For the sake of brevity and

relevance, we will focus only on RL applied to this domain.

In [60], the authors proposed an MLP-based controller, in Figure 2.4, which

takes the robot’s state history as input and produces joint position targets as output.

The use of joint space control eliminates numerical issues at singular configurations,

and the learning-based approach achieved a new level of locomotion, based purely on

training in simulation, without tedious tuning on the physical robot. Additionally,

modelling the SEA actuators with a NN allowed deploying the trained controller

directly on the physical system, leading to more accurate and energy-efficient base

velocity tracking and a 25% faster walking speed than model-based controllers.

Figure 2.4: In [60] the authors first identify the physical parameters of the robot and
estimate uncertainties in the identification. Next, they train an actuator net to model
complex actuator/software dynamics. Using the models produced in the first two steps,
the authors then train a control policy. Finally, the trained policy is deployed directly on
the physical system.

In addition to walking, [60] also presented a trained policy for recovering
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from a fall, which involves multiple unspecified internal and external contacts,

as in Figure 2.5. Compared to classic approaches, learning-based methods shift

all the computational costs to the training phase, resulting in faster and more

reactive behaviors, and this is achieved without requiring the model of the system.

Conversely, conventional optimization-based approaches require exact dynamic

models and fixed contacts, struggling with multiple uncertain contact points. The

same applies to controllers utilizing simplified templates and heuristics, relying

on handcrafted sequences and models. Predictable behaviors in these methods

hinder robustness during corner cases (e.g., legs trapped under the base) common

in falls Figure 2.5, and developing such motions via traditional methods demands

significant engineering endeavors [60]

Figure 2.5: ANYmal recovering from a kick [61].

Legged locomotion can significantly expand the operational domains of robotics,

particularly in environments inaccessible to conventional autonomous machines

using wheels or tracks. However, conventional controllers based on elaborate

state machines that explicitly trigger motion primitives and reflexes have become

increasingly complex, without achieving the generality and robustness of animal

locomotion. Conversely, in [62] the authors proposed a radically robust controller

based on a NN that acts on proprioceptive signals and demonstrated remarkable

zero-shot generalization from simulation to natural environments. Despite being

trained with Deep-RL in simulation, the blind controller retains its robustness

under challenging conditions that were never encountered during training, including

deformable terrain, dynamic footholds such as rubble, and overground impediments

such as thick vegetation and gushing water. This work opens up new frontiers for

robotics, showing that radical robustness in natural environments can be achieved

by training in much simpler domains.
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A completely different approach, called MELA, was proposed in [63] to achieve

versatile robot locomotion by learning to generate adaptive motor skills from a

group of representative expert skills. MELA utilizes a Gating Neural Network

(GNN) to combine pre-trained experts and dynamically synthesize a new deep

neural networks (DNNs) to produce adaptive behaviors in response to changing

situations, resulting in successful multi-skill locomotion on a real quadruped robot

that performed coherent trotting, steering, and fall recovery autonomously.

In [24], the authors tackled the problem of achieving the full spectrum of bipedal

locomotion on a real robot with sim-to-real Deep-RL. Designing intuitive reward

functions to describe different gaits is a challenge in learning legged locomotion.

Reference motions, such as trajectories of joint positions, are commonly used to

guide learning. However, finding high-quality reference motions can be difficult, and

the trajectories themselves narrowly constrain the space of learned motions. The

authors proposed a reward specification framework based on simple probabilistic

periodic costs on basic forces and velocities, with intuitive settings for all common

bipedal gaits, including standing, walking, hopping, running, and skipping. Using

this function, they successfully demonstrated sim-to-real transfer of the learned

gaits to the bipedal robot Cassie, as well as a generic policy that can transition

between all bipedal gaits.

Furthermore, in [23], the authors introduced a blind controller for the biped

robot Cassie to traverse stairs. The controller’s core is a recurrent policy trained

with Deep-RL, without adopting any stair-specific reward.

In [64], the authors introduce a training setup that utilizes massive parallelism

on a single (workstation) GPU to achieve fast policy generation for real-world

robotic tasks. Their approach involves a game-inspired curriculum suitable for

training thousands of simulated robots in parallel, and they investigate the impact

of different training algorithm components in the massively parallel regime. The

authors demonstrate the effectiveness of their approach by training the quadrupedal

robot ANYmal C to walk on challenging terrain. Notably, their parallel approach

enabled the training of policies for flat terrain in under four minutes, in twenty
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minutes for uneven terrain, and the policies were successfully transferred to the

real robot, representing a significant speedup compared to previous work.

In [65] the authors proposed a controller that is solely trained in simulation using

Deep-RL. The controller leverages exteroceptive feedback to inform the policy about

the environment, enabling the robot to plan its steps in advance. While previous

works [64] have demonstrated this functionality by combining model-based and

learning-based methods [66], [65] increased the versatility of perceptive controllers

even further, enabling them to work in cluttered environments where visual feedback

can be unreliable. Specifically, the authors included an attention-based recurrent

encoder, referred to as the belief encoder, in the policy that selectively attends to the

input data and decides whether to trust the visual feedback or not. This new method

allows the robot to work in environments with tall vegetation, where the grass

can produce sudden spikes in the elevation map, or in other environments where

the height map can become corrupt, leading the robot to perceive non-existent

obstacles and potentially fall over.

2.5.3 Sim-to-real Transfer

Training policies directly on real robots using Deep-RL algorithms presents a

challenge due to the substantial amount of interactions with the environment

required, as well as the potential for damages that the robots may incur. As a result,

policies are typically trained in a simulation environment before being transferred

to physical robots. However, the reality-gap, which refers to the differences between

the simulation and the physical robot, can cause naive transfer to be ineffective.

As a result, finding a reliable method for transferring policies from simulation to

physical robots is currently a significant area of research.

2.5.4 Domain Randomization

To address the reality gap, a viable solution is to train policies that are robust to

potential modeling errors. By introducing randomness into the properties of the

robot and into the environment it navigates during training, robust policies that
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successfully navigate the reality gap can be achieved. This approach is referred to as

Domain Randomization and has proven successful in a variety of sim-to-real tasks,

including manipulation [67, 68], quadruped [60, 61, 65, 69], and biped tasks [23, 24].

However, there are several limitations associated with the application of domain

randomization. The technique often involves a broad range of randomization, which

require extensive system identification to select the parameters to randomize and

their respective ranges, and it can result in policies that are overly cautious and

restrict the system’s capabilities [70].

2.5.5 Domain Adaptation

Rather than aiming to create a policy robust to potential real-world variations, an

alternative is resorting to policies that are adaptable to changes. To achieve this,

a policy can be conditioned on several parameters, such as the robot’s mass, the

friction coefficient of the terrain, the height of the terrain [71, 72]. Often some of

these parameters are available in simulation environments but not on the real robot,

in this scenario it is possible to use a short history of the state as input [62] or neural

networks with memory [68, 73] to allow the policy to perform adaptation implicitly.

2.5.6 Model-based Deep-RL

Model-based Deep-RL centers on the construction of environment models that allows

agents to anticipate the outcomes of their actions. When provided with a state and

an action, the model learns to predict the next state and reward. Learning these

models offers several benefits: 1) more efficient utilization of interaction experiences,

which can be used to improve the value function and policy, and to refine the model

itself, and 2) the generation of simulated interaction with the environment that are

used to update the policy [34].

In the context of model-based RL, our primary focus is on the contemporary

application of Deep-NN as approximators for value function, policy, and en-

vironmental models, with a deliberate omission of tabular representations for

conciseness. An influential milestone in this domain was the seminal work presented
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in [74]. This approach incorporated a Variational Autoencoder (VAE) to reduce

the dimensionality of the state (2D images). The resulting low-dimensional latent

representation was combined with previous actions, and a Recurrent Neural Network

(RNN) was used to build the world model capturing long-term dependencies between

states and actions. To demonstrate the effectiveness of their approach, the authors

adopted a controller made up of a single linear layer that mapped the combination

of the lower-dimensional perception representation (the 2D image compressed by the

VAE) and the world model’s hidden state into actions. This methodology illustrates

the potential of training agents entirely within latent space worlds.

Model-based Deep-RL is not only confined to video-games [74], and found recent

application on board of quadruped robots as well. In [75] the authors proposed

a model-based approach for more efficient training of a locomotion policy on real

robots, bypassing the need for simulation environments. This method substantially

reduces real-world interactions and is rooted in algorithms introduced [76, 77], where

the encoder fuses all the sensory modalities in discrete codes (made interpretable

by the decoder), which are then used by a recurrent state space model to accurately

predict future states. The resulting policy was trained on a quadruped robot in

an hour, all without necessitating engagement with simulation environments or

the employment of sim-to-real techniques.

2.5.7 Reward shaping, imitation learning, and AMP

Reward shaping is a delicate aspect of constructing the RL environment, playing

a pivotal role in determining the final behavior of the agent. In more complex

applications, such as legged locomotion involving quadruped robots, the specification

of multiple rewards becomes necessary to precisely define the desired policy behavior

[2, 60–62, 64, 66, 69]. These diverse reward terms are then aggregated through

weighted sum to yield a single scalar utilized in the optimization process. The

combination of reward terms and appropriate weights selection is known to as

reward shaping.

Emphasized by [78], inaccurately specifying rewards lead RL agents to prioritize
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certain aspects of the observation and action spaces, often misaligned with human

behaviors in the given context. This misalignment contradicts fundamental principles

of common sense and engineering. In response, [78] presents several remedies: first,

imitation learning circumvents the necessity of explicitly crafting rewards by enabling

learning from demonstrations, second, human feedback can be integrated to evaluate

episode quality, and third, learning across similar scenarios can produce a more

intuitive reward function.

In the pursuit of developing viable locomotion policies for legged robots, we will

explore streamlined approaches to reward specification: employing imitation learning

with animal data, and adopting Adversarial Motion Priors (AMP) to emulate a

specific style (gait) derived from a dataset.

In addressing the challenge of replicating the versatile locomotion abilities found

in animals, [79] turned to imitation learning. In contrast to classic approaches,

involving manual design of controllers and substantial expertise, Deep-RL offers an

automated alternative to these manual efforts. Nonetheless, formulating effective

learning objectives remains intricate. This study introduces an imitation learning

system that empowers legged robots to acquire agile locomotion skills through

emulating animal movements. Leveraging reference motion data, this approach

synthesizes controllers to encompass a diverse range of behaviors, that combined

with domain adaptation techniques facilitates the transfer of learned policies from

simulation to an 18-DOFs quadruped robot.

With the objective of overcoming the challenge of intricate reward function tuning,

the work from [80] introduces Multi-AMP, a Deep-RL approach that extends

adversarial motion priors to enable the learning of multiple complex locomotion

styles on legged robots. This method concurrently acquires diverse skills, even

from trajectories optimization techniques. Experimental validation on a wheeled-

legged quadruped robot demonstrates a wide range of abilities, including transitions

between quadrupedal and humanoid modes. Multi-AMP and its precursor, AMP,

offer a promising pathway to reduce reward function tuning in Deep-RL.

Techniques like imitation learning and AMP contribute to a more accurate, simpler,
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and more effective specification of the training objective, crucial to approach

multiple and intricate tasks.
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3.1 Overview of contribution

The advanced maneuverability of legged robots compared to wheeled or crawling

robots demands sophisticated planning and control solutions. In the past, conven-

tional control methods have dominated the field of legged robot control, but recently,

data-driven methods have shown remarkable results surpassing classical approaches

in terms of robustness and dynamic behaviors [62]. Specifically, controllers trained

using deep reinforcement learning (RL) utilize a neural network (NN) policy to

translate sensory information into low-level actuation commands, resulting in

behaviors that cannot be engineered and are resilient to environmental events [2,

31
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60, 61, 64, 65]. However, commonly used NN architectures, such as multi-layer

perceptrons, do not inherently generate the oscillatory behavior observed in natural

locomotion gaits, and require extensive training and reward-shaping to achieve

smooth oscillations. Another family of controllers, CPGs, a biologically-inspired

neural network capable of producing rhythmic patterns, have shown promising results

for robot locomotion. However, despite these intriguing attributes, CPGs face the

challenge of lacking a firmly established methodology for designing the desired

limit cycle [40, 43, 81]. Also, unlike Deep-NNs, which offer versatile architectures

for various applications, CPGs require a representation that adequately captures

the behaviors of a specific animal/robot. Within this context, formulating the

feedback –given the intricate interdependencies among the aforementioned aspects–

poses notable challenges [40].

Hence, we argue that the full potential of CPGs has so far been limited by

insufficient sensory-feedback integration and absence of state of the art techniques

to shape the desired limit cycle. Thus, combining Deep-RL with CPGs could

enhance the latter perception of the environment. However, optimizing Deep-NN

in combination with CPGs requires methods to backpropagate the gradient from

the loss to the parameters. To address it, this work introduces a novel approach

for incorporating feedback into a fully differentiable CPG formulation adopting

Deep-NNs and applying Deep-RL to jointly learn the CPGs parameters and MLP

feedback. In contrast to prior work, the CPG is directly embedded as the actor in an

Actor-Critic framework, allowing for direct encoding of task-specific characteristics

(e.g., periodicity) without resorting to recurrent methods. The outcome is the

CPG-Actor architecture, which enables end-to-end training of coupled CPGs and

an MLP for sensory feedback using Deep-RL.

The main contributions of this paper are:

• For the first time, to the best of our knowledge, the parameters of the CPGs

can be directly trained using gradient-based optimization techniques such as

Proximal Policy Optimisation (PPO). This is made possible by proposing a
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fully differentiable CPGs formulation and a novel method for capturing their

recurrent state without unrolling them over time.

• The fully differentiable approach also enables the incorporation and joint

tuning of an MLP network responsible for processing feedback in the same

pipeline.

• The results show roughly twenty times better training performance compared

to previous state-of-the-art methods.

3.2 Integrated manuscript
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Abstract Central Pattern Generators (CPGs) have several properties
desirable for locomotion: they generate smooth trajectories, are robust
to perturbations and are simple to implement. However, they are notori-
ously difficult to tune and commonly operate in an open-loop manner.
This paper proposes a new methodology that allows tuning CPG con-
trollers through gradient-based optimisation in a Reinforcement Learning
(RL) setting. In particular, we show how CPGs can directly be integrated
as the Actor in an Actor-Critic formulation. Additionally, we demon-
strate how this change permits us to integrate highly non-linear feedback
directly from sensory perception to reshape the oscillators’ dynamics.
Our results on a locomotion task using a single-leg hopper demonstrate
that explicitly using the CPG as the Actor rather than as part of the en-
vironment results in a significant increase in the reward gained over time
(20x more) compared with previous approaches. Finally, we demonstrate
how our closed-loop CPG progressively improves the hopping behaviour
for longer training epochs relying only on basic reward functions.

Keywords: Central Pattern Generators, Reinforcement Learning, Feedback Con-
trol, Legged Robots

1 Introduction

The increased manoeuvrability associated with legged robots in comparison
to wheeled or crawling robots necessitates complex planning and control solu-
tions. The current state-of-the-art for high-performance locomotion are modular,
model-based controllers which break down the control problem in different sub-
modules [1].This rigorous approach is rooted in the knowledge of every portion
of the motion, but it is also limited by heuristics handcrafted by engineers at
each of the stages.

While the field of legged robot control has been dominated over the last dec-
ades by conventional control approaches, recently, data-driven methods demon-
strated unprecedented results that outpaced most of the classical approaches
in terms of robustness and dynamic behaviours [2]. In particular, controllers
trained using deep-RL utilise a Neural Network (NN) policy to map sensory in-
formation to low-level actuation commands. As a result, controllers trained with



2 L. Campanaro et al.

(a)

Time [s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
3.5

4.0

Trai
nin

g ste
ps

2M

10M

50M

H
ei

gh
t [

m
]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(b)

Figure 1: The experiments are carried out on a classic Reinforcement Learning
(RL) benchmark – the single-leg hopper based on the ANYmal quadruped robot
[3]. It hops along the vertical axis and is controlled by Central Pattern Generators
(CPGs). Closed-loop feedback is incorporated using a jointly trained Multilayer
Perceptron (MLP) network (Figure 1a). To demonstrate that the CPG-Actor
progressively learns to jump higher peaks of both the hip (solid line) and foot
(dotted line) heights (Figure 1b) are shown.

RL exhibit behaviours that cannot be hand-crafted by engineers and are further
robust to events encountered during the interaction with the environment. How-
ever, widely-used NN architectures, such as MLP, do not naturally produce the
oscillatory behaviour exhibited in natural locomotion gaits and as such require
long training procedures to learn to perform smooth oscillations.

A third family of controllers have been used with promising results for ro-
bot locomotion: CPGs, a biologically-inspired neural network able to produce
rhythmic patterns. However, very few design principles are available, especially
for the integration of sensor feedback in such systems [4] and, although con-
ceptually promising, we argue that the full potential of CPGs has so far been
limited by insufficient sensory-feedback integration.

The ability of Deep-NNs to discover and model highly non-linear relation-
ships among the observation – the inputs – and control signals – the outputs
– makes such approaches appealing for control. In particular, based on Deep-
NNs, Deep-RL demonstrated very convincing results in solving complex loco-
motion tasks [2, 5] and it does not require direct supervision (but rather learns
through interaction with the task). Hence, we argue that combining Deep-RL
with CPGs could improve the latter’s comprehension of the surrounding envir-
onment. However, optimising Deep-NN architectures in conjunction with CPGs
requires adequate methods capable of propagating the gradient from the loss to
the parameters, also known as backpropagation.

To address this, this paper introduces a novel way of using Deep-NNs to incor-
porate feedback into a fully differentiable CPG formulation, and apply Deep-RL
to jointly learn the CPG parameters and MLP feedback.
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(a) (b) (c)

Figure 2: (a) represents the basic actor-critic Deep-RL method adopted for con-
tinuous action space control. (b) illustrates the approach proposed in [10–13],
which consists in a classic actor-critic with CPGs embedded in the environment.
(c), instead, is the approach proposed in the present work, which includes the
CPGs alongside the MLP network in the actor critic architecture.

1.1 Related Work

Our work is related to both the fields of CPG design and RL, in particular to
the application of the latter for the optimisation of the former’s parameters.

CPGs are very versatile and have been used for different applications includ-
ing non-contact tasks such as swimmers [6], modular robots [7] and locomotion
on small quadrupeds [8]. The trajectories CPGs hereby generate are used as
references for each of the actuators during locomotion and a tuning procedure
is required to reach coordination. The optimisation of CPG-based controllers
usually occurs in simulation through Genetic Algorithms (GA), Particle Swarm
Optimisation (PSO) or expert hand-tuning [6, 8].

To navigate on rough terrain sensory feedback is crucial (e.g. in order to
handle early or late contact), as shown in [9]: here, a hierarchical controller
has been designed, where CPGs relied on a state machine which controlled the
activation of the feedback.

Similarly to [9], [8] also uses feedback, this time based on gyroscope velocities
and optical flow from a camera to modify the CPGs output in order to maintain
balance. However, in [8] the authors first tune CPGs in an open-loop setting and
then train a NN with PSO to provide feedback (at this stage the parameters of
the CPGs are kept fixed). We follow the same design philosophy in the sense
that we preprocess the sensory feedback through a NN; yet, we propose to tune
its parameters in conjunction with the CPG.

Actor-critic methods [14] rely on an explicit representation of the policy
independent from the value function Figure 2a.

Researchers applied RL to optimise CPGs in different scenarios [10]. The
common factor among them is the formulation of the actor-critic method; yet,
they include the CPG controller in the environment – as depicted in Figure 2b. In
other words, the CPG is part of the (black-box) environment dynamics. Accord-
ing to the authors [13], the motivations for including CPGs in the environment
are their intrinsic recurrent nature and the amount of time necessary to train
them, since CPGs have been considered Recurrent Neural Networks (RNNs)
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(which are computationally expensive and slow to train). In [10] during train-
ing and inference, the policy outputs a new set of parameters for the CPGs in
response to observations from the environment at every time-step. Conversely,
in [13] the parameters are fixed and, similarly to [8], CPGs receive inputs from
the policy. However, whether the CPGs parameters were new or fixed every time-
step, they all considered CPGs as part of the environment rather than making
use of their recurrent nature as stateful networks. We exploit this observation in
this paper.

1.2 Contributions

In this work, we combine the benefits of CPGs and RL and present a new meth-
odology for designing CPG-based controllers. In particular, and in contrast to
prior work, we embed the CPG directly as the actor of an Actor-Critic framework
instead of it being part of the environment. The advantage of directly embedding
a dynamical system is to directly encode knowledge about the characteristics of
the task (e.g., periodicity) without resorting to recurrent approaches. The out-
come is CPG-Actor, a new architecture that allows end-to-end training of
coupled CPGs and a MLP for sensory feedback by means of Deep-RL. In par-
ticular, our contributions are:
1. For the first time – to the best of our knowledge – the parameters of the CPGs

can be directly trained through state-of-the-art gradient-based optimisation
techniques such as Proximal Policy Optimisation (PPO) [15], a powerful RL
algorithm). To make this possible, we propose a fully differentiable CPG
formulation (Section 2.1) along with a novel way for capturing the state of
the CPG without unrolling its recurrent state (Section 2.1).

2. Exploiting the fully differentiable approach further enables us to incorporate
and jointly tune a MLP network in charge of processing feedback in the same
pipeline.

3. We demonstrate a roughly twenty times better training performance com-
pared with previous state-of-the-art approaches (Section 4).

2 Methodology

As underlying oscillatory equation for our CPG network, we choose to utilise
the Hopf oscillator [16] in a tensorial formulation, Equation (2).

Differently to previous approaches presented in Section 1.1, we embed CPGs
directly as part of the actor in an actor-critic framework as shown in Figure 2c.
Indeed, the policy NN has been replaced by a combination of an MLP network
for sensory pre-processing and CPGs for action computation, while the value
function is still approximated by an MLP network.

In practice, in our approach the outputs of the actor are the position com-
mands for the motors. In [10], instead, the actor (MLP-network) outputs the
parameters of the CPGs, that are then used by the environment (that includes
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the CPGs) to compute the motor commands. In this sense, there is a substan-
tial difference in the architectures: in CPG-Actor, both the CPGs’ and MLP’s
parameters are trained, while in [10] only the MLP’s parameters are trained and
the CPGs’ ones are derived at runtime, being the output of the network.

However, a naïve integration of CPGs into the Actor-Critic formulation is
error-prone and special care needs to be taken i) to attain differentiability
through the CPG actor in order to exploit gradient-based optimisation tech-
niques; ii) not to neglect the hidden state as CPGs are stateful networks.

We are going to analyse these aspects separately in the following sections.

2.1 Differentiable Central Pattern Generators

Since equations in [16] describe a system in continuous time, we need to discretise
them for use as a discrete-time robot controller, as in Equation (1):

θ̇ti = 2πνi(d
t
i) + ζti + ξti

ζti =
∑

j r
t−1
j wij sin(θ

t−1
j − θt−1

i − ϕij)
r̈ti = ai(

ai

4 (ρi(d
t
i)− rt−1

i )− ṙt−1
i ) + κti

xti = rti cos(θ
t
i)

(1)

where ·t describes the value at the t-th time-step, θi and ri are the scalar state
variables representing the phase and the amplitude of oscillator i respectively,
νi and ρi determine its intrinsic frequency and amplitude as function of the
input command signals di, and ai is a positive constant governing the amplitude
dynamics. The effects of the couplings between oscillators are accounted in ζi
and the specific coupling between i and j are defined by the weights wij and
phase ϕij . The signal xi represents the burst produced by the oscillatory centre
used as position reference by the motors. Finally, ξi and κi are the feedback
components provided by the MLP network.

In order to take advantage of modern technology for parallel computation,
e.g. GPUs, there is a strong need to translate the equations in [16] into a tensorial
formulation (2) which describes the system in a whole enabling batch computa-
tions. Let N be the number of CPGs in the network, then:

Θ̇t = 2πCν(V,D
t) + Zt1+ Ξt

Zt = (WV ) ∗ (ΛRt−1) ∗ sin(ΛΘt−1 − Λ⊺Θt−1 − ΦV )

R̈t = (AV ) ∗ (AV
4
(P (V,Dt)−Rt−1)− Ṙt−1) +Kt

Xt = Rt cos(Θt)

(2)

Here, Θ ∈ RN and R ∈ RN are the vectors containing θi and ri, while
Ξ ∈ RN and K ∈ RN contain ξi and κi respectively. V ∈ RM contains the M ,
constant parameters to be optimised of the network composed by the N CPGs.

This said, Cν : RM ,Rd → RN , P : RM ,Rd → RN and A ∈ RN×M are
mappings from the set V and the command Dt ∈ Rd to the parameters that lead
νi, ρi and ai respectively. Z ∈ RN×N instead takes into consideration the effects
of the couplings of each CPG to each CPG; all the effect to i-th CPG will be then
the sum of the i-th row of Z as in Z 1, where 1 is a vector of N elements with
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(a) (b)

Figure 3: The images above show the difference between back-propagation for
classic RNNs (Figure 3a) and CPGs (Figure 3b). In particular to train RNNs,
the matricesWxh,Why,Whh have to be tuned, whereWhh regulates the evolution
between two hidden states. Instead, for CPGs only the parameters in θ̇i and r̈i
(Equation (2)) need tuning, while the evolution of the hidden state is determined
by an integration operation.

value 1. Within Z, W ∈ RN×N×M and Φ ∈ RN×N×M extrapolate the coupling
weights and phases from V , while Λ ∈ RN×N×N encodes the connections among
the nodes of the CPG network.

The reader can notice how in (2) only already-differentiable operations have
been utilised and that the MLP’s output, i.e. the CPGs’ feedback, is injected
as a sum operation, enabling the gradient to backpropagate through the MLP
network as well. This further enables us to compute the gradient of each of the
parameters in (2) (CPGs and MLP) with respect to the RL policy’s loss using
the auto differentiation tools provided by PyTorch.

Recurrent state in CPGs In order to efficiently train CPGs in a RL set-
ting, we need to overcome the limitations highlighted in [13]: In fact, CPGs are
considered similar to RNNs (due to their internal state) and consequently they
would have taken a significant time to train. In this section, we show how we
can reframe CPGs as stateless networks and fully determine the state from our
observation without the requirement to unroll the RNN.

RNNs are stateful networks, i.e. the state of the previous time-step is needed
to compute the following step output. As a consequence, they are computation-
ally more expensive and require a specific procedure to be trained. RNNs rely
on Backpropagation Through Time (BPTT),Figure 3a , which is a gradient-
based technique specifically designed to train stateful networks. BPTT unfolds
the RNN in time: the unfolded network contains t inputs and outputs, one for
each time-step. Undeniably, CPGs have a recurrent nature and as such require
storing the previous hidden state. However, differently from RNNs, the transition
between consecutive hidden states, represented by the matrix Whh, in CPGs is
determined a priori through simple integration operations without the need of
tuning Whh. This observation has two significant consequences: Firstly, CPGs do
not have to be unrolled to be trained as the output is fully determined given the
previous state and the new input. Secondly, eliminating Whh has the additional
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benefit of preventing gradient explosion or vanishing during training, Figure 3b.
As a result, CPGs can be framed as a stateless network on condition that the
previous state is passed as an input of the system.

3 Evaluation

We evaluate our method on a classic RL benchmark: the hopping leg [17], which
due its periodic task is a great fit for the application of CPGs. In fact, a single
leg Figure 1a needs only two joints to hop and this is the minimal configuration
required by coupled Hopf-oscillators to express the complete form; less than two
would cancel out the coupling terms [16].

We based the environment on a single leg of the ANYmal quadruped robot,
which was fixed to a vertical slider. Its mass is 3.42 kg, it is actuated by two
series-elastic actuators capable of 40Nm torque, a maximum joint velocity of
15 rad s−1 and controlled at 400Hz. We use PyBullet [18] to simulate the system
and use a data-driven method to capture the real system’s actuator dynamics.

At every time-step the following observations are captured: the joints’ meas-
ured positions pmj and velocities vmj , desired positions pdj , the position ph and the
velocity vh of the hip attached to the rail. While the torques tdj and the planar
velocity of the foot vx,yf are instead used in computing the rewards, as described
in the following. To train CPG-Actor, we formulate a reward function as the
sum of five distinct terms, each of which focusing on different aspects of the
desired system:

r1 = (1.2 ·max(vh, 0))
2 r4 =

∑

J

−1.e−4 · (tdj )
2

r2 =
∑

J

−0.5e−2 · (pdj − pmj )
2

r5 = −1.e−2 ·
∥∥vx,yf

∥∥ (3)

r3 =
∑

J

−1.e−3 · (vmj )
2

where J stands for joints.
In particular, r1 promotes vertical jumping, r2 encourage the reduction of

the error between the desired position and the measured position, r3 and r4
reduce respectively the measured velocity and the desired torque of the motors
and finally, r5 discourage the foot from slipping.

3.1 Experimental setup

CPG-Actor is compared against [10] using the same environment. Both ap-
proaches resort to an actor-critic formulation, precisely running the same critic
network with two hidden layers of 64 units each. Indeed, the main difference is
the actor, which is described in detail in Section 2 for the CPG-Actor case,
while [10] relies on a network with two hidden layers of 64 units each.

We trained the approaches for 20M time steps using an Nvidia Quadro M2200
GPU and an Intel(R) Xeon(R) E3-1505M v6 @ 3.00GHz CPU (8 cores) CPU;
the process lasted roughly 2 hours.
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As Section 4 illustrates, an appropriate comparison between CPG-Actor
and [10] required the latter to be warm-started to generate desired positions res-
ulting in visible motions of the leg. Differently from the salamander [16], already
tuned parameters are not available for the hopping task, hence a meaningful set
from [9] was used as reference. The warm-starting consisted in training the actor
network for 100 epochs in a supervised fashion using as target the aforementioned
parameters.
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(a) Episode reward over 20M time
steps horizon.
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(b) Desired positions generated by
CPG-Actor-Critic [10] and CPG-
Actor.
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(c) Comparison between θ̇, eq. (2),
generated by CPG-Actor-Critic [10]
and CPG-Actor.
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(d) Comparison between r̈, eq. (2),
generated by CPG-Actor-Critic [10]
and CPG-Actor.

Figure 4: (Figure 4a) represents how the reward evolves during training, each
approache run five times and averaging the rewards. (Figure 4b) trajectories gen-
erated by the different approaches: [10] warm-start produces an output similar
to CPG-Actor without feedback. While CPG-Actor with feedback presents
a heavily reshaped signal. The different contribution of the feedback in the two
aforementioned approaches is explained by (Figure 4c) and (Figure 4d). The
feedback – in CPG-Actor case – is interacting with the controller, resulting
into visibly reshaped θ̇ and r̈ (green lines).

4 Results

4.1 CPG-Actor and previous baselines, comparison

The results of the comparison between CPG-Actor ans [10] can be seen in
Figure 1a. Although the warm-starting procedure results in a performance im-
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provement for [10] (red line vs blue line), CPG-Actor (green line) achieves
roughly a twenty times higher reward after 20 million training time-steps.

We investigated the reason of such different performances and we argue it lies
in the way the feedback affects the CPG controller. Figures 4c and 4d represent
the evolution over time of the CPGs. Observing θ̇ and r̈ in experiments with
[10] it is evident they do not show responsiveness to the environment, since
the blue and the red lines remain almost flat during the whole episode. On
the other hand, θ̇ and r̈ in CPG-Actor experiments (green line) demonstrate
substantial and roughly periodic modifications over time. Although [10] relies
on feedback information to infer the CPGs dynamics, in practise the effects of
the feedback signals on the shape of the output variables are rather weak when
compared to CPG-Actor, as visible in Figure 4b: in the case of CPG-Actor
the original CPG’s cosine output is heavily reshaped by the feedback, while [10]
presents an almost-sinusoidal behaviour. Hence, to achieve successful hopping
strong feedback information is crucial.

To further assess our intuition, we show CPG-Actor’s open-loop (i.e. without
feedback) behaviour (orange line), which shows performances on par with [10]
after warm-start. Indeed, albeit explicitly penalised by Equation (3), both led to
policies with the foot sliding on the floor and, as such, with low vertical velocity
(yet slightly oscillating as if hopping); this behaviour results in low final rewards
even after a large number of training episodes (20 M). It is then evident that the
direct propagation of the gradient through a differentiable CPGs allows CPG-
Actor to learn an effective correction to the open-loop behaviour through the
sensor feedback.

4.2 Evaluation of progressive task achievement

The last set of experiments presented assess how CPGs’ outputs and the overall
behaviour evolve over the course of the learning. The plots in Figure 1 present
the system at 1, 20 and 50 million time-steps of training. Figure 1b, shows the
progress of the hopper in learning to jump; indeed, the continuous and dotted
lines – respectively indicating the hip and the foot position – start quite low
at the beginning of the training, to almost double the height after 50 millions
time-steps.

5 Discussion and Future work

We propose CPG-Actor, an effective and novel method to tune CPG control-
lers through gradient-based optimisation in a RL setting.

In this context, we showed how CPGs can directly be integrated as the
Actor in an Actor-Critic formulation and additionally, we demonstrated how
this method permits us to include highly non-linear feedback to reshape the
oscillators’ dynamics.

Our results on a locomotion task using a single-leg hopper demonstrated that
explicitly using the CPG as an Actor rather than as part of the environment
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results in a significant increase in the reward gained over time compared with
previous approaches.

Finally, we demonstrated how our closed-loop CPG progressively improves
the hopping behaviour relying only on basic reward functions.

In the future, we plan to extend the present approach to the full locomotion
task by utilising the same architecture shown in Figure 1a with a CPG-network
made of 12 neurons in order to be able to control a quadruped robot with 12
DOFs.
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3.3 Further insights

This section focuses on additional considerations that were not included in the

manuscript for publication. Specifically, the impact of training on the distribution

of parameters in both the CPGs and MLP feedback network, as well as qualitative

results and insights into the baseline and proposed methods. Additionally, the

related work will be updated based on developments that have occurred since

the publication of the paper.

3.3.1 End-to-end training

Figure 3.1 shows how the parameters belonging to both the CPG controller

(Figure 3.1a) and the network that processes the feedback (Figures 3.1b and 3.1c)

evolve in conjunction. This is signified by their distributions changing over the

course of the learning process, from darker to lighter shades as the training process

proceeds. Particular attention goes to CPGs’ parameters (Figure 3.1a), they present

two separate clusters due to the different magnitudes between coupling weights

and the rest of the parameters, the almost discrete distribution emphasizes the low

number of parameters that CPGs need compared to standard NNs.

(a) CPG-parameters distribu-
tion over time

(b) MLP-feedback weights
distribution over time

(c) MLP-feedback biases dis-
tribution over time

Figure 3.1: The set of images above show the evolution – from darker to lighter colours
– of the distributions of CPGs parameters (Figure 3.1a), weights (Figure 3.1b) and biases
(Figure 3.1c) of the output layer of MLP-feedback network. This demonstrates the
simultaneous gradient propagation through the CPG and MLP parameters.
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(a)

(b)

Figure 3.2: In Figure 3.2a we show the behavior of the baseline, while in Figure 3.2b
our approach –CPG-Actor– in action.

3.3.2 Qualitative comparison

The performance differences between the baseline and our approach –CPG-Actor–

are shown qualitatively in Figure 3.2. The baseline approach [82] trained on the

hopping task fails to jump even after warm-starting, as depicted in Figure 3.2a. The

foot drags on the ground and the base of the leg moves minimally along the vertical

axis. On the other hand, CPG-Actor successfully performs tall jumps without

slipping with the foot on the ground. The performance difference between the two

methods can be attributed to the rewards punishing foot dragging, while at the

same time encouraging the positive vertical velocity of the base of the leg.

3.4 Recurrent networks and back-propagation

Designing effective controllers for dynamical systems requires a profound under-

standing of the causal impact of each action on future states. When addressing this

challenge using NNs, the initial impulse often involves adopting architectures with

memory layers capable of capturing these relationships, such as RNNs.

However, despite the appealing attributes of RNNs, significant limitations constrain
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their practical utility. Specifically, RNNs are confined to short-term horizons due

to the emergence of vanishing and exploding gradient problems, which escalate

exponentially with the number of time-steps considered [83, 84].

The groundbreaking work by [84] effectively addressed the issue of gradient vanish-

ing/explosion by introducing the Long-Short Term Memory (LSTM) architecture.

Through a gating mechanism that regulates access to the "memory" flow, LSTM

can maintain long-term memory.

Similar to RNNs and LSTMs, CPGs are state-full networks, meaning they rely on

information from the preceding time-step to compute subsequent outputs, potentially

encountering similar limitations as RNNs.

However, a fundamental distinction arises: in contrast to RNNs, the transition

between consecutive time-steps in CPGs is predetermined through simple integration

operations. By circumventing the need to adjust hidden state weights –the

underlying cause of gradient explosion/vanishing– two advantages emerge.

Firstly, CPGs do not require unrolling for training, as the output is entirely deter-

mined by the prior hidden state and new input. Secondly, the elimination of hidden

state adjustments eradicates the risk of gradient-related issues during training.

3.5 Updated related work

Recently the authors of [85] proposed an approach that combines CPGs and Deep-RL,

developing a framework called CPG-RL for learning quadruped locomotion control

through the modulation of intrinsic oscillator amplitudes and frequencies. The

method simplifies the controller structure proposed in [42]: it does so by retaining

only four oscillators, one for each leg, instead of one per joint, by eliminating the

coupling among them, and using inverse kinematics to control joint positions based

on end-effector positions, enabling the user to set desired robot body height and

swing foot ground clearance. The adoption of Deep-RL, according to the authors,

opens up the possibility of exploring questions related to the roles and interactions

of descending pathways, interoscillator couplings within CPG networks, and sensory

feedback in gait generation in the field of neuroscience. According to the authors,

DRAFT Printed on April 21, 2024



3. Training CPGs with Deep-RL 49

the results suggest that stable locomotion can be achieved through the modulation

of CPG circuits rather than direct action on muscles, that stable locomotion can be

obtained with weak interoscillator couplings, and that sensing limb contact or loading

is one of the most important sensory information for quadruped locomotion control.

3.6 Contribution review

The novel aspect of the CPG-RL framework, as discussed in Section 3.5, lies in

its simplification of the CPG network, achieved by reducing the number of CPGs

and eliminating the couplings, as well as its hardware experiments. The CPG-RL

framework shares similarities with previous approaches [82, 86, 87], in that the

CPG network is part of the environment and its parameters are generated by the

output of the actor network instead of being optimized through gradient descent.

This results in oscillator configurations that change at each time step, which differs

from the fixed configurations in previous CPG studies [40, 42, 43, 47, 49, 88, 89].

On the other hand, our work [2] proposed a different approach by directly tuning

the CPG parameters through gradient descent and enhancing their capabilities with

feedback from an MLP network. This approach demonstrated better performance

compared to previous methods that change the oscillators’ configuration at every

time step. At the time of submitting this document, CPG-Actor has not yet

been compared to CPG-RL.

3.7 Transitioning to real-world implementation

This chapter introduced the CPG-Actor method and showcased its effectiveness

through simulations involving an ANYmal B hopping leg.

Having gained valuable insights into controller design through simulation, the

research trajectory naturally shifted towards practical implementation on real

robotic platforms.
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The adoption of data-inefficient techniques like Deep-RL, which necessitates

reliance on simulators for efficient controller training, in combination with real

robots, shifted the attention towards bridging the sim-to-real gap.

In a methodical approach to address this challenge, the decision was made to

postpone the integration of CPG-Actor with real robots. This strategy prioritized

the acquisition of the necessary skills to effectively tackle the hurdle of sim-to-

real transfer first.

However, as the complexities of sim-to-real transfer were engaged, this aspect

gained prominence in following studies, marking a clear shift in focus evident

in the upcoming chapters.
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Filling the sim-to-real gap with two

parameters
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4.1 Overview of contribution

The field of legged robotic control has been revolutionized by Deep-RL, which

enables highly dynamic and sophisticated locomotion capabilities [60, 61, 64, 65].

Due to the sample complexity associated with high-dimensional problems –like

locomotion– physics simulators are typically adopted for training Deep-RL control

policies. However, there is often a non-negligible discrepancy between the simulated

51
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training domain and the physical target domain, known as the reality gap. Strategies

to address this reality gap include the identification of sensory noise, accurate system

dynamics identification, and training a NN to model actuation dynamics.

Indeed the actuators are a crucial part of legged systems, and their dynamics

are difficult to model involving nonlinear/nonsmooth dissipation, feedback loops,

and several internal states that are not directly observable, as in SEAs.

To address all the issues, in this work we propose a new method called ERFI that

randomizes only two parameters to address the sim-to-real transfer of locomotion

controllers: an actuation offset, and random torque perturbations at each step.

We demonstrated the effectiveness of ERFI on legged systems including com-

parisons with its predecessor, Random Force Injection (RFI) [90], variations of the

same method, and standard domain randomization. The simulation experiments

revealed that ERFI yielded a significant improvement in success rates for varying

masses of the base and for attaching a manipulator arm to the robot during testing.

Moreover, ERFI achieved competitive performance when compared to standard

randomization techniques, while requiring tuning only a fraction of the parameters.

To demonstrate the efficacy of the method we successfully deployed perceptive

and blind policies trained in simulation with ERFI on to the physical ANYmal C and

Unitree A1 quadrupeds, showing that training of actuator networks and performing

significant dynamics randomization can be substituted by this simple strategy.

4.2 Integrated manuscript
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Abstract— Training deep reinforcement learning (DRL) lo-
comotion policies often require massive amounts of data to
converge to the desired behavior. In this regard, simulators
provide a cheap and abundant source. For successful sim-to-real
transfer, exhaustively engineered approaches such as system
identification, dynamics randomization, and domain adaptation
are generally employed. As an alternative, we investigate a
simple strategy of random force injection (RFI) to perturb sys-
tem dynamics during training. We show that the application of
random forces enables us to emulate dynamics randomization.
This allows us to obtain locomotion policies that are robust to
variations in system dynamics. We further extend RFI, referred
to as extended random force injection (ERFI), by introducing an
episodic actuation offset. We demonstrate that ERFI provides
additional robustness for variations in system mass offering
on average a 53% improved performance over RFI. We also
show that ERFI is sufficient to perform a successful sim-to-real
transfer on two different quadrupedal platforms, ANYmal C
and Unitree A1, even for perceptive locomotion over uneven
terrain in outdoor environments.

Additional resources at: https://sites.google.com/
view/erfi-video

I. INTRODUCTION

Deep reinforcement learning (DRL) has emerged as a
promising approach for legged robotic control enabling
highly dynamic and sophisticated locomotion capabili-
ties [1], [2], [3]. The sample complexity associated with
high-dimensional problems such as locomotion makes the
use of physics simulators [4], [5] appealing for training DRL
control policies. This convenience, however, often requires
addressing the reality gap between the simulated training
domain and the physical target domain.

Strategies to address this reality gap often include identifi-
cation of sensory noise which is then modeled and introduced
in simulation during training [6], [7]; accurate parameter
identification (of properties such as Center of Mass (CoM),
mass and inertia of robot links, impedance gains, system
communication delays, and friction) for system modeling in
addition to identification of relevant distributions suitable
for domain randomization [8], [1]; and training a Neural
Network (NN) to model the actuation dynamics of specific
actuators, e.g. Series Elastic Actuators SEAs [7], [9].

As an alternative to exhaustive system identification and
distribution identification for dynamics randomization, [10]
demonstrated captivating performance in sim-to-real for ma-
nipulation tasks using an extremely simple RFI strategy.
RFI enables emulation of dynamics randomization through

Fig. 1: Deployment of the perceptive and blind locomotion
policies on the ANYmal C and Unitree A1 quadrupedal plat-
forms trained using our proposed ERFI-50 strategy without
requiring actuation modeling or explicit randomization of
dynamics or actuation properties.

perturbation of system dynamics with randomized forces.
However, as presented in Section VIII, locomotion poli-
cies trained using RFI exhibit subpar robustness to policies
trained with explicit dynamics randomization. To address
this loss of performance, we present ERFI: ERFI allows to
transfer locomotion controllers trained in simulation to the
hardware by randomizing only two parameters: a random
episodic actuation offset and random perturbations at each
step. First, we show the efficacy of the approach proposed
on legged systems, not covered in previous studies, second,
we compare it to its predecessor RFI [10], to variations
of the same method detailed in the following chapters and
to standard domain randomization. Furthermore, we demon-
strate with simulation experiments a significant performance
improvement over RFI (mass variations’ success rate +53%)
especially in unseen scenarios, which involves adding a
manipulator arm on top of the robot at test time (mass
variations’ success rate +61%). Finally, we successfully
deploy perceptive and blind policies trained in simulation
with ERFI on to the physical ANYmal C and Unitree A1
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quadrupeds. We show that training of actuator networks
(mainly adopted for robots containing SEAs) and performing
significant dynamics randomization [11], currently accepted
as a standard for sim-to-real transfer can be substituted by
a simple ERFI strategy. We test the controller’s locomotion
performance over flat and uneven terrain and further evaluate
its robustness to additional mass and variation in CoM by
mounting a Kinova arm on the robot’s base.

II. RELATED WORKS

Actuators are an essential part of legged systems: they
can be hydraulic [12], electric [13] and contain compliant
elements [14]. Their dynamics is difficult to model involving
nonlinear/nonsmooth dissipation, feedback loops and sev-
eral internal states which are not directly observable. To
accurately approximate SEAs, the authors of [7] trained an
actuator network able to output an estimated torque at the
joints given as inputs a history of joint position errors and
joint velocities recorded from the hardware. Modeling the
actuation dynamics with NNs, for robots adopting SEAs, is
now considered a standard and other works employed deriva-
tions of the same approach [15], [16], [17]. The limitations
of learning the actuators’ dynamics can be summarized in the
need of recording motors’ torques (not directly measurable
for direct drives), training and testing the NN. In this context
it is important to underline that direct drives motors are
simpler to model compared to SEAs and adopting an actuator
network is not necessary, since classic system identification
is enough. However, ERFI also removes the need for system
identification by randomizing motors’ torques.

Alongside actuator networks, the rise of highly dynamic
controllers is driven by domain randomization, particularly
dynamics randomization. Initially introduced in [18], [11],
the approach consists in the randomization of some of the
parameters of the robot’s dynamics or of the environment.
The additional robustness achieved can then compensate for
discrepancies between simulation and the real world. In [7]
the domain randomization involves adding noise to the center
of mass positions, the masses of links, and joint positions.
In [17] the randomization covers: mass, center of mass
position, joint position, joint damping, joint friction, joint
position tracking gains Kp, torque limits; while regarding
the observations’ perturbations: delays, joint position noise,
angular velocity noise, linear acceleration noise and base
orientation noise. Alongside with dynamics randomization,
observations were also perturbed during training [17] by
adding delay, injecting noise into the joint positions, an-
gular velocity, linear acceleration and base orientation. A
significant randomization was also adopted in [15]: gravity,
actuation torque scaling, robot link mass scaling, robot link
length scaling, random external forces at the base, gravity,
actuation torque scaling, link mass scaling, link length scal-
ing, actuation damping gain.

Considering the long list of parameters affected by ran-
domization, the additional robustness it offers requires sub-
stantial efforts in system identification: especially in selecting
the factors responsible of the reality gap [10] and in defining

their randomization range; which if done incorrectly can
severely affect the real world performances of the controller,
leading to overly conservative policies [19].

An alternative technique – Random Force Injection –
was proposed in [10], it aims to transfer policies trained
in simulation to real systems without further tuning, with
a limited number of parameters and it consists of injecting
random forces into the simulator’s dynamics. This method
was tested on manipulation tasks, where it performed com-
parably to domain randomization. However, its potential was
not evaluated for floating-base systems, especially when the
overall stability is compromised by external perturbations.

III. PRELIMINARIES

A. System Model

We model a quadrupedal system as a floating base B.
The robot state is represented w.r.t. a reference frame W .
We assume the z-axis of W , eWz , aligns with the gravity
axis. The base position is then expressed as rB ∈ R3, and the
orientation, qB ∈ SO(3), is represented by a unit quaternion.
The corresponding rotation matrix is expressed as RB ∈
SO(3). The angular positions of the rotational joints in each
of the limbs are described by the vector qj ∈ Rnj . For the
quadrupeds considered in this work, nj = 12. The linear
and angular velocities of the base w.r.t. the global frame
are written as vB ∈ R3 and ωB ∈ R3 respectively. The
generalized coordinates and velocities are thus expressed as
q and u where

q =



rB
qB
qj


 ∈ SE (3)× Rnj , u =



vB
ωB

q̇j


 ∈ R6+nj . (1)

B. Impedance Control

In the context of this work, we consider a quadrupedal
system is actuated using the joint control torques τj ∈ Rnj .
These torques are computed using the impedance control
model given by

τj = Kp(q
∗
j − qj) +Kd(q̇

∗
j − q̇j) + τjFF

, (2)

where Kp and Kd refer to the position and velocity tracking
gains respectively, q∗j is the vector representing desired joint
positions, q̇∗j , the desired joint velocities, and τjFF

refers to
the feed-forward joint torques.

For locomotion, we train DRL control policies that mod-
ulate the joint actuation torques by generating q∗j . Addition-
ally, we set q̇∗j = 0 and τjFF

= 0. [20] presented that such an
approach offers more stable training and better performance
than a torque controller. Equation 2 can thus be simplified
to

τj = Kp(q
∗
j − qj)−Kdq̇j . (3)

C. Rigid Body Dynamics Model

The rigid body dynamics model of a quadrupedal system
can be expressed in the form of generalized equations of
motion expressed as

Mu̇ + h = ST τj + JTλ, (4)



where M ∈ R(6+nj)×(6+nj) is the mass matrix relative to
the joints, h ∈ R6+nj comprises Coriolis, centrifugal and
gravity terms, ST = [0nj×6 Inj×nj ]

T , and J is the Jacobian
which maps the contact forces λ ∈ Rnf at nf = 4 feet to
generalized forces.

IV. EXTENDED RANDOM FORCE INJECTION

[10] investigated the effects of introducing random pertur-
bations to a manipulation system. These random force injec-
tions aimed to diversify the visited states during training of
DRL policies. In this regard, their implementation augmented
the generalized equations of motion, similar to Equation 4,
by random forces fr ∼ U(−f limr , f limr ) sampled from a
uniform distribution U with limits −f limr and f limr . These
forces are sampled and applied at each time step to perturb
the state transition P . In this work, we adapt this approach
for quadrupedal systems and write Equation 4 with RFI as

Mu̇ + h = ST τj + JTλ+ fr. (5)

It is important to note that [10] used this approach for a fixed-
base system. In our preliminary experiments, for a mobile-
base quadrupedal system, we observed that perturbing the
robot’s base with even small forces and torques resulted
in convergence to undesired locomotion behavior. For the
ANYmal C quadruped, forces and torques on the base
sampled from distributions with f limrb

> 5N and τ limrb
>

3Nm respectively resulted in pronking behavior. Although
this behavior was robust to external disturbances on the base,
the pronking gait is energy inefficient and unsuitable for
transfer to the physical system. Therefore, to better handle
uncertainty in the system, we only introduce perturbations to
the rotary joints of the quadruped and randomize forces on
DoFs that we directly control.

The impedance controller described by Equation 2 is
often executed at the actuation level at a higher frequency
compared to the locomotion controller which is described
by the DRL control policy mapping robot state information
to desired joint positions. In this article, we refer to these
frequencies as impedance control frequency and locomo-
tion control frequency. We introduce perturbations at the
impedance control frequency. We then split Equation 5,
describing RFI, into the generalized equations of motion
given by Equation 4 and an augmented impedance controller
given by

τ rj = Kp(q
∗
j − qj)−Kdq̇j + τrj , (6)

where τrj refers to the random joint torque injections sam-
pled from U(−τ limrj , τ limrj ) at each impedance control update
step. Note that Equation 6 is only utilized during training.
For deployment, we consider the actuation is governed by
Equation 3.

In this work, we also investigate the effects of introduction
of episodic actuation offsets during training. As opposed
to randomizing τrj at each impedance control step, we
sample joint torque offsets τoj from U(−τ limoj , τ limoj ), at
the beginning of each training episode and apply them at
each impedance control step. We refer to this as random

actuation offset (RAO). This can be represented similarly as
our implementation of RFI and is written as

τoj = Kp(q
∗
j − qj)−Kdq̇j + τoj . (7)

This constant offset enables us to emulate a shift in the
robot’s mass, inertia, impedance gains and contact Jacobian.
However, unlike RFI, wherein the dynamics vary at each
impedance control step resulting in a more reactive control
behavior robust to temporally local perturbations, with RAO,
the policy learns an implicit adaptive behavior for temporally
global variations in system dynamics.

We also introduce an extended variant of RFI by com-
bining RFI and RAO to learn control policies which can be
robust to temporally local and global variations in system
dynamics. We refer to this as ERFI-C. In this case, we
inject both a randomized force sampled at each impedance
control step and an episodic actuation offset. The impedance
controller with ERFI-C can be then written as

τ cj = Kp(q
∗
j − qj)−Kdq̇j + τrj + τoj . (8)

We further explore another strategy with the same motivation
as for ERFI-C. In this case, we only utilize RFI with 50% of
the parallelized DRL training environments. The remaining
environments employ RAO. We refer to this approach as
ERFI-50. In comparison to ERFI-C, which can be con-
sidered as RFI with randomized distribution mean thereby
resulting in a possibility of a learning bias for robustness
to temporally local perturbations, ERFI-50 promotes unbi-
ased learning of both local and global variations in system
dynamics.

V. WHY DOES ERFI WORK?

In Figure 2a and Figure 2b, respectively, we show the
effects of adding RFI and RAO as a feed-forward term of
the PD controller (Kp = 15, Kd = 1) when commanding a
step position change of 0.17 rad (≈10 deg) to the hind right
knee.

A. How does RFI model delays?

As can bee seen from Figure 2a, the yellow line reaches
the desired position faster than the green line, although
the green line settles earlier. This implies that RFI adds
stochasticity to the rise and settling times, i.e. it either
increases or reduces the rise and settling times. The increase
or decrease depends on the direction of the perturbation.
This allows us to implicitly randomise actuation dynamics,
especially parameters that relate to delays, friction and inertia
(Section "ERFI robustness to delays" of the accompanying
website).

B. How does RAO model mass and kinematic variations?

In Figure 2b, the additional torque shifts the desired
position of the joint and implicitly models offsets in the joint
position (kinematics variations) or in the payload supported
by the robot. Evidences of these effects can be found in
Figure 5a and Figure 5d and video 3, 4, and 10 (on the
accompanying website), demonstrating the robustness of the



(a) (b)

Fig. 2: The magnitudes of τ limrj and τ limoj affect the dynamics of the system.

controllers even when the unmodelled payload reaches 42%
of the total weight of the robot.

VI. PROBLEM DEFINITION

The complex SEAs present on the ANYmal C quadruped
exhibit a highly nonlinear behavior [21]. To address their
complex dynamics, networks modeling the actuation became
common practice in the community (Section II). Evaluating
the effectiveness of ERFI on such a platform thus provides
a measure of the robustness of the method and of its
generalization abilities.

Conversely, Unitree’s A1 adopts quasi-direct drive actu-
ators, which are affected by high levels of delay, signal
noise and inaccurate tracking. Given the different technol-
ogy adopted compared to SEAs and the canonical role
that Unitree A1 has played in recent research works [22],
[23], we also investigated the effects of ERFI for obtaining
locomotion policies for A1.

A. Perceptive Quadrupedal Locomotion
The ANYmal C robot is used to track a velocity com-

mand [vx, vy, γ̇]B on uneven ground using proprioceptive
and exteroceptive information. The state is represented as
s := 〈sr, sv, sjp , sjv , sa, sm, sc〉, where s ∈ R259, sBr ∈ R3

is the second row of the rotation matrix, sv ∈ R6 is the
base linear and angular velocities, sBjp ∈ R24 is the sparse
history of joint position errors and sBjv ∈ R24 is the sparse
history of joint velocities, sa ∈ R12 is the previous action,
sm ∈ R187 are measurements from the height-map around
the robot’s base and sBc ∈ R3 is the velocity command.
The actions a ∈ R12 are interpreted as the reference joint
positions q∗j . The state s is fed to an MLP network made by
three layers respectively of size [512, 256, 128] and the action
a is subsequently tracked by the low level PD controller
(Kp = 80.,Kd = 2.).

B. Blind Quadrupedal Locomotion
The A1 quadruped robot is required to follow a ve-

locity command [vx, vy, γ̇]B on flat ground using propri-
oceptive information. The state is represented as s :=

〈sr, sv, sjp , sjv , sa, sc〉, where s ∈ R192, sBr ∈ R3 is the
second row of the rotation matrix, sv ∈ R6 is the base
linear and angular velocities, sBjp ∈ R84 is the history of
joint position errors and sBjv ∈ R84 is the history of joint
velocities, sa ∈ R12 is the previous action, velocity and
action and sBc ∈ R3 is the velocity command. The actions
a ∈ R12 are interpreted as the reference joint positions q∗j .
The state s is fed to an MLP network formed by two layers
respectively of size [512, 512] and the action a is tracked by
the low level PD controller (Kp = 15.,Kd = 1.). The base
linear velocity in sv is not provided by the onboard state
estimator and it was estimated similarly to [24] through an
MLP network of size [128, 128].

VII. EXPERIMENTAL SETUP

To evaluate our method, we employed ANYmal C as
a reference platform and we trained different policies for
10,000 iterations using IsaacGym [25] each adopting one
among RFI, RAO, ERFI-50, ERFI-C, and ActNetRand,
where ActNetRand represents the present state-of-the-art
approach implementing both actuation network and extensive
domain randomization, as in [26]. The environment settings
used are described in Section VI-A.

The performances of the policies trained with the different
methods were assessed by addressing perceptive locomotion
over stairs and rocky terrain as relevant case study (Figure 3).
Moreover, to obtain more realistic results the experiments
were conducted in a different simulator (RaiSim [27]) and
we included an actuator network to reproduce the dynam-
ics of SEAs (which was not used during the training of
RFI/RAO/EFRI policies). The robot is always deployed at
the same position, the velocity command is fixed to 0.5m s−1

and it has 8 s to go up the stairs; the attempt is considered
a failure when the robot falls on the ground or when it is
not able to move forward for at least 2.5m. We generated
50 random stairs as in [15], which are placed just in front
of the robot, and walking for 2.5m from the spawning point
requires tackling at least one step.



Fig. 3: (Left) Examples of stairs with varying step-height and step-depth used for evaluation. (Center) ANYmal C walking
on stairs with an unmodeled Kinova manipulator. (Right) ANYmal C walking on rocky terrain during tests.

To assess the robustness of the policies to unseen con-
ditions we introduced perturbations to the simulation en-
vironment: the application of external forces [0 ; 150]N
to the base (fixed value during training: 0.) for a duration
of 3 s, the application time of an external force of 50N
varies between [0 ; 3] s (fixed value during training: 0.),
the application of external torque [0 ; 75]Nm to the base
(fixed value during training: 0.) for a duration of 1 s, the
friction coefficient between ground and feet in the range
[0.2, 0.8] (fixed value during training: 0.5), the gravitational
acceleration was modified between [−18 ; −2]m/s2 (fixed
value during training: −9.81m/s2), the position of the
knees’ motors was shifted by [−0.15 ; −0.15]m (fixed
value during training: 0.) and the mass of the base changed
between [22 ; 65] kg (fixed value during training: 27 kg).
Throughout the evaluation we alter only one parameter at
the time and for each of them we run 50 experiments
with different terrains. Furthermore, we replicate the set
of experiments above with a robotic arm mounted on top
of ANYmal C, this introduces significant variations in the
mass matrix M which the robot never explicitly experienced
during training. Following the thorough validation presented
in simulation, the best performing controller (resulted to
be trained with ERFI-50) was deployed on the hardware,
tested on rough and uneven terrain, both in the laboratory
and outdoor environments to validate the feasibility of the
method.

In addition, we demonstrate the effectiveness of ERFI-
50 with hardware experiments also on Unitree A1, this
time performing blind locomotion in challenging conditions.
We present results of extensive hardware evaluation in Fig-
ure 4 and on our accompanying website https://sites.
google.com/view/erfi-video.

VIII. RESULTS

We compared ERFI-50, ERFI-C, and RAO against two
baselines, RFI and ActNetRand (policy trained using dynam-
ics randomization and actuator network). The metric adopted
to assess their performances is the success rate described in
Section VII. The first row of Figure 5 (Figures 5a to 5c)
shows the robustness of the different approaches to changes
in the base mass, in the application of external forces, or to
different friction coefficients between feet and ground; in this
first batch of experiments, the arm was not included. From

these plots, it is evident that the standard RFI is the least
performing method, while still providing decent robustness
especially close to the training domain. Conversely, RAO
and ERFI-50 are the better-performing ones (providing on
average 53% better success rate than RFI on mass variations,
Figure 5a), they are often very close and sometimes better
than ActNetRand, which is currently the standard approach
to deploy controllers on the hardware. Regarding ERFI-C, it
does better than standard RFI (on average 41% better success
rate on mass variations, Figure 5a), but still not as well as
ERFI-50 and RAO (on average 12% worse success rate on
mass variations, Figure 5a). The analysis presented above
was repeated after mounting a fixed Kinova manipulator arm
on top of the robot; the same policies, perturbation, and set of
stairs were considered during the experiments. The objective
of this last study is to test the robustness of the controller
in real-world scenarios never encountered during training.
The resulting performances are depicted in Figures 5d to 5f,
where we observe the gap between RFI and RAO/ERFI-
50 enlarging with a performance loss for RFI -even in the
training domain- of roughly 50%, while RAO and ERFI-50
achieved roughly 62% higher success rate than RFI on this
task, Figure 5d.

Furthermore, we investigated the effects of τ limoj and
τ limrj on the overall performances of ERFI-50, we show the
outcomes of different limits on the success rate when the base
mass is increased, Figure 5i. The curves in Figure 5i show
that high τ limoj provides greater robustness in combination
with high τ limrj (ERFI50-40+40, red line), when compared to
τ limoj = 20[Nm] and τ limrj = 20[Nm]. However, for values
of τ limoj = 30[Nm] and τ limrj = 30[Nm] the performance
improves in one portion of the domain and it remains
comparable to τ limoj = 20[Nm] and τ limrj = 20[Nm] in the
remaining one.

To provide a comprehensive assessment, we present the
performance on the rocky terrain in Figure 3, which com-
plements the results obtained in the staircase environment.
Notably, the survival rates in high perturbation regimes are
partially reduced due to the absence of rocky terrain in the
training environment. Nonetheless, the relative performances
of the methods remain comparable to those observed in the
staircase evaluation, Figures 5g and 5h.

The robustness to further perturbations –as varying the



Fig. 4: This figure shows some of the experiments on Unitree A1 adopting ERFI, also part of our accompanying website
https://sites.google.com/view/erfi-video. a) Walking on wet terrain and recovering from slipping, b)
resisting to external forces, c) withstanding impulsive forces, d) walking on soft terrain, e) walking with an unknown 5
Kg payload, f) walking on wooden cylinders, g) traversing a ramp, and h) adapting to a KRHKFE

p equal to a third of the
original value.

duration of the external force, applying an external torque,
varying the gravitational acceleration and shifting the knee

motors’ positions– were investigated and the results are
consistent with what is already shown in Figure 5.
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Fig. 5: Figures 5a to 5c show how RFI, ERFI-50, ERFI-C, RAO and ActNetRand resist to variations of the base mass, to
external forces, or to different frictions. In Figures 5d to 5f the same experiments are replicated with a Kinova manipular on
top of the robot. In Figures 5g and 5h we investigated the effects of the perturbations also on the rocky terrain in Figure 3.
While, in Figure 5i we studied how different τ limoj and τ limrj affected the robustness of the controller.

IX. CONCLUSION

In this work we showed that transferring policies trained
in simulation to real systems is possible without defining the
domain randomization’s parameters and their ranges, without
further system identification to measure the noise to inject in
the observations and without recording any of hardware data
to train an additional NN to model the motors’ dynamics.
Instead we proposed to use a blend of episodic and con-
tinuously changing random force perturbations (ERFI-50),

which has competitive performance compared to state of the
art extensive domain randomization (ActNetRand) and which
only requires tuning two parameters (τ limoj and τ limrj ); hence
reducing the sim-to-real transfer efforts compared to previous
approaches by a large margin. We further demonstrated the
validity of our approach by transferring the controllers to
the hardware and showing stable locomotion with Unitree
A1, uneven terrain locomotion and mounting an unmodelled
manipulator on top of the robot with ANYmal C.
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4.3 Further insights

This section delves into several unexplored aspects that were not covered in the

manuscript, including an analysis of the performance differences between ERFI-

C and ERFI-50, an examination of the set of experiments presented and their

underlying motivations, insights into the emergence of adaptive behaviors, and

a qualitative evaluation of the impact of different levels of randomization on the

policy. We also explore the effects of introducing artificial delay during simulation

and how the policy responds to it. Furthermore, we update the related work section

to reflect recent developments since the submission of the paper.

4.3.1 ERFI-C vs ERFI-50

The comparison of Extended Random Force Injection 50% (ERFI-50) and Extended

Random Force Injection Cumulative (ERFI-C) reveals that the latter displays a

more erratic behavior, as evidenced by sudden variations in the velocity q̇ of the

front left knee in Figure 4.1. In contrast, ERFI-50 exhibits a smoother velocity, and

a clear pattern in the relationship between high values of gradients in the saliency

map and high torques, as illustrated in the same figure. Although both models are

trained with the same τ limoj and τ limrj, this pattern is less apparent for ERFI-C.

High torques can be associated with foot-ground contact, and correctly detecting

it is crucial for locomotion. The discrepancy between ERFI-C and ERFI-50, and

the clear pattern in ERFI-50 suggests that detecting the contact is the reason

why the latter outperforms ERFI-C.

In conclusion, the discontinuous behavior of ERFI-C may affect the network’s

ability to interpret input observations, ultimately leading to lower performance.

4.3.2 Experiments motivation and analysis

Robustness on slippery terrains is a crucial skill for legged robots, and in our

simulation setup the ground friction was constant during the whole training. To

support the generality of scenarios that ERFI-50 can handle, we tested the robot’s

ability to maintain stability on slippery surfaces it had not encountered before.
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Walking on soft materials is also a standard test for non-learning-based controllers,

as it makes detecting contact during the gait cycle more challenging. We therefore

tested the robot’s behavior on foam and observed its successful performance.

Maintaining balance in the presence of external forces is another key indicator

of a locomotion controller’s robustness. We tested the robot’s ability to recover

from impulsive forces, such as being hit by a football, and pushes of varying

duration. In both cases, the robot demonstrated its ability to quickly regain

balance even after strong perturbations, despite never having experienced these

disturbances during training.

The ability to resist variations in the position of the CoM, weight, and inertia

of the base is critical for successful locomotion control. To assess this, we added a 5

kg payload to the robot, which is roughly 42% of its weight before the additional

load. Unlike other approaches [71], which use higher gains (Kp = 100.0 N m rad−1),

we adopted lower ones (Kp = 20.0 N m rad−1) to keep the ground striking soft

and the motion smooth.

Our controller for A1 is blind, so we tested its robustness in the presence of

tall obstacles by conducting experiments on a ramp with a height of approximately

35% of the robot’s legs.

Finally, we tested the robot’s ability to traverse over wooden cylinders with a

diameter of approximately 1.5 cm. This experiment approximates a rough, slippery,

and non-static terrain, similar to pebbles.

In conclusion, the locomotion controller based on ERFI has shown remarkable

robustness and adaptability in handling various challenging terrains and situations.

These results indicate that the proposed method has great potential for real-

world applications, where legged robots must navigate unpredictable and varied

environments. The video results of the experiments are available through the

link provided in the paper.
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4.3.3 Adaptation

Adaptation to unseen scenarios is a key requirement for legged robotics controllers

that are intended for deployment in the real world. To assess the adaptability of

our controller trained with ERFI-50, we reduced the Kp of the right hind knee to

33% of its original value. Despite this modification, our policy tracked the desired

base velocity commands, albeit with a limp in the rear leg.

4.3.4 Different degrees of randomization

We compared the results obtained with ERFI-50 with domain randomization by

training additional policies for A1 using this method. To have a reference, we initially

adopted the randomization distributions and joint impedance settings described

in [71], but found that the resulting locomotion was very conservative and prone

to failures when the Adaptation Module was not used. To achieve more dynamic

and stable locomotion, we instead used a "softer" randomization approach, which

reduced the range of the parameters under randomization, in agreement with [70].

However, we observed that the absence of any randomization (not even ERFI-50)

led to failures, which we attribute to delays in the actuation that were not fully

modeled; we discuss delays in the following section.

4.3.5 Artificial delay injection

In simulation, actuation dynamics is ideal, and delays due to motor inertia or

communication latency do not exist. However, this results in the over-fitting of the

policy to the behavior of a perfect impedance controller, which is not desirable for

real-world deployment. By using ERFI-50, the policy can exhibit correct locomotion

and ensure robustness in unexpected scenarios. This suggests that ERFI-50 also

accounts for imperfections in actuation dynamics, including delays. To demonstrate

this, we injected artificial delays in the actuation, as in Figure 4.2a, and observed

the policy’s robustness in tracking the commanded velocity without falling (100%

success rate), as shown in Figure 4.2b. We limited the delay injection to 10 steps

since the delay measured on the robot is approximately 10 [ms].
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(a) (b)

Figure 4.2: In Figure 4.2a we show the effects of delays on the PD controller tracking
(Kp = 15, Kd = 1), when commanding a step of +0.17 [rad] ( 10 [deg]) to the hind right
knee. While in Figure 4.2b we injected delays in the actuation dynamics of each motor
during forward locomotion at 0.5 m/s and the policy demonstrated a 100% success rate.
We didn’t consider injecting more than 10 steps of delay because the delay measured on
the robot is 10 [ms]. In simulation the PD control is executed at 500 [Hz]: 10 [steps] *
0.002 [s/step] = 0.02 [s], and this is already double the delay measured on the robot.

4.4 Limitations

The parameters used by Random Actuation Offset (RAO) and ERFI-50 to increase

the robustness of the controllers (τ lim
oj

and τ lim
rj

) can only be empirically tuned,

requiring training different policies and testing their abilities to variations of the

simulation environment. And differently from domain randomization, explicitly

defining the desired robustness range is not possible apriori but emerges from

training and needs to be evaluated after obtaining a policy. As part of future work,

we plan to investigate the correlation between robustness ranges and τ lim
oj

/τ lim
rj

to

eliminate the need of training and testing several policies, and adopting different

limits for different joints, even if this will increase the number of parameters to

tune which is something that our work here aims to avoid. Moreover, for tasks

requiring specific control behaviors – for example handling significant external

forces – ERFI-50 may not be sufficient, since the policy needs to experience during

training such situations to learn adequate skills.
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4.5 Updated related work

The direction taken recently by the legged robotics community points towards

vision-based locomotion, and in this context the sim-to-real transfer is a non-trivial

problem, especially when raw depth images are directly consumed by the policy

during locomotion. The authors of [91] aim to develop a walking policy that can

efficiently map proprioception and raw depth inputs to target joint angles at a

frequency of 50Hz. However, training the system directly using Deep-RL becomes

intractable due to the rendering of depth that slows down the simulation. To tackle

this, a two-phase training scheme is proposed. In the first phase, low-resolution

scandots are used as a proxy for depth images, and in the second phase, depth

and proprioception are used as inputs to an RNN to predict target joint angles

directly. This second phase is supervised using actions from the phase 1 policy.

The proposed pipeline enables the whole system to be trained on a single GPU in a

few days, and the deployment policy can directly predict joint angles from depth

and proprioception without constructing externally the elevation maps. The second

phase of the training presents two variations of the architectures: the monolithic

and the RMA-based. Both are trained using PPO with backpropagation through

time truncated at 24 timesteps. The reward functions proposed in previous work

are extended to penalize energy consumption.

To ensure a successful simulation-to-real transfer, the authors employed a rigorous

randomization during phase 1. The randomization included parameters such as the

height map update frequency and latency, added mass, change in position of CoM,

random pushes, friction coefficient, height of fractal terrain, motor strength, and PD

controller stiffness and damping. Quantitative information about the randomization

was provided, such as height map update frequency ranging from 80ms to 120ms,

and motor strength ranging from 90% to 110%.

Additionally, the authors utilized a curriculum-based environment, constructing a

large elevation map with 100 sub-terrains arranged in a 20x10 grid. The terrains were

arranged in increasing difficulty, with each row having the same type of terrain while
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different rows having different terrains. Each terrain had a length and width of 8m,

and high and medium fractals were added to the flat and other terrains, respectively.

4.6 Review of the Contributions

The main contribution of [91] is a walking policy that maps proprioception and raw

depth inputs to joint angles. However, the paper’s impact would have been reduced

if the method had only been presented in simulation. The sim-to-real transfer is

essential, and the paper provides little information beyond the list of randomized

quantities and associated intervals. As a result, reproducibility and extension of

the work depends on the authors’ experience. In contrast, in our work [2] we

minimized the parameters needed for successful sim-to-real transfer and provided

extensive ablation studies to support the effect of their method on robustness to

external perturbations. This allows less experienced practitioners to approach the

sim-to-real problem, and experienced ones can take advantage of the limited number

of parameters and not having to justify their selection with ablation studies. Indeed,

several of the parameters randomized in [91] could have been easily addressed by

ERFI-50, as demonstrated in [2], which would reduce overall complexity.
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5.1 Overview of contribution

In recent years, Deep-RL has emerged as a promising approach for controlling legged

robots, enabling them to perform highly dynamic and sophisticated locomotion tasks

[60, 61, 64, 65]. However, training Deep-RL policies for high-dimensional problems

–like locomotion– in the real world can be challenging due to sample complexity, the

risk of breaking machines during training, and the difficulty of manually resetting the

robots after termination is reached. To address these challenges, physics simulators

have become increasingly popular for training Deep-RL control policies. However,

the sim-to-real gap is a significant challenge that must be addressed.

69



70 5.2. Integrated manuscript

To address the reality gap, various strategies have been proposed, including

accurately identifying properties such as CoM and inertia of robot links, impedance

gains, system communication delays, friction, and actuation dynamics. Relevant

distributions suitable for domain randomization must also be selected, and sensory

noise needs to be modeled and introduced into the simulation during training.

Recently, we proposed a new approach called ERFI to handle system and actuation

uncertainty, which demonstrates state-of-the-art sim-to-real performance by only

randomizing two parameters. However, ERFI does not explicitly encompass

modelling noise in observations.

To improve the robustness of Deep-RL-based locomotion controllers to observa-

tion noise, we are proposing in the following paper a new method called Roll-Drop.

This method introduces dropout during rollout, improving the robustness of Deep-

RL policies to observation noise by only tuning a single parameter. In comparison

with other techniques, Roll-Drop demonstrates an 80% success rate when up to

25% noise is injected in the observations. The policies were trained in simulation

on flat ground and deployed on a Unitree A1 quadruped robot, which was required

to follow a velocity command using proprioceptive information.

In summary, the sim-to-real gap is a significant challenge that must be addressed

in training Deep-RL control policies. Current research has focused on tackling the

mismatch between simulated and real sensors by directly modeling the noise from

real systems and injecting it into the network state during training. Roll-Drop.

instead, addresses the noise injection by only requiring and tuning one parameter,

without further system identification.

5.2 Integrated manuscript
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Abstract
This paper proposes a simple strategy for sim-to-real in Deep-Reinforcement Learning (DRL) –
called Roll-Drop – that uses dropout during simulation to account for observation noise during de-
ployment without explicitly modelling its distribution for each state. DRL is a promising approach
to control robots for highly dynamic and feedback-based manoeuvres, and accurate simulators
are crucial to providing cheap and abundant data to learn the desired behaviour. Nevertheless,
the simulated data are noiseless and generally show a distributional shift that challenges the de-
ployment on real machines where sensor readings are affected by noise. The standard solution is
modelling the latter and injecting it during training; while this requires a thorough system identifi-
cation, Roll-Drop enhances the robustness to sensor noise by tuning only a single parameter. We
demonstrate an 80% success rate when up to 25% noise is injected in the observations, with twice
higher robustness than the baselines. We deploy the controller trained in simulation on a Unitree
A1 platform and assess this improved robustness on the physical system. Additional resources at:
https://sites.google.com/oxfordrobotics.institute/roll-drop

Keywords: Sim-to-real; Legged Locomotion; Reinforcement Learning.

Figure 1: We present two policies, π̂ trained with dropout during rollout (bottom) and π without
it (top). As the time-step t precedes the occurrence of the first dropout and the training adopts
the same random seed, both policies visited the same states and actions. After the first dropout is
triggered, the policies will follow different trajectories, τ π and τ ′

π̂: [at, .., aT ]π ̸= [a′t, .., a
′
T ]π̂,

[rt, .., rT ]π ̸= [r′t, .., r
′
T ]π̂, and [st+1, .., sT ]π ̸= [s′t+1, .., s

′
T ]π̂. This alters the visited states and

prevents high sensitivity of policies to noiseless observations.

© 2023 L. Campanaro, D.D. Martini, S. Gangapurwala, W. Merkt & I. Havoutis.
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1. Introduction

Deep-Reinforcement Learning (DRL) gained traction in the legged robotics community as a promis-
ing approach to the control problem, enabling highly dynamic and sophisticated locomotion capabil-
ities (Lee et al., 2019; Yang et al., 2020; Kumar et al., 2021). The sample complexity associated with
high-dimensional problems such as locomotion, the risk of breaking the machines at the beginning
of the training and the difficulty of resetting the robots make the use of physics simulators (Hwangbo
et al., 2018; Makoviychuk et al., 2021) appealing for training DRL control policies. However, this
convenience often requires addressing the reality gap between the simulated training and physical
deployment domains.

Strategies to address such a reality gap include accurately identifying properties such as Center
of Mass (CoM), mass and inertia of robot links, impedance gains, system communication delays,
friction, and actuation dynamics (Hwangbo et al., 2019; Lee et al., 2020). In addition, relevant
distributions suitable for domain randomisation need to be selected (Tan et al., 2018; Lee et al.,
2019); as part of such randomisation of the environment, sensory noise needs modelling and it is
introduced in simulation during training (Jakobi et al., 1995; Hwangbo et al., 2019).

We recently proposed Extended Random Force Injection (ERFI) (Campanaro et al., 2022) to
handle system and actuation uncertainty as an alternative to a complete system and distribution iden-
tification for dynamics randomisation. We demonstrate state-of-the-art sim-to-real performances by
only randomising (and tuning) two parameters. However, the robustness showed by ERFI in chal-
lenging conditions did not explicitly encompass modelling noise in observations.

In this work, we propose Roll-Drop, a method that improves the robustness of DRL-based
locomotion controllers to observation noise by introducing dropout during rollout. In continuation
with ERFI’s simplicity, Roll-Drop only needs tuning a single parameter.

In the following sections, we present the method, analyse the results, and compare the robustness
of alternatives to the injection of noise in the state space of the policy. Roll-Drop demonstrates
an 80% success rate when up to 25% noise is injected in the observations, whereas in the same
conditions other techniques experienced less than 40% success rate. The policies were trained in
simulation on flat ground and deployed on a Unitree A1.

2. Related Work

Modern robots are equipped with diverse sensors to ensure acceptable levels of autonomy by esti-
mating either the robot’s state or the surrounding environment. Such sensors include Inertial Mea-
surement Units (IMUs), joint encoders (Hubicki et al., 2016), torque and contact sensors (Hutter
et al., 2016), RGBD cameras (Rudin et al., 2022; Gangapurwala et al., 2022; Miki et al., 2022),
and lidar scanners (Mattamala et al., 2022). DRL approaches applied to locomotion controllers
conveniently train policies that can take advantage of such rich sensory information.

Simulators are paramount here to reducing costs and training time while ensuring safety during
the delicate training procedure. Moreover, simulators provide the repeatability necessary to investi-
gate eventual undesired behaviour. However, in contrast to real sensors, simulators provide perfect
and noiseless information far from what the policy would experience when deployed on a real robot,
causing an additional sim-to-real gap to be addressed.

Research has focused on tackling the mismatch between simulated and real sensors by di-
rectly modelling the noise from real systems and injecting it into the network state during train-
ing. Hwangbo et al. (2019) sample the joint velocity noise from uniform distributions, similarly

2
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to Lee et al. (2020) for linear and angular velocity noise; these were then added to the simulator’s
observations to improve robustness. Bohez et al. (2022) use instead normal distributions to model
observation noise for joint positions, angular velocity, linear acceleration, and base orientation,
while Siekmann et al. (2021); Yu et al. (2022) also include the joint-encoder offsets, which were
sampled from a uniform distribution. Gangapurwala et al. (2022); Miki et al. (2022), instead, focus
on exteroceptive sensors and inject noise into the height maps to foster the controller robustness to
artefacts and sudden spikes.

Additionally, determining the noise characteristics is a delicate and costly process. Often little
detail on the process is provided, and ablation studies supporting the necessity of such randomisation
are absent. Roll-Drop addresses this lack of information as one parameter is enough to characterise
the implementation.

3. Problem Definition: Blind Quadrupedal Locomotion

We model a quadrupedal system as a floating baseB described by the reference frameB, represented
w.r.t. a world reference frameW , whose z-axis aligns with the gravity axis. B’s x-axis xB points in
the forward direction of motion of B, the y-axis yB to the left and the z-axis zB upwards. The base
position is then expressed as rB ∈ R3, and the orientation, qB ∈ SO(3), is represented by a unit
quaternion, whose corresponding rotation matrix is denoted as RB ∈ SO(3).

In this work, we will employ a Unitree A1 quadruped, whose four legs are composed of three
joints each. We will refer to the front-right leg as FR, to the front-left leg as FL, to the hind-right
as HR, and to the hind-left leg as HL. Each leg has a hip adduction/abduction HAA, hip flexion/ex-
tension HFE, and knee flexion/extension KFE joint. For example, we refer to the front-right hip
flexion/extension as FR_HFE. The vector qj ∈ Rnj – in our system, nj = 12 – contains the angu-
lar positions of the rotational joints of all limbs, which are actuated through an impedance control,
simplified as described by Peng and van de Panne (2017):

Γj = Kp(q
∗
j − qj)−Kdq̇j . (1)

where Γj are the actuation torques on the joints, q∗j is the vector representing desired joint positions,
and Kp and Kd refer to the position and velocity tracking gains, respectively, which in our system
are Kp = 15.0Nmrad−1 and Kd = 1Nms rad−1.

3.1. Reinforcement Learning

The Reinforcement Learning (RL) problem is modelled as an Markov Decision Process (MDP)
including a state space S, an action space A, an initial state distribution p1(s1), a transition dynamics
p(st+1|st, at) compliant with the Markov property p(st+1|s1, a1, . . . , st, at) = p(st+1|st, at) for
any trajectory τ 1:t = [(s1, a1, r1), (s2, a2, r2), . . . , (st, at, rt)], where ri = R(si, ai) is the reward
obtained from a reward function R : S×A→ R. In all the previous, si ∈ S and ai ∈ A.

A policy – in our case, the controller – selects actions in the MDP given a specific state. The
policy – denoted by πθ, where θ ∈ Rn is a vector of n parameters – is stochastic, and πθ(at|st)
is the conditional probability density of at associated with the policy. The agent uses its pol-
icy to interact with the MDP, realising the trajectory of states, actions, and rewards τ 1:T =
(s1, a1, r1), . . . , (sT , aT , rT ).
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Table 1: (a) PPO hyper-parameters used for training the Unitree A1 policy; (b) the rewards adopted
during training, and their weights.

(a)
Hyperparameter Value

Control dt 0.02 [s]
Sim dt 0.002 [s]
Batch size 25600
Mini-batch size 6400
Number of epochs 8
Clip range 0.2
Entropy coefficient 0.
Discount factor 0.996
GAE discount factor 0.95
Learning rate 1e−4

(b)
Definition Weight

Base orientation kc · ||Rz
B − [0, 0, 1]||2 −30

Base linear velocity ϕ(v∗bx,y
, vbx,y

, 5) 15

Base angular velocity ϕ(v∗bz , ωbz , 5) 15
Action smoothness kc · ||q∗jt − q∗jt−1

||2 −7
Feet clearance kc ·

∑n<4
n=0(0.1− fzn)2 −400

Feet sleep kc · ||ḟx,y||2 −8
Joint position kc · ||qj − qNj ||2 −4
Joint velocity kc · ||q̇j ||2 −0.01
Joint torque kc · ||τj ||2 −0.4
Feet swing duration

∑3
n=0(tair,n − 0.5) 8

Pronking gait kc ·
∑3

n=0(fcn · 1) −35

The policy π is trained through an optimisation problem to maximise the cumulative discounted
reward it obtained from the starting state, expressed as π∗ = argmax E[rγ1 |π], where rγt is the total
discounted reward from time-step t onward, as rγt =

∑T
k=t γ

k−tr(sk, ak), where 0 < γ < 1.

3.2. Implementation

The quadruped robot is required to follow a velocity command sc = [vx, vy, ψ̇]B on flat ground using
proprioceptive information. Here vx and vy are the linear velocities along xB and yB respectively,
while ψ̇ is the angular velocity around zB.

The state is represented as s := ⟨sr, sv, sjp , sjv , sa, sf , sc⟩ ∈ R196, where sBr ∈ R3 is the last
row of the rotation matrix RB , sv ∈ R6 is the base linear and angular velocities, sBjp ∈ R84 is
the history of joint position errors and sBjv ∈ R84 is the history of joint velocities, sa ∈ R12 is the
previous action, sf ∈ R4 is the contact state of the feet, and sBc ∈ R3 is the velocity command. The
actions a ∈ R12 are retrieved from the policy π – implemented as a Multi-Layer Perceptron (MLP)
formed by three layers of size [512, 256, 256] – and interpreted as the reference joint positions q∗j ,
tracked by the impedance controller in Equation (1). The onboard state estimator does not provide
the base linear velocity in sv; hence, we estimate it and sf similarly to Ji et al. (2022) through an
MLP of size [128, 128, 128]. We train π on flat ground using Proximal Policy Optimization (PPO)
(Schulman et al., 2017) until convergence (Figure 7(b)), adopting the rewards and hyper-parameters
in Table 1(a).

4. Roll-Drop

The proposed method, Roll-Drop, exploits the concept of using dropout to mimic an observation
noise to improve the network’s robustness in a sim-to-real deployment scenario. In particular, Roll-
Drop adds a customised dropout layer (Hinton et al., 2012), active only during rollouts and turned
off during training. The resulting random perturbations (as shown in Figure 1) cause the policy π
to explore regions of the state space s and action space A different from the standard training, as in
Figure 5.
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(a)

Simulator parameter Value

Kp 15.0Nmrad−1

Kd 1Nms rad−1

Torque Limit 20 [N/m]
Motor Act. Delay 0.012 [s]
Motor Static Friction 0.2
Motor Dyn. Friction 0.01
Ground Friction 0.4
Gravity -9.81 [m/s2]

(b)

Figure 2: (a) Evaluation environment: the non-flat terrain is more realistic and it brings stochasticity
to the evaluation of the robustness to observation noise. (b) Default settings for the testing environ-
ment.

When the dropout is not present, the actions are sampled with a policy πθ(a|s): πθ(a|s) =
µθ(s) +N (0, σ), where µθ(s) is the output of the network. When, instead, dropout is included the
parameters θ become θ̂ = θ + δθ, and consequently πθ+δθ(a|s) = µθ+δθ(s) + N (0, σ). Based on
this, in a state s: µθ(s) 7→ α, while µθ+δθ(s) 7→ α̂ with α̂ = α+ δα and δa function of θ̂.

Assuming deterministic dynamics and same initialisation, the transition probability can be re-
formulated as the transition function P(s, α) → ζ, when dropout is inactive, and P(s, α̂) → ζ̂
otherwise, where ζ and ζ̂ are the next states. Similarly to α̂, ζ̂ can be expressed as ζ̂ = ζ + δζ,
where δζ = f(α+ δα).

At the next time-step (t + 1), when dropout is inactive we can expect P(s′, a′) → s′′, whereas
when dropout is active P(s′+δs′, a′+δa′)→ s′′+δs′′. Here δs′ and δs′′ represent the discrepancy
between the transitions happening adopting πθ(a|s) and πθ+δθ(a|s).

In this work, we added a single layer of Roll-Drop after the second layer of the MLP network.
Notably, since the dropout-injected noise happens only during rollout, π develops reflexes to recover
from dangerous states and becomes more robust to perturbations; conversely, adding dropouts dur-
ing training does not allow the policy to develop reactions to perturbations.

4.1. Tuning Roll-Drop probability

Similarly to other randomisation techniques (Tobin et al., 2017; Valassakis et al., 2020; Campanaro
et al., 2022), the tuning of the Roll-Drop probability is carried out empirically: At first, the environ-
ment (defined in Tables 1(a) and 1(b)) is tuned for tracking a velocity command sc on flat ground
without any randomisation and using a fixed random seed. After the policy converges to the desired
behaviour, the Roll-Drop layer is included in the network, and the dropout probability is increased
(starting from p = 0.) until the training is stable again. This can be seen in Figure 3(a), where we
tested different dropout probabilities and how they affected the training convergence.

5. Experimental Setup

To assess the performance of the method proposed we run several experiments with different levels
of noise affecting the observations. The environment’s settings are fixed as in Figure 2(b), the robot
is commanded a constant velocity sc = [vx, vy, vz], where vx = 0.5[m/s] is the only non zero
component.
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Alongside these settings we included a mild rough terrain to better represent realistic conditions,
as in Figure 2(a). In the environment defined as above we varied the amount of noise (n) from
0% to 60% as in Equation (2), with a step of 5%, and 100 experiments were run for each noise
configuration (randomising the spawning point of the robot on the rough terrain).

st ← st + n · U(−1, 1) · st, where n ∈ [0, 0.6) (2)

The success rate in Figure 7(a) is measured across the 100 experiments carried out for each
percentage of injected noise. To successfully complete the evaluation the robot does not have to fall
on the ground and it has to walk for at least 1 [m] in the direction of the velocity commanded, if one
of the two conditions is not respected the experiment is considered a failure. The ratio between the
successful runs and the total number runs gives the success rate.

6. Results and Discussion

We compared Roll-Drop (p = 0.0001) against No Randomisation –which is based on the original
environment used for Roll-Drop but without dropout, in Section 4.1–, against ERFI (Campanaro
et al., 2022) that demonstrated state-of-the-art robustness to external perturbations, against dropout
during training (p = 0.001), and finally a mixture of dropout during training (p = 0.001) plus
dropout during rollout (p = 0.0001). From the results in Figure 7(a), the most robust method to
the injection of noise in the observations is Roll-Drop, which retained 80% success rate when more
than 25% of noise was injected. The performance of the policies trained with other techniques de-
grades quickly as soon as noise is injected, suggesting strong sensitivity to observation distribution
encountered during training. Note that all the controllers were trained and tested adopting the same
random seed.

6.1. Dropout during training

We motivate the adoption of dropouts during rollouts (Roll-Drop) in Section 4, nonetheless we
investigated the performances resulting from adopting dropouts during training, and during both
training and rollouts. This is depicted in Figure 3(b), where we show the effects of different dropout
probabilities when it is applied during training and not during rollout. A cluster of lines can be iden-
tified with dropout probability∈ [0.01, 0.1], their maximum reward oscillates around 0.3, which cor-
responds to the robot standing still. Based on our experience, the randomness injected by dropout
does not allow the network to correlate inputs and outputs well, and by standing still the policy
avoids the termination reward (when the robot falls on the ground), while still receiving some posi-
tive points from the rewards in Table 1(b). Indeed, as soon as the dropout probability is lowered to
p = 0.001 the total reward increases, and the robot starts walking again. We compare the perfor-
mance of the policies trained 1) with only dropout during training (p = 0.001), 2) with the dropout
during training (p = 0.001) plus dropout during rollout (p = 0.0001), 3) with the policy trained
with Roll-Drop only. In Figure 7(a), we can observe that the introduction of dropout during training,
even in conjunction with dropout during rollouts is detrimental.

6.2. Dropout probability and convergence

The classical usage of dropout in supervised learning is to regularise the learning of the employed
networks Srivastava et al. (2014). Randomly dropping units from the Neural Network (NN) during
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Figure 3: In Figure 3(a) the introduction of dropout during rollouts heavily affects the convergence,
in this figure we show the effect of different dropout probabilities on the standard deviation used
to sample actions in policy gradient algorithms. In Figure 5(c) alongside dropout during rollouts,
we investigate the effects of dropout during training. When the dropout probability is too high the
policy displays a standing-still behaviour, which suggests its inability to correlate inputs to outputs.

training prevents them from co-adapting, thus significantly reducing overfitting; at test time, then,
the dropout is removed to approximate averaging the predictions of all these partial networks by
using a complete network with smaller weights. A second dropout application is to approximate
a Bayesian network Gal and Ghahramani (2016): applying dropout at inference time can generate
multiple predictions from the same input through multiple inferences. This gives us a probability
distribution of the outputs which we can then analyse. For such applications dropout probability
typically varies between 20% and 50%, but can reach values up to 80% Srivastava et al. (2014).

As can be seen from Figure 3(a), in the case of Roll-Drop the probability is much lower: 0.01%.
In fact, unlike supervised and semi-supervised learning, RL does not provide any target and the
policy loss depends entirely on the actions taken by the policy itself. The better states the policy
explores, the higher the reward it will receive; conversely exploring bad states can result in the pol-
icy exploring a wider actions space and eventually catastrophically diverging to even worse states.
Moreover, when some neurons are dropped during rollouts the noise introduced affects the follow-
ing state of the episode. Considering the latter in conjunction with having a moving target, it is clear
that RL is more sensitive to dropout probabilities and that lower dropout probabilities are expected.

Figure 3(a) shows how the training diverges for dropout probabilities ∈ [0.00025, 0.01], while
for p = 0.0001 it converges to a stable behaviour. In fact, policy gradient algorithms like PPO
(Schulman et al., 2017) explore the action space sampling from a distribution N (µ, σ), where µ is
the action a output of π, while σ is a learnt parameter. Figure 3(a) shows the σ for policies trained
with different levels of dropout during rollouts (same random seed) – the initial σ0 = 1., and it is
capped to σmin = 0.2; high probabilities of dropout are responsible for the divergence.

6.3. How is Roll-Drop affecting the training?

Figure 1 depicts the effects of Roll-Drop on the training: the policies with and without dropout
observe the same initial state (same random seed), and produce the same action until the first
dropout is triggered. After this event, the two trainings take different trajectories τ and τ ′, as
the policies output different actions and the robots experience different states. We investigated
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Figure 4: Policies trained with No randomisation (left) and Roll-Drop (right), both trained on
flat ground in simulation with Kp = 20.0Nmrad−1, and tested on the hardware with Kp =
15Nms rad−1. This gain change highlights a case of system uncertainty, demonstrating that Roll-
Drop can address sim-to-real gaps.

this further in Figure 5 by recording states and actions for the first 3000 training iterations (adopt-
ing 128 parallel environments and episodes of 4 [s]) for Roll-Drop with associated probabilities
∈ [0., 0.002, 0.0001]. We show these distribution shifts for some states and actions: the joint po-
sition of HR_KFE in Figure 5(a), the joint velocity of HL_KFE in Figure 5(b), and the action of
HR_HAA in Figure 5(c). These histograms demonstrate how such a tiny dropout probability –
when compared to supervised/semi-supervised/non-supervised learning– affects the training: For
p = 0.0001 the distributions of states and actions are different from p = 0., while for p = 0.002 the
training is clearly diverging (Figure 3(a)) with most of the states and actions distributed close to the
joint position and velocity limits. Further evidences of the divergence are provided in Figures 5(d)
to 5(f ), where we show the mean across all environments and time-steps for each of the first 3000
iterations.

6.4. Different random seeds

We investigated how consistent the training is when different random seeds are used: We trained five
policies without any randomisation and five policies with Roll-Drop across five different seeds, and
compared the total reward of both groups in terms of mean and standard deviation. We considered
the No Randomisation setting as the perfect candidate for this comparison since it is massively over-
fitting to the simulation environment. From Figure 7(b), we discovered that Roll-Drop (blue line)
is on average performing better, because of its higher robustness across different seeds, and this is
also supported by the smaller standard deviation, when compared to No Randomisation. However,
as expected, No Randomisation is in absolute value performing better than Roll-Drop, but only for
the seed the environment was originally tuned on; while for other seeds it gained lower rewards, and
it has a more spread standard deviation.

6.5. Training and deployment mismatch

Apart from increasing the robustness to observation noise, Roll-Drop is also providing the policies
with additional flexibility to external perturbations. Indeed, we trained two more policies -with
and without Roll-Drop- with Kp = 20.0Nmrad−1 and we deployed them on the hardware using
Kp = 15.0Nmrad−1, the target velocity command is sc = [0., 0., 0.]. As can be seen from
Figure 4, the policy trained without any sort of randomisation is not able to stand, while on the other
hand Roll-Drop allows the policy to find equilibrium and to better follow the velocity command.
Quantitative advantages of adopting Roll-Drop for the experiments above are provided in Figure 6,
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Figure 5: (a) to (c) show some state/action distributions for Roll-Drop with three different probabili-
ties: 0 (no Roll-Drop), 0.002, and 0.0001. When p = 0 the policy is over-fitting to a fixed simulation
environment, when p = 0.0001 the policy converges to the desired behaviour, but exploring a differ-
ent state/action space compared to p = 0, and finally, when p = 0.002 it diverges catastrophically
and it explores bad portions of the state/action spaces (often the joint position/velocity limits) as can
be seen from the orange histograms. Evidences of the divergence are provided in (d) to (f), which
represent the mean for each state/action along the initial 3000 iterations considered.

where we show better velocity command tracking (both linear and angular), and lower joint velocity
usage.

7. Conclusion

In this work we show how to account for observation noise without tuning randomisation distri-
butions for each of the states/sensors as is commonly used in DRL. This can be simply done by
including dropout during rollouts (Roll-Drop) in the network architecture and by tuning a single
parameter: the dropout probability. In fact, by turning on and off neurons during the rollouts we
show a considerable improvements in noise-injection robustness (200%), and a success rate of 80%
when 25% noise in injected. Alongside the results we present a thorough analysis to explain the
effects of different dropout implementations and associated probabilities on performances, conver-
gence, and state/action distributions. The approach was also validated on the hardware and tested
on board of the Unitree A1 quadruped robot. Although we conducted a thorough ablation study,
future research will explore the impact of changing the position of the dropout layer in the network
on the controller’s overall performance.
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Figure 6: These policies are trained in simulation with Kp = 20.0Nmrad−1 and deployed on the
hardware (Unitree A1) using Kp = 15.0Nmrad−1. In this context Roll-Drop demonstrated better
performances in tracking the velocity command and in expending less velocity at the joints.
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Figure 7: (a) Comparing the success rate of different methods in the presence of noise in the obser-
vations. Roll-Drop performs more than twice as good as other methods, retaining 80% success rate
with more than 25% injected noise. (b) we trained the Roll-Drop and the No Randomisation policies
using 5 different random seeds, and here we compare their total rewards. Roll-Drop is more consis-
tent, demonstrating on average higher total reward and a smaller standard deviation. Conversely, No
Randomisation is more sensitive to the random seed used: highest total reward on the seed on which
the environment was tuned on, but the performance degraded when other seeds were adopted.
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5.3 Dropout in supervised learning vs Roll-Drop

Dropout was originally introduced to mitigate overfitting on held-out test data

in supervised learning scenarios [92]. This approach involves a straightforward

principle: during training, each hidden unit is stochastically deactivated with a

probability of (1− p), where p signifies the likelihood of maintaining the neuron’s

functionality. In supervised learning contexts, p is commonly situated within

the range of 0.5 to 0.8 [92, 93], resulting in a corresponding neuron deactivation

probability of (1− p) ∈ [0.2, 0.5].

Overfitting can be understood as a common occurrence when an algorithm’s perfor-

mance diminishes between evaluation and target environments [94]. Nevertheless,

the underlying causes of this decline in supervised learning and RL differ. In the

former scenario, it is referred to as data overfitting, while in the latter, it is called

environment overfitting.

5.3.1 Data overfitting

Data overfitting arises when a learning procedure returns a function tailored

excessively to a specific dataset, diminishing its ability to generalize to independently

sampled data from the same environment. This issue predominantly affects

supervised learning, where evaluations are conducted on a static dataset, and

it is mitigated through partitioning data into training and test sets. In contrast,

this concern does not apply to RL, specifically in on-policy algorithms like PPO, as

the dataset remains dynamic since the actions taken influence the data sampled

in the following time-steps.

5.3.2 Environment overfitting

Environment overfitting occurs when a learning algorithm is tailored to the evalua-

tion environment, resulting in poor performance within the target environment. In

our case, the evaluation environment is the simulator, while the target environment is
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the real world. This challenge has been tackled in the literature through techniques

like domain randomization or ERFI, proposed in this thesis. Nonetheless, as

highlighted in [95], even in stochastic environments, memorization can still occur,

and agents have demonstrated the capacity to adapt to random noises. It is

worth noting, as emphasized by [95], that memorization and overfitting may not

always be detrimental. Just as humans inherently overfit their muscle memories,

enabling efficient actions, legged robots overfitting to a vast range of different

environments produce robust controllers.

5.3.3 Observation and action shift in Roll-Drop

In contrast to the conventional dropout technique [92, 93], Roll-Drop is applied

during inference, imparting stochastic perturbations to the robot’s trajectories within

rollouts. Despite employing dropout probabilities several orders of magnitude lower

than those commonly utilized in supervised learning, this is enough to induce a

notable shift in both state and action distributions. Such perturbations can trigger

a significant divergence in training outcomes, as evidenced in [3]. However, a correct

calibration of the Roll-Drop probability in training results in improved robustness

to state noise during deployment, due to the diverse trajectories encountered by

the policy during the rollouts in simulation.

5.4 Discussion and conclusion

In this work we proposed a new approach to account for observation noise in Deep-

RL without requiring the tuning of randomisation distributions for each state or

sensor. The proposed approach is called Roll-Drop and involves including a dropout

layer during rollouts and tuning a single parameter, the dropout probability.

By turning on and off neurons during rollouts, we demonstrated significant

improvements in observation-noise robustness (200%) and a success rate of 80%

when 25% noise is injected.

To support the findings we presented a detailed analysis of the effects of different

dropout implementations and associated probabilities on performances, convergence,
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and state/action distributions. Although we conducted a thorough ablation study,

future research could explore the impact of changing the position of the dropout

layer in the network on the controller’s overall performance.
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6.1 Introduction

In recent years, quadruped robots have gained significant attention from both

industry and academia due to their higher mobility compared to wheeled vehicles.

They are probably the best-known and studied class of legged systems, and their

capabilities have been demonstrated in various tasks, including jumping over

obstacles [96], recovering from falls [61], trotting blind on rough terrain [62], and

navigating over hurdles using vision [97].

Despite these recent advances, quadruped robots still lag behind their natural

counterparts in terms of agility and dynamic maneuvers. Four-legged animals,

for instance, can adopt two-legged locomotion to interact with the environment,

traverse tight spaces, and even use their forelimbs for manipulation. However,

such maneuvers require a fine control of the body and limbs’ inertia to maintain

balance, and achieving bipedal locomotion on point feet with quadruped robots is a

challenging scenario for current control architectures. This challenge is compounded

by the absence of adduction/abduction joints in the bipedal configuration shown

in Figure 6.14, sub-optimal joint limits for standing on two legs, resulting in bent

knees and higher torques, and motors not designed for bipedal locomotion.

To tackle the challenging task of omni-directional bipedal locomotion on point

feet with a quadruped robot without any hardware modification or external

support, we adopt model-free controllers that promise to exploit the full dynamics

of the system. This work aims to develop a controller that complies with the

quadruped’s hardware requirements and can navigate challenging environments.

The task serves as a perfect benchmark to explore the capabilities and limitations

of modern Deep-RL methods while investigating new skills and avenues for the

legged robotics community.

Additionally, this work examines the challenges posed by the sim-to-real gap in

extremely dynamic scenarios -as the one considered here- and the limitations we
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encountered while adopting state-of-the-art techniques that shown their effectiveness

in less dynamic locomotion applications.

6.1.1 Contributions

Prior research on bipedal locomotion of quadruped robots is limited to jumping

gaits[98], requires mechanical modifications to the robot for stability [99], or adopts

robots with wheels [80], which do not handle the discontinuous dynamics of stepping.

In contrast, our method discourages jumping movements through reward shaping

and learns omni-directional bipedal locomotion on point feet without utilizing wheels.

Our main contributions are:

• The development of an omni-directional controller for quadruped robots

capable of walking on two legs with point-feet. This approach was initially

trained in simulation and subsequently validated against hardware execution

data.

• The development of the first bipedal controller for quadruped robots (with

point feet) capable of walking in simulation and taking 11 steps in the real

world without requiring hardware modifications.

• Highlighting the shortcomings of currently adopted sim-to-real techniques in

highly dynamic applications.

6.2 Related works

Planning feasible motions for legged robots is a challenging task, as base movements

cannot be directly generated but result from the discontinuous interaction among

limbs and the environment. To address this issue, various methods have been

developed in the field of legged robotics.

One approach is to use Trajectory Optimisation (TO), as discussed in Section 2.1,

to automate the generation of desired motions. TO takes high-level tasks as

inputs and determines the motions and forces that comply with all restrictions
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using an optimizer [27]. However, these methods require selecting, and eventually

approximating, a suitable dynamics model for the system.

Another approach is to use RL to design dynamic controllers. These controllers

are trained in simulation using proprioceptive or/and exteroceptive information

and then transferred to the real hardware. Applications of RL in legged robotics

range from quadruped robots [60, 62, 66, 97] to biped robots [23, 24, 73], and the

robotics community is increasingly interested in pushing the boundaries of legged

locomotion by mimicking their natural counterparts.

Recent research has investigated the transition among different gaits [100, 101]

as well as bipedal locomotion [98, 99]. For example, in [98] the authors presented

a hopping controller that allows a legged robot to hop on its two hind legs using

as template a spring-loaded inverted pendulum (SLIP) model to generate the

trajectory of the CoM; Mini Cheetah was adopted as reference platform [102]. Then,

the control-Lyapunov function based quadratic programming (CLF-QP) controller

modulates the nominal ground reaction forces (GRFs) to balance the torso. The

legs dynamics is ignored, and the fore legs remain close to the body in a fixed

position during the motion; with this method the authors demonstrated a hopping

gait on the two rear legs with Mini Cheetah in simulation.

Similarly, in [99] the authors proposed a multi-modal legged robot that can

walk in both quadrupedal and bipedal fashion using a combination of RL and

Inverse Kinematics (IK); this was also based on Mini Cheetah. Their approach

required modifying the robot with a new mechanical part to improve stability

(i.e., to achieve a two-point / line contact per leg) and used a scripted motion

based on IK for the gait transition.

Furthermore, in [80], the authors proposed an RL-based method that combines

several motion styles in a single policy without the need for excessive reward

tuning. These styles include ducking, walking, and switching between quadrupedal

and bipedal locomotion. However, in all the configurations, the robot mounts

wheels, and this makes the contact dynamics continuous since the robot tracks the
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desired base-velocity command without stepping but by controlling the velocities

of the motors that drive the wheels.

6.3 Preliminaries

We model the general quadrupedal robot system as a floating base B with four

actuated limbs: front right (FR), front left (FL), hind right (HR) and hind left

(HL). Each leg is made up of three joints: hip adduction/abduction (HAA), hip

flexion/extension (HFE) and knee flexion/extension (KFE); the legs and the joint

names can be combined, for example hind left leg knee flexion/extension joint is

abbreviated as HL KFE. The robot state is described w.r.t. a world inertial reference

frame W . The base position is expressed in this frame as W r W B ∈ R3, and the

orientation, qW B ∈ SO(3), is represented using a unit quaternion. The corresponding

rotation matrix is given by RW B ∈ SO(3). The positions of the joints are represented

by qj ∈ Rnj . For the A1 robot used in this work, nj = 12. The linear and angular

velocities of the base are written as W vW B ∈ R3 and W ω W B ∈ R3, respectively. The

generalized coordinates and velocities are stacked as vectors q and u where

q =

W r W B

qW B

qj

 ∈ SE(3)× Rnj , u =

 W vW B

W ω W B

q̇j

 ∈ R6+nj . (6.1)

The A1 quadrupedal system is actuated using the joint control torques τj ∈ Rnj

which are computed at the actuator level using an impedance control model written

as

τj = Kp(q∗
j [−d]− qj) + Kd(q̇∗

j − q̇j)− fs − fd · q̇j (6.2)

where Kp and Kd refer to the position and velocity tracking gains, q∗
j is the list of

vectors representing the desired joint positions, d ∈ [0, 7](d ∈ N) is the injected delay

used to randomly select previous desired positions, q̇∗
j , the desired joint velocities, fs

and fd refer to the static and dynamic friction, respectively. For concise presentation,

we will assume that all of the translations and rotations are measured and expressed

with respect to the reference frame W . In this regard, the notation W rW B will be

shortened to rB, RW B to RB, and similarly for all the other introduced notations.
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94 6.4. Methodology

Figure 6.1: Overview of the control architecture utilized for bipedal locomotion. The
proposed framework also employs a velocity estimator network Ev to predict the robot’s
linear velocity sv. The locomotion policy, πθ, then maps the robot state information into
control action, ab, representing the desired joint positions q∗

j . We concurrently learn both
Ev and πθ.

6.4 Methodology

Data-driven deep RL approaches allow for natural emergence of sophisticated

control intelligence [60]. Parameterizing the control policy as a neural network

further enables complex non-linear mapping of robot state information to desired

control action. In this regard, we employ a control architecture illustrated in

Figure 6.1 to generate desired joint positions q∗
j at a control frequency of 50 Hz.

These joint positions are then tracked at the actuator level using the impedance

controller described in Equation (6.2).

This section details upon the Markov decision process (MDP) formulation

employed for obtaining a bipedal locomotion policy, about the training setup,

and about the significant obstacles encountered in attempting to transfer the

policy to the hardware.

6.4.1 State and Action

We define the MDP state as a tuple se := ⟨sb, sv⟩ where sb := ⟨sR, sω, sj, sa, sc⟩. The

state se ∈ R192 comprises terms that represent the base orientation sR ∈ R3, base

linear velocity sv ∈ R3, base angular velocity sω ∈ R3, joint state history sj ∈ R168,

previously generated action sa ∈ R12, and desired base velocity command term

sc ∈ R3. We introduce a horizontal reference frame H such that W r W H = W r W B

and RW H = RW Bz , where RW Bz is the z decomposition of the base rotation matrix
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which can be expressed as RW B = RW BzRW ByRW Bx . The velocity command

c∗ is then written as

c∗ = [v∗
xeH

x v∗
yeH

y ω∗
zeH

z ]T (6.3)

where v∗
xeH

x is the desired base linear velocity along the x-axis described in the

horizontal frame. This allows for commanding the robot using a user-input (such

as with a joypad) or a high-level goal planner.

Table 6.1: State term definitions for the bipedal MDP. Here, t refers to the current
measurement and the duration between t− 1 and t corresponds to 20 ms. Also, ∆qjt =
qjt − q∗

j t−1 represents the joint position tracking error.

State Terms
sR = eB

z

sv = RT
BvB

sω = RT
BωB

sj = [qj
T
t ∆qj

T
t−1 ∆qj

T
t−2 ∆qj

T
t−3 ∆qj

T
t−4 ∆qj

T
t−5 ∆qj

T
t−6

q̇j
T
t q̇j

T
t−1 q̇j

T
t−2 q̇j

T
t−3 q̇j

T
t−4 q̇j

T
t−5 q̇j

T
t−6]T

sa = q∗
j t−1

sc = c∗

The design of our state space is motivated by prior works on quadrupedal

locomotion using deep RL [60, 62, 66]. These have shown that the introduction of a

history of joint position tracking errors and joint velocities enables implicit modeling

of system dynamics which facilitates emergence of system-adaptive behavior robust

to variations in dynamics. We will further discuss the importance of this history

in Section 6.7.6.

The robot information included in the MDP state space can be directly extracted

from the on-board sensors. This is based on the assumption that a state estimator

is available to integrate and filter sensory data. In this work, we employ the

architecture proposed in [103] to concurrently learn a base linear velocity estimator

Ev, parameterized as an MLP, to generate sv ∈ R3 from the partially observable

state information sb ∈ R189. The estimator, Ev, comprises two dense layers of
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dimensions {128, 128} with LeakyReLU activation. All the other measurements

are directly accessible from on-board sensors to a sufficiently accurate degree and

do not require further filtering or processing. The output sv of the linear base

velocity estimator Ev is then concatenated to sb and forwarded to the locomotion

policy πθ which is parameterized as a MLP with two dense layers of dimensions

{512, 512} with LeakyReLU activation.

The action is given by the tuple ab := ⟨q∗
j ⟩ and represents the desired joint

positions for each of the twelve actuators on the robot. The actions produced

by πθ are scaled by 0.25 to limit the motion of the upper limbs, by 0.5 for the

lower limbs and are clipped between π
4 and −π

4 to avoid exploring states too far

from the nominal joint configuration qN .

The actions modified as above are then sent to a custom PD controller, the

latter is in charge of computing the torque and it also takes care of modelling

communication delays, static and dynamic friction, as shown in Equation (6.2).

The nominal values used are Kp = 30, Kd = 0.5, τmax = 20, delay ∈ [0, 7],

fs = 0.2 and fd = 0.01.

6.4.2 Training

The PPO algorithm [104] was adopted for training using clipped loss and GAE

(Generalized Advantage Estimation), the hyperparameters used are: learning

rate=1e-4, epochs=8, ϵ=0.2, γ=0.998, λ=0.95, episode length=4 s, mini batch=4500.

Similarly to [60, 62], we adopt curriculum learning to improve the robustness of the

controller. It is important to note that the rewards do not depend on the curriculum,

since it affects only the magnitude of external perturbations and the degree of

randomization of the environment. Where the curriculum factor kf is computed as

in [60], such that every learning iteration j the curriculum factor kfj+1 = (kfj
)ki ,

starting from the kf0 and a common ki = 0.999. In more details, we split the

training in two different phases with their respective curriculum factors: before 6000

training iterations k1
f0 = 0.05 and this allows the policy πθ to exploit the perfect

simulation environment and quickly learn bipedal locomotion. After 6000 iteration
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Nominal Std
Mass 10 0.2 ·Nominal
Knee joint pos -0.2 0.02
P gain 30 5
D gain 0.5 0.15
Torque limits 20 2.5
Friction 0.4 0.2
Gravity -9.81 0.5
Static friction 0.2 0.3 ·Nominal
Dynamic friction 0.01 0.3 ·Nominal
External force 0 4
Orientation perturbation 0 π

18

Table 6.2: Domain randomization parameters

Figure 6.2: Squat controller in action.

the curriculum learning starts, k2
f0 is updated and πθ is exposed to increasingly more

difficult environments, by randomizing base mass, knee joint position, PD gains,

torque limits, friction, gravity, static friction, dynamic friction, external forces and

base orientation. During this phase, at every reset of the environment, the new

value each of parameters in Table 6.2 is computed as : pnew = pnominal + pstd · p∗ · k2
f ,

where p∗ is sampled from a normal distribution X ∼ N (0, 1).

Lastly, after 12000 training iterations the learning rate decays by a factor of ten

every 1000 iterations and such that the πθ settles to the desired behavior.

The terminal state, responsible of resetting the environments, is triggered when

the episode is completed or when the robot touches the ground with parts different

from the two feet fHR or fHL.

6.4.3 Reward

The training is guided by the reward function composed by the weighted sum

of the terms in Table 6.3.
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Definition Weight
Base orientation exp(−1(cos−1(eB

z · eH
z )| − π/2)2) c1 = 4

Base linear velocity ϕ(v∗
Hx,y

, vHx,y , 10) c2 = 22
Base angular velocity ϕ(ω∗

Hz
, ωHz , 10) c3 = 22

Action smoothness ||q∗
jt
− q∗

jt−1||
2 c4 = −2

Feet clearance ∑n<4
n=2(0.1− fnz)2 c5 = −1500

Feet slip ∑n<4
n=2 ||fnẋ,ẏ||2 c6 = −25

Joint position ||qj − qN
j ||2 c7 = −2

Joint velocity ||q̇j||2 c8 = −0.3
Joint torque ||τj||2 c9 = −1
Feet swing duration ∑n<4

n=2 max(min(tair
n , 0.5), 0.4) c10 = 10

Jumping gait tair
2 · tair

3 c11 = −3
Contact transition ∑n<4

n=2(contactn
t−1 == contactn

t ) ? 0 : 1 c12 = −0.5

Table 6.3: Reward term definitions for the bipedal MDP, where ϕ(x, t, s) := e−s||x−t||2 .

6.5 Ablation study

In the following section we detail on some of the decisions taken during the training

of the bipedal policy.

6.5.1 Hardware feasibility of the bipedal configuration

In consideration of the potential stress that bipedal locomotion can place on motors,

particularly the knee joints, we opted to first test the feasibility of the approach

by evaluating the machine’s ability to stand on two legs before conducting any

hardware validation with the learned policy. To achieve this, we developed an

IK-based bipedal controller that enabled the Unitree A1 to perform squats while

on its rear legs. The controller utilized a sinusoidal function to generate the desired

height of the CoM (hCoM), which was then used in conjunction with the IK to

compute the required joint angles for tracking. Specifically, the height of the CoM

was defined as hCoM = 0.3 + A sin (2πft + ∆θ), where A, f , and ∆θ correspond

to the amplitude, frequency, and phase shift of the oscillation, respectively. The

desired joint angles for the rear HFE and KFE joints were calculated using the

equations in Equation (6.4), with reference to the vertices depicted in Figure 6.4a.
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AB = BC ⇒ HC = AH (specific to Unitree A1)

qHF E = acos(AH

AB
) + π

2
qKF E = −2 · acos(HC

BC
)

(6.4)

We then compared the torques recorded during our hardware experiments

using the sqat-controller with the torques measured during simulation testing of

the Deep-RL trained policy. Our results indicated that, on average, the policy

consumed less torque than the squat controller, while exerting the same maximum

torque, as shown in Figure 6.3.

4 8 12 16 20 24 28
τ [Nm]

0.00

0.02

0.04

0.06

K
D
E

(τ
)

τ simHRKFE

τ realHR KFE

Figure 6.3: The Kernel Density Estimations (KDEs) of the τ real
j , recorded with the

squat controller, and τ sim
j obtained executing πθ overlap, the πθ consumes overall less

torque.

To further assess the differences between joint velocities in simulation and reality,

we suspended the robot and generated a chirp signal to control one of the rear

leg’s knee joints. We compared the measured velocities in both simulation and

hardware in the frequency domain, and found no visible anomalies, as illustrated

in Figures 6.4b and 6.4c, except for those caused by the sim-to-real gap, such as

the ideal/real PD controller and the inertia of the limbs.

Based on these comparative tests of joint torques and velocities between hardware

and simulation, we concluded that the hardware is capable of exerting the necessary

torques and velocities required by the controller trained in simulation.

6.5.2 Randomization curriculum

To train the policy, we followed the settings outlined in Section 6.4. We conducted

six experiments in total, three of which started the randomization curriculum from
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Figure 6.4: Figure 6.4a Vertices positioning for the IK in Equation (6.4). Figures 6.4b
and 6.4c Joint velocity sim-real comparison.

the beginning, and three which started after 6000 iterations. We analyzed the

results of both sets of experiments in terms of the average total reward and its

standard deviation, as shown in Figure 6.5. The figure clearly demonstrates that

beginning the randomization curriculum from the start of the training significantly

compromises the final performance with the current settings.
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Figure 6.5: In this picture we show how curriculum scheduling affect the training. We
observed that starting the curriculum (with the settings in Section 6.4) after the policy
already converged to a meaningful solution (blue dashed line, 6000 iterations) determines
a higher total reward and better locomotion behaviors compared to starting with the same
curriculum from the beginning of the training. Moreover the red dashed line represents
the point from which the learning rate starts decaying (12000 iterations).

6.5.3 Reward ablation

Many of the rewards in Table 6.3 have been previously adopted to train quadruped

robot controllers [60, 62, 65, 66]. However, in this work, we introduce three rewards

that are particularly useful for bipedal locomotion. These rewards include the foot

swing promotion reward, which encourages the lifting of the feet and helps to avoid
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Figure 6.6: Reward ablation: setting some of the rewards to zero affects stepping
height, stepping frequency, and a hopping behavior. We demonstrate this statement in
the plots above, here each of the policy was trained till convergence.

dragging, the contact transition reward, which penalizes frequent transitions to

different contact states, and the jumping reward, which helps to avoid hopping gaits.

To investigate the contribution of each of these reward terms, we trained four

different policies. The first policy includes all the reward terms presented in Table 6.3.

In the second policy, only the foot swing duration reward is set to zero, and in the

third policy, only the contact transition reward is set to null. The same procedure

is repeated in the fourth policy, but only for the jumping gait reward.

We compared the feet height in the policy trained with the full set of rewards

(Figure 6.6a) with the different ablations to appreciate the contribution of each

reward term. As shown in Figure 6.6b, the foot swing promotion reward sig-

nificantly promotes lifting of the feet. Similarly, the contact transition reward

effectively reduces the frequency of transitioning between contact states, as seen in

Figure 6.6c. Lastly, the jumping reward successfully discourages hopping behavior,

as demonstrated in Figure 6.6d.

6.5.4 Role of the upper limbs

Previous research on bipedal locomotion using quadruped robots [98] has involved

keeping the upper limbs fixed to the base during locomotion to reduce controller

complexity. In contrast, our study allows for the policy π to actively control the upper

limbs. To investigate the role of the arms during locomotion, we conducted tests

where we blocked the use of the arms. We found that on flat ground - the environment

on which the robot was originally trained - the robot did not heavily rely on the arms.
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However, when we repeated the experiment on rough terrain (as shown in

Figure 6.7), an environment that the robot had never experienced during training,

we observed that the arms were crucial for maintaining balance and tracking

the commanded velocities without falling. This observation is supported by the

results shown in Figures 6.15d and 6.15h. When the arms were locked in the qN

position, the robot fell to the ground, as shown by the spikes in the measured

velocities in Figure 6.8.

Overall, our results suggest that the arms play an important role in maintaining

stability during bipedal locomotion, particularly in challenging environments.

Figure 6.7: The robot was tested on rough terrain to assess the role of the upper limbs
in maintaining balance during locomotion.

6.6 Results

This study introduces an omni-directional controller designed for quadruped robots

with point-feet walking on two legs. To demonstrate the controller’s robustness to

changes in the simulation environment, we conducted experiments with variations

beyond the randomization domain used during training. These variations included

changes in the PD gains and delay in the impedance controller, torque limits,

friction coefficient between the feet and the ground, gravity acceleration, mass of

the robot’s base, and position of the knee joints along the thighs.

We evaluated the controller’s performance by analyzing two metrics: success

rate, defined as the ratio of completed experiments without falling to the total

number of experiments, and velocity tracking error, defined as the difference between

the desired and measured base velocity. As shown in Figure 6.9, the controller
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Figure 6.8: The base velocities shown above are recorded during bipedal locomotion
on rough terrain with locking the arms of the robot in the nominal position. Without
using the arms to balance the robot fell on the ground, and this can be inferred from the
tall spikes in the measured velocities. Conversely, in the same rough terrain settings, but
with the freedom of moving the arms, the robot successfully traversed the terrain without
falling Figures 6.15d and 6.15h.

exhibited robustness not only within the training domain but also to variations

outside it, including rough terrain locomotion (see Figure 6.7).

The only parameter that significantly affected the controller’s performance was

the communication delay, which was injected as described in Equation (6.2). How-

ever, we do not consider this to be a major problem as the maximum communication

delay measured on the hardware was 10 [ms], while the 7 time-steps (at 50 [Hz])

used to randomize the delay itself amount to 14 [ms], roughly 40% more than

the expected maximum communication delay.

6.6.1 Sim-To-Real Transfer

After having verified the correspondence between the performances required by

the policy during locomotion in simulation and the capabilities of the hardware,

the robustness to environment variations of the policy in different simulation

environments, the controller was finally deployed on the real robot.

6.6.2 Adopting domain randomization

Despite the extensive domain randomization described in Table 6.2, successful tests

verifying joint torque and velocity matching between hardware and software in
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Figure 6.9: Success rate and tracking error under varioations of the environment.
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Figure 6.10: Deployment of the policy trained with domain randomization on the
hardware resulted in the robot incorrectly placing its left hind leg, indicating a failure to
recognize the current state and make the correct decision. The experiment lasted for a
few seconds.

Section 6.5.1, and robustness demonstrated on rough terrain in Figure 6.8, the

robot fell to the ground a few seconds after starting the controller, as illustrated

in Figure 6.10. Upon analyzing the video, it became evident that the robot lifted

its left hind foot but failed to step with it, resulting in a loss of balance and

ultimately leading to a fall. This suggests a failure to recognize and understand

the current state and make the correct decision.

Our hypothesis is that in a dynamic situation like walking on two legs with a

quadruped robot, the many simplifications imposed by the simulator may have led

to the robot’s fall. For example, the feet are deformable and not rigid, the slings

negatively affect the base’s motion, and the motors might not repeatedly exert

high impulsive torques because they overheat. Additionally, other sources of noise,

such as domain randomization, could shift the distribution of state observed by the

policy in simulation far from the true distribution experienced on the hardware.

6.6.3 Adopting ERFI

To simplify the study and reduce uncertainty in the controller, we decided to adopt

ERFI-50 instead of domain randomization, which, based on our previous experience

[2], can account for many disturbances on the real machine. This approach reduced

the parameters to randomize to only τ limoj and τ limrj.

Surprisingly, the new policy trained with ERFI-50 achieved eleven steps (con-

sistently in several attempts) before falling, as shown in Figure 6.11.

We conducted a thorough investigation to determine the potential reasons for

the discrepancy between simulation and hardware, such as verifying whether the

IMU in a vertical configuration is not subjected to gimbal-lock and ensuring that the
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Figure 6.11: Bipedal policy deployed on the Unitree A1 robot, the green lines underneath
the feet indicate the steps taken. Note that the slings are kept loose during the whole
experiment.

rotations are correctly measured. Based on our analysis, we found that everything

was correctly represented and comparable with the simulator.

6.7 Discussion

In this section we address further details that may have affected the deployment

of the bipedal policy on the quadruped robot.

6.7.1 Hardware joint position limits

The Unitree A1 robot’s qF R KF E, qF L KF E, qHR KF E, and qHL KF E joints are limited

by a physical stopper between [-2.7, -0.916] rad. This constraint is illustrated in

Figure 6.12a and requires the nominal joint configuration qN of the lower limb knees

to be bent to ensure that the robot’s motion adheres to the policy q∗ ∈ [−π
4 , π

4 ]

without interfering with the stoppers. As a result, the knee joints are crouched
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Figure 6.12: In Figure 6.12a Unitree A1’s knee: the green block identifies the stopper,
while the red one the articulation that could hit it during the motion. To avoid this
physical constraint the final leg configuration is more bent, with the effect of generating
higher torques during the motion. While in Figure 6.12b we show the time difference
between desired and measured knee joint position, the delay observed amounts to roughly
10 [ms].
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Figure 6.13: Most of the joints are involved in the locomotion, including the upper
limbs Figure 6.13a. The q̇j in Figure 6.13b are below the hardware limits (21 rad s−1).
The KDE of τj Figure 6.13c shows that the most loaded motors are the knees of the hind
limbs, followed by the hips. While Figure 6.13d shows the KDE of τj of the hardware
after running the squat controller 3 min, the highest torque that the system exerts before
the performance degrades is 20 N m.

more than desired, leading to the knee motors exerting higher torque.

The distribution of joint positions, velocities, and torques during locomotion

is shown in Figures 6.13a to 6.13c, while Figure 6.13d illustrates the distribution

of torques observed on the physical machine.

6.7.2 Absence of abduction/adduction motors

In bipedal configuration, the abduction/adduction motion is absent, as demonstrated

in Figure 6.14. The figure displays the current motor configuration of the robot,

alongside a schematic representation. Additionally, the figure showcases the required

ideal configuration of the motors, which necessitates an extra joint (HAA 2 ) to
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ensure successful abduction/adduction motion.

For quadruped robots on two legs, the standard twelve joint configuration

presents significant difficulties in positioning the feet close to the projection of

the CoM on the ground. This challenge is compounded when a reward system

discouraging deviations from the nominal joint configuration is required.

To emphasize the significance of the HAA 2 joint, it is worth noting that all

robots specifically designed for walking on two legs, including Boston Dynamics

Atlas, Cassie [105], Digit [25], MIT Humanoid [106], Hume & Mercury [107], and

Talos [108], are equipped with it.

Figure 6.14: The figure on the left and in the centre show the current configuration of
the motors in Unitree A1. This configuration does not allow for the abduction/adduction
motion, instead on the right figure we show how adding a new HAA 2 motor would allow
these movements.

6.7.3 Limiting knee joint velocity

Bipedal robots without abduction/adduction joints face increased instability, as

they have less time to maintain balance when a foot is off the ground. This is due

to the foot’s striking point being far from the projection of the robot’s CoM on the

ground. To compensate for this, the robot’s stepping frequency increases, and this

behavior is further amplified because the policy aims to minimize the time during

which the feet are on the ground, thus reducing the total torque at the knees.

Hence, to enhance stability and to reduce the total torque expended over time,

the policy applies high velocity (> 20 [rad/s]) to the knees for a fraction of a second.

This improvement comes at a small cost of increasing the reward penalty for high

joint velocity during a brief period of the episode. Ultimately, the only solution
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to prevent this behavior from the policy was to set hard limits on the maximum

motor velocities (to 15 [rad/s]) via the simulator’s clipping mechanism.

6.7.4 Communication delay

Using the data collected from the squat controller experiment, we observed a delay

of approximately 10 ms, as presented in Figure 6.12b. To address this issue, we

introduced a random actuation delay ranging from 0 to 0.014 sec.

To assess the policy’s ability to handle this artificial delay, we examined its

robustness, which is demonstrated in Figure 6.9f using the impedance controller

equation in Equation (6.2).

6.7.5 Velocity command tracking

In this study, we examine the impact of domain randomization and environmental

variations on a policy’s ability to track desired linear and angular velocities, as

shown in Figure 6.15. We compare the performance of a policy trained without

any domain randomization (overfitting to the simulation environment), as depicted

in Figures 6.15a and 6.15e, with a policy trained with domain randomization, as

depicted in Figures 6.15b and 6.15f. We observed that the policy trained with

domain randomization has a higher tracking error, potentially due to more cautious

movements, since used to a less predictable and more challenging environment. This

environment characterized by random changes in mass, knee joint position, PD

gains, and other parameters listed in Table 6.2 after each training iteration.

Nevertheless, caution is extremely valuable in challenging conditions, as demon-

strated when the experiments are carried out on rough terrain. When the policy

trained without domain randomization is tested on such terrain, it constantly

falls to the ground, as evidenced by the spikes in the measured velocities in

Figures 6.15c and 6.15g. In contrast, the policy trained with domain randomization

can successfully walk on such terrain without falling, as depicted in Figures 6.15d

and 6.15h, and it demosntrates a tracking error on rough terrain comparable

to that on flat ground.
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Figure 6.15: Comparing the base velocity tracking without domain randomization
on flat ground (Figures 6.15a and 6.15e), with domain randomization on flat ground
(Figures 6.15b and 6.15f), without domain randomization on uneven ground (Figures 6.15c
and 6.15g), and finally with domain randomization on uneven ground (Figures 6.15d
and 6.15h). Sudden spikes in the measured velocities signify that the robot fell on the
ground, as in Figures 6.15c and 6.15g.

6.7.6 Long history in the observations

In this study, we employed an observation space similar to that used in [60], with

the main difference being the length of the joint position error and velocity history.

While [60] used a history encompassing three time steps (t0, t−1, and t−2), we

extended the history to include the past seven time steps (t0, t−1, t−2, ..., t−6).

The joint history length was empirically determined in [60], and their conjecture

was that it allowed for the detection of ground contact.

To investigate the role of different observations in the π network, we generated a

saliency map by propagating gradients from the outputs to the inputs over several

time steps. The saliency maps for qHR HF E and qHL HF E displayed a periodic vertical

pattern, which was time-shifted between the legs. We were able to demonstrate that

this pattern perfectly related to the contact state of each leg, as shown in Figure 6.16.

We also investigated the role of histories of joint positions error and velocities

in locomotion using the saliency map in Figure 6.16. Specifically, the green and

light-blue rectangles in the figure represent the joint error history and joint velocity
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history, respectively. The last rows of each rectangle, corresponding to the oldest

observation in the joint history (t−6), were frequently illuminated, indicating that

the network heavily relies on information from the distant past to locomote.

Increasing the joint history length by one time step increases the input size by

12 and the number of weights by 3072 in the current MLP architecture. Hence,

for future analyses, it would be interesting to investigate recurrent architectures

and specifically how far back in the past they look.
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7.1 Summary of contributions

Legged robots are highly versatile machines that offer superior mobility compared

to other robotic systems. However, their complex controllers are difficult to design

and this currently limits their capabilities. Classic methods require engineers

to distill their knowledge into the controllers, which can be time-consuming and

limiting when approaching dynamic tasks in unknown environments. Conversely,

learning-based methods gather knowledge from data, and have the potential to

unlock the versatility of legged systems. In this thesis, I followed the latter path

to address several challenges in locomotion.

In the first paper [1] I proposed a novel approach for incorporating feedback

into a fully differentiable CPG formulation adopting NN and applying Deep-RL

to jointly learn the CPG parameters and MLP feedback. The outcome is the

113
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CPG-Actor architecture, which enables end-to-end training of coupled CPG and an

MLP for sensory feedback using Deep-RL. The main contributions of this paper are

the fully differentiable approach and the novel method for capturing the recurrent

state of the CPGs without unrolling them over time, which results in roughly

twenty times better training performance compared to previous state-of-the-art

methods. The paper provides insights into the impact of training on the distribution

of parameters in both the CPGs and MLP feedback network, as well as qualitative

results and insights into the baseline and proposed methods. The effectiveness

of this approach was validated through simulation on an ANYmal B hopping leg.

While the technique is versatile, its extension to diverse domains (e.g. full-body

locomotion) is reserved for future research endeavors.

Due to the complexity of high-dimensional problems, such as locomotion, physics

simulators are typically used for training Deep-RL control policies. However, there is

often a significant gap between the simulated training domain and the physical target

domain, known as the reality gap. To address this, I proposed a new method called

ERFI [2], which randomizes only two parameters to allow the sim-to-real transfer

of locomotion controllers. ERFI effectiveness is compared to its predecessor, RFI,

variations of the same method, and standard domain randomization. Simulation

experiments showed that ERFI improved success rates significantly for varying

masses of the base and for attaching a manipulator arm to the robot during testing.

Moreover, ERFI achieved competitive performance when compared to standard

randomization techniques, while requiring tuning only a fraction of the parameters.

The method’s efficacy is further demonstrated by successfully deploying perceptive

and blind policies on to the physical ANYmal C and Unitree A1 quadrupeds.

To overcome the sim-to-real gap when transferring controllers to the real world

various strategies have been proposed, including identifying relevant properties of

the robot and introducing sensory noise during training. In this context, ERFI

handles system and actuation uncertainty demonstrating state-of-the-art sim-to-real

performances with minimal parameters tuning. However, despite its effectiveness

ERFI does not explicitly encompass modelling noise in observations. To solve this
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issue I proposed a new method called Roll-Drop. Roll-Drop introduces dropout

during rollout, improving the robustness of Deep-RL policies to observation noise

by only tuning a single parameter. Rool-Drop was evaluated on a Unitree A1

quadruped robot, demonstrating an 80% success rate when tested with up to 25%

noise injected in the observations.

While quadruped robots provide higher mobility than wheeled vehicles, they are

not as capable as their natural counterparts, which can use two-legged locomotion

and fore limbs for manipulation. Bipedal locomotion on point feet with quadruped

robots is a challenging scenario for current Deep-RL control architectures due to

the limited number of joints and restricted kinematics per leg. To tackle this

challenge, I proposed adopting model-free controllers to enable omni-directional

bipedal locomotion on point feet with a quadruped robot without any hardware

modification or external support. The study seeks to explore the capabilities and

limitations of modern Deep-RL methods by developing a controller that is compliant

with the quadruped’s hardware requirements and capable of navigating challenging

environments. Despite the limitations posed by the quadruped’s hardware, the

study considers this a perfect benchmark task to unlock new skills and future

avenues for the legged robotics community.

7.1.1 Key takeaways

Robotics presents challenges, characterized by intricate debugging and time con-

straints. It’s crucial to approach projects with the expectation that issues will arise.

When I embarked on the work described in Chapter 6, prior attempts at achieving

bipedal locomotion on a quadruped robot with point feet had proven ineffective,

and motivated by recent strides in Deep-RL applied to quadrupedal robots, I delved

into adapting this approach for bipedal locomotion.

My initial assumption was that successfully developing a bipedal policy in

simulation would seamlessly translate to a real-world implementation, something I

had already accomplished with quadrupeds. In this context, Chapter 6 meticulously

outlines the steps taken to achieve eleven successful bipedal steps, but the following
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speculations delve into the factors contributing to its partial success, potentially

benefiting all those intrigued by this endeavor.

As evident in Figure 6.10, the policy lacks a coherent understanding of optimal

stepping timing, resulting in the robot’s instability. While transitioning from

standard domain randomization to ERFI, as demonstrated in Figure 6.11, partially

mitigated this issue, I believe that the policy’s comprehension of the system state

remains inadequate. This assertion finds validation in Figure 6.11, where it becomes

evident that the robot continues accelerating forward instead of leaning back

for decelerating.

As already mentioned, debugging was a challenge, further exacerbated by the

minimal and sparse real-world data, which made comprehending the differences

between simulation and reality exceedingly complex. In retrospect, a physical

support structure could have facilitated repeatability and failure analysis – a

resource that was regrettably absent.

Regarding the policy’s architecture, it is my conviction that a more substantial

history of states would have been beneficial. This could encompass states that

had previously lacked a history, such as base rotations, or not present, such as

base accelerations. The significance of memory becomes evident in Figure 6.16,

illustrating the role of prior observations in determining current actions. A potential

remedy might involve employing recurrent networks instead of conventional feed-

forward ones. However, given the time constraints, pursuing all these avenues

was unfeasible.

In conclusion, our work offers valuable insights for achieving bipedal locomotion

on a quadruped robot with point feet. From addressing the simulation-reality gap

with ERFI, to enhancing memory in architecture, our findings provide actionable

directions. By applying these lessons, the broader robotics community can strive

to replicate the success demonstrated in simulation on the hardware.

DRAFT Printed on April 21, 2024



7. Conclusion 117

7.2 Considerations

Current perceptive locomotion controllers, whether model-based [109] or learning-

based [65], rely on an elevation map of the surrounding environment. However, this

method reduces the rich diversity of the world to a uniform "carpet" of varying

smoothness, based on the adopted filters and the presence of artifacts like grass.

This carpet lacks important information about friction, softness, density, and

other properties of the ground, and the robot assumes it to be solid. As a result,

locomotion controllers must rely heavily on reactive skills to detect and respond

to unfavorable conditions.

Recent advances in learning-based methods powered by Deep-RL have shown

superior robustness compared to classic approaches, but this robustness mainly

stems from reactive skills rather than a deeper understanding of the environment.

However, recent attempts to overcome the limitations of model-free Deep-RL, such

as the use of world models to speed up training and improve planning in the policy

[110], have shown promise. Nevertheless, this approach still requires a considerable

amount of data, since it demonstrated poor gait performance.

Multitasking presents a challenge, as learning multiple skills with a single policy

can be difficult. One approach that has shown success is combining multiple

expert policies to address specific tasks [111], such as omni-directional locomotion

and fall recovery. However, it’s important to note that this method may become

increasingly complex and computationally expensive as more skills are added, due

to the need of duplicating expert policies.

Adversarial training has emerged as a highly effective approach to mitigate

these problems, as demonstrated in [80]. Complex behaviors can be represented by

comparing samples from the policy with those from experts using a discriminator.

Despite significant progress in the last five years, current robotics controllers

are still largely limited to locomotion tasks, where a carpet representation of the

world is sufficient to achieve some utility. However, these limitations restrict their

applications, as legged robots are currently only used to carry laser-scanners or

cameras and have little to no interactions with the environment.
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7.2.1 Future Work

The potential impact of legged systems on people’s daily lives is vast. To achieve this

impact, it is essential to begin by understanding the complexity of the environment

in which these systems will operate. This understanding requires abandoning

the simplification of the environment’s representation as a carpet, and instead

representing it in its full complexity.

Representing the environment’s complexity solely through images is challenging,

as it would require a vast amount of data to build a comprehensive model. One

promising approach is to construct a graph representation of the world, starting

from the robot, as demonstrated in [112]. This approach provides a more detailed,

compact, and understandable representation of reality.

In addition to the graph representation, it is crucial to define rewards in a

convenient and unique manner. While AMP-based approaches are useful, they do

not take full advantage of the vast corpus of online information, such as videos,

which could greatly enhance the learning of new skills without the need for specific

task controllers.

Another essential tool for achieving success are Large Language Models (LLMs),

which, although currently auto-regressive, can be grounded in the visuo-physical ex-

perience of robots, Figure 7.1. By doing so, they can be instrumental in representing

and recycling complex skills while also serving as a natural interface with humans.

In summary, to make robots intelligent and achieve the full potential of legged

systems, it is crucial to represent the environment’s complexity accurately, define

rewards uniquely, utilize the vast corpus of online information, and take advantage

of language to structure and comprehend the information consumed.

In my pursuit of making robots intelligent, I hope that the reflections above

will serve as useful guidelines for success.
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Figure 7.1: To recycle skills already learned and exploit the vast corpus of videos
available online, the control architecture adopted in Chapter 4 needs to be expanded with
planning capabilities. This planner would allow for abstract and long term reasoning.
Moreover, since natural language understanding is required to interface with humans, it
is likely that LLMs would be adopted for this task. This planner would take as inputs
the state of the robot (proprioceptive and exteroceptive), the long term task to fulfill,
and it would output short term goals that the policy π would be in charge of executing.
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A
Learning locomotion at low frequency
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A.1 Overview of contribution

The use of legged systems enables agile motions in complex and unstructured

environments. This requires control solutions that can recover from unexpected

perturbations, adapt to system and environmental dynamics, and execute safe

and reliable locomotion. Feedback-based control systems have been successful in

achieving dynamic locomotion behaviors, but these systems require high-frequency

actuation commands to minimize motion tracking errors and address external

disturbances. In contrast, animals can demonstrate agile locomotion despite

sensory noise and sensorimotor latencies associated with nerve conduction, electro-

mechanical and force generation delays, which limit their motion control frequency.

In [113] the authors present a case study of a house cat that exhibits a

low locomotion frequency, indicating that high-frequency feedback-based decision-

making may not be critical for locomotion over challenging terrains. The authors
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investigate this discrepancy between biological and mechanical systems and propose

a parallel compliant joint system and leg-length controller to realize actuation

response similar to that of animal muscle-tendon units.

The ANYmal C quadruped is equipped with series elastic actuators SEAs that

offer high compliance but trade-off controllability for compliance. In comparison,

quasi-direct drives offer better actuation command tracking performance with lower

control latencies, enabling highly dynamic locomotion. This work explores the

question of whether robots can perform robust and dynamic locomotion at low

motion control frequencies, inspired by the performance of animals.

Blind and perceptive control strategies for the ANYmal C quadruped are devel-

oped and evaluated for robust and dynamic locomotion over flat and uneven terrain.

Related work includes model-free data-driven Deep-RL and model-based techniques

that have been successful in achieving dynamic and complex locomotion. However,

these approaches often employ finite-order motion parameterization, which inhibits

the discovery of optimal behaviors. In contrast, motions executed by Deep-RL

policies that map robot state information to desired joint states are not constrained

by motion primitives, making Deep-RL particularly suitable for this work.

Overall, this work investigates the potential for robots to achieve agile and

robust locomotion using low-frequency control strategies inspired by animals, and

develops control solutions that enable safe and reliable locomotion in complex

and unstructured environments.

A.2 Integrated manuscript
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Learning Low-Frequency Motion Control for
Robust and Dynamic Robot Locomotion

Siddhant Gangapurwala, Luigi Campanaro and Ioannis Havoutis

Abstract— Robotic locomotion is often approached with the
goal of maximizing robustness and reactivity by increasing
motion control frequency. We challenge this intuitive notion
by demonstrating robust and dynamic locomotion with a
learned motion controller executing at as low as 8 Hz on a
real ANYmal C quadruped. The robot is able to robustly and
repeatably achieve a high heading velocity of 1.5 ms−1, traverse
uneven terrain, and resist unexpected external perturbations.
We further present a comparative analysis of deep reinforce-
ment learning (RL) based motion control policies trained and
executed at frequencies ranging from 5 Hz to 200 Hz. We
show that low-frequency policies are less sensitive to actuation
latencies and variations in system dynamics. This is to the extent
that a successful sim-to-real transfer can be performed even
without any dynamics randomization or actuation modeling.
We support this claim through a set of rigorous empirical
evaluations. Moreover, to assist reproducibility, we provide the
training and deployment code along with an extended analysis
at https://ori-drs.github.io/lfmc/.

I. INTRODUCTION

Legged systems can execute agile motions by leveraging
their ability to reach appropriate and disjoint support con-
tacts, thereby enabling outstanding mobility in complex and
unstructured environments. This, however, requires control
solutions that are able to recover from unexpected perturba-
tions, adapt to variations in system and environment dynam-
ics, and execute safe and reliable locomotion. For feedback-
based control systems, taking a corrective control action as
soon as a sensory signal is detected allows for minimizing
motion tracking errors while offering high reactivity to ad-
dress external disturbances and modeling inaccuracies. This
design motivation has been employed for achieving dynamic
locomotion behaviors in [1], [2], [3] through generation of
low-level actuation commands at frequencies ranging from
400 Hz to 1 kHz.

In contrast, animals are able to demonstrate remarkably
agile locomotion in spite of sensory noise [4] and consid-
erable sensorimotor latencies [5] associated with nerve con-
duction, electro-mechanical, and force generation delays [6]
which limits their motion control frequency. The sensing and
actuation delays for a medium-sized 20 kg dog, for example,
can be approximately 58 ms of which 23.2 ms are required
to process sensory feedback, generate an actuation signal,
and deliver electro-mechanical commands [7]. The remaining
delay corresponds to the ramp-up time for achieving peak
muscle force. For a 40 kg animal, the total delay is estimated

The authors are with Dynamic Robots Systems (DRS) group, Ox-
ford Robotics Institute, University of Oxford, UK. Email: {siddhant,
luigi, ioannis}@robots.ox.ac.uk

Fig. 1. ANYmal C quadruped walking over uneven terrain with a motion
control frequency of 8 Hz.

to be 67 ms with processing, generation and delivery latency
of 30.4 ms.

In [8], Ashtiani et al. present an example in which a house
cat exhibiting a locomotion frequency of 5 Hz [9] is sensor-
blind for half its stance-phase. This duration corresponds to
the entirety of the muscle force ramp-up time suggesting that
high-frequency feedback-based decision-making may not be
critical for locomotion over challenging terrains. Ashtiani
et al. investigate this discrepancy between biological and
mechanical systems and propose a parallel compliant joint
system along with a leg-length controller to realize actuation
response similar to that of animal muscle-tendon units. This
is based on the motivation that elastic actuation allows for
self-stability [10].

In this regard, the ANYmal C quadruped [11] houses
series elastic actuators (SEAs) that offer high compliance
making the system robust to impacts. SEAs, however, trade-
off controllability for compliance [12]. In comparison, quasi-
direct drives offer better actuation command tracking perfor-
mance with lower control latencies enabling highly dynamic
locomotion [13]. This makes it possible for the Mini Cheetah
to sprint at 3.74 ms−1 [14] while for the ANYmal C, Miki et
al. reported heading and lateral velocities of up to 1.2 ms−1

even with an extremely robust locomotion controller [15].
This work explores and presents our findings, alluding to

a bio-inspired control design choice: if animals can perform
robust and dynamic locomotion at low motion control fre-
quencies, can robots do so too?

For this, we develop blind and perceptive control strategies
for the ANYmal C quadruped and evaluate its performance
for robust and dynamic locomotion over flat and uneven
terrain as shown in Fig. 1.

A. Related Work

Model-free data-driven deep reinforcement learning (RL)
enables obtaining control solutions that have the poten-
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tial to thoroughly utilize the system capabilities of current
robots. This property has been leveraged for learning agile
and dynamic robotic locomotion skills to perform blind
bipedal traversal over stairs [16], quadrupedal locomotion
over challenging terrains [17] and even robust quadrupedal
state recovery [18].

Model-based techniques have also demonstrated dynamic
and complex locomotion [19], [20], [21]. A combination
of model-based and model-free methods have also been
proposed [22], [23], [24], [25]. These approaches, however,
often employ finite-order motion parameterization which
inhibits the discovery of optimal behaviors. In contrast,
motions executed by RL policies that map robot state infor-
mation to desired joint states are not constrained by motion
primitives. This makes RL particularly suitable for our task
of obtaining motion control policies operating at frequencies
as low as 5 Hz. In such a case, the optimal behavior is not
bounded by carefully tuned model-based controllers. Instead,
the objective of finding the appropriate style to achieve
dynamic and stable locomotion is addressed by the RL agent.

Despite the significant progress in RL for robotic lo-
comotion, there remains an inconsistency in the design
motivations for much of the proposed control architectures.
In [26], Hwangbo et al. train an RL locomotion policy
to map robot states to desired joint positions. This policy
is queried at 200 Hz and the authors especially note that
introducing a history of joint states into the RL state space
is essential to obtain a locomotion policy. Rudin et al.,
however, train a locomotion policy at 50 Hz without utilizing
joint state history [27]. The obtained policy is transferable
to the real platform even with access to only the current
proprioceptive state. In [28], Duan et al. also show bipedal
locomotion at 40 Hz without utilizing joint state history. We
study these differences and observe that at higher motion
control frequencies, the controller is more sensitive to the
actuation dynamics compared to at lower-frequencies. This
allows low-frequency policies to operate as motion planners
as opposed to motion controllers. We detail upon our findings
in Section IV of this manuscript.

While we discussed control solutions for dynamic and
robust behavior, it is worth mentioning that a rich body of
work also focuses on bio-inspired mechanical designs [29],
[30], [31]. Although this is beyond the scope of our current
work, we believe it serves as an important reminder that
control intelligence and mechanical design complement each
other [32].

B. Contribution

Our main contribution with this work is presenting that
low-frequency motion control is sufficient to perform robust
and dynamic locomotion. We further show that dynamics
randomization or actuation modeling may not even be nec-
essary for successful sim-to-real transfer. We additionally
provide a comparative analysis of motion control policies
trained and deployed at a range of frequencies. We believe
this work will provide an important reference to the robotic

Fig. 2. Control architecture of our proprioceptive locomotion framework
comprising a motion controller and an actuation tracker.

control research community with regards to design motiva-
tions for developing custom control solutions.

We additionally highlight our contributions relating
to sharing of training and deployment code, the low-
frequency motion control (LFMC) framework. We provide
a RaiSim [33] based optimized implementation for training
locomotion policies for ANYmal C at various motion control
frequencies. We additionally provide minimal deployment
code in both C++ and Python. For the Python version,
we also provide an option to choose between the RaiSim
and PyBullet [34] simulation engines. We hope this encour-
ages reproducibilty and allows colleagues to easily perform
benchmarking against our approach.

II. PRELIMINARIES

A. System Model

We model a quadrupedal robot as a floating base B
with four attached limbs. The robot state is measured and
expressed in a global reference frame where the position
is written as rB ∈ R3. The orientation is represented as
the rotation matrix RB ∈ SO(3). Each limb comprises three
rotational joints. The angular joint positions are denoted by
the vector q j ∈ R12. The linear and angular base velocities
are represented as vB ∈ R3 and ωB ∈ R3 respectively.

The joint control torques τττ j ∈R12 actuate the quadrupedal
system and, in this work, are computed using the impedance
control model,

τττ j = kp∆q j− kd q̇ j. (1)

Here, kp and kd represent tracking gains and ∆q j = q∗j −q j
where q∗j denotes the desired joint positions.

B. Control Architecture

Our control architecture comprises a high-level motion
controller and a low-level actuation tracker. This design is
motivated by prior works on RL for robotic locomotion [26],
[35], [36]. The motion controller, executed at a deployment
frequency fm, processes robot state information to generate
desired joint states. The actuation tracker, executed at a
frequency fa where fa ≥ fm, tracks these desired joint states
by generating τττ j using the model described in Eq. 1.

We model the motion controller policy as a multi-layer
perceptron (MLP), πθ . Here, θ represents the network pa-
rameters. The policy, πθ : s 7→ a, maps the input state tuple



s to actions a ∈ R12. The tuple s comprises observations
that can be accessed on the real robot. Since we perform
comparative analysis of different types of policies, the di-
mensionality of s depends on the individual motion control
policy. We discuss this in the following subsection.

Each of the policies outputs an action tuple, a := 〈q∗j〉,
representing the desired joint positions and is based on the
motivation that a low-impedance joint position control can
offer improved training and control performance over torque
control [37].

C. Motion Control Policies

We represent the motion control policies as πθ where θ
denotes the parameters of a generic motion controller. To
refer to specific policies, we introduce the notation

π ft
M:H

where ft is the motion control frequency at which the policy
was trained, M is the mode of operation which can either
be b (for blind) or p (for perceptive), and H ∈ R represents
history length of joint states introduced in the state tuple
s. The joint state history is recorded at a frequency of f j
with a corresponding time step t j. In this work, the joint
state recording frequency f j ≥ fm. In this work, we use f j =
200Hz which we obtained empirically as part of [24].

As an example, π8
b:2 represents a blind motion control

policy trained at 8 Hz. The state space of π8
b:2 also contains q j

and q̇ j at joint recording steps t j−1 and t j−2, corresponding
to a history length of 2.

For brevity, we omit ft while referring to a class of motion
control policies with the same operation mode and history
length. For blind policies, πb:0, with no joint state history,
the state tuple sb:0 ∈ R48 is defined as

sb:0 := 〈RT
Bez,q j,RT

BvB,RT
BωB, q̇ j,∆q j,c∗〉,

where ez = [0,0,1]T represents the vertical z-axis and c∗ ∈
R3 comprises the desired heading velocity, lateral velocity
and yaw rate commands represented in the base frame. The
objective of the motion control policies is thus to track user-
generated desired velocity commands.

The state space of perceptive policies πp:0 is written as
sp:0 ∈ R235. sp:0 augments sb:0 with robo-centric terrain in-
formation T ∈ R17×11 observed between [−0.8,0.8]m along
the heading axis and [−0.5,0.5]m along the lateral axis with
a resolution of 0.1 m. The perceptive state space design is
based on [27].

The joint state history augments the state space dimen-
sionality by H× 24. For a blind policy with history length
of 4, πb:4, its state tuple sb:4 ∈ R144 is written as

sb:4 := 〈sb:0,qt j−1,qt j−2,qt j−3,qt j−4〉.

Here, qt j represents the joint state tuple comprising joint
positions and joint velocities recorded at time step t j. The
control architecture, including the dense neural network
policy architecture, is illustrated in Fig. 2.

III. METHODOLOGY

A. Training

We represent the problem of legged locomotion as a
sequential Markov decision process (MDP) [38] with contin-
uous state and action spaces. With regards to RL, our goal
is to obtain a policy, or a class of policies, that maximizes
the expected cumulative discounted return,

J (π) .= E
T ∼πθ

[
N

∑
t=0

γ tR

]
, (2)

where γ ∈ [0,1) represents the discount factor and T ,
dependent on πθ , denotes a finite-horizon trajectory with
episode length N. Our reward function, R, comprises several
reward terms that allow for efficient and stable tracking of
reference base velocity commands. We use the proximal
policy optimization (PPO) [39] strategy to train each of
our policies. Our training approach, including the reward
function, has been derived from prior works [26], [35], [27].

While our method is quite standard, training several poli-
cies for different motion control frequencies requires tuning
of individual reward terms and hyperparameters such as
γ . For example, for an episodic length of 1 s, executing a
policy at 200 Hz would imply collection of forty times more
samples than for a 5 Hz policy. Consider another example.
The half-life of γ can be given by,

nγ0.5 =
log0.5
logγ

≈ −0.3
logγ

. (3)

For γ = 0.98, the half-life would correspond to 34 control
steps. For a 200 Hz policy, this is equivalent to 0.17 s while
for a 5 Hz policy, this represents a duration of 6.8 s.

To ensure consistency across different training frequencies,
we denote the duration of nγ0.5 in seconds as opposed to
control steps. For a training frequency ft , the discount factor
can then be computed by

γ = exp
(

log0.5
ft ×nγ0.5

)
. (4)

In our training setup, we use nγ0.5 = 3s. For an episodic
length N = 1s, we ensure the batch size per policy iteration
remains the same for every control frequency. For this,
we perform parallel data collection wherein the number of
parallel environments are scaled up to fit the desired batch
size, bs = ft × nenv. For bs = 48k, we use nenv = 240 for
ft = 200Hz, and nenv = 9600 for ft = 5Hz.

To avoid retuning the reward function, we compute the
returns at each simulation step, ts as opposed to each control
step tm. Normally, ts ≤ tm and we use ts = 0.0025s in this
work. While this largely addresses exhaustive reward func-
tion tuning, we observed that reward terms representing devi-
ation from nominal joint configuration and action smoothness
needed to be slightly tuned for individual frequencies to
achieve visually similar locomotion behavior. We provide the
different training configurations on the project website1.

1https://ori-drs.github.io/lfmc



Fig. 3. Average returns for each of the trained policies πb:0.

We train each of the πb:0 policies for 20 k iterations. The
iteration time is dependent on ft and varies between 0.4 s
(for ft = 25Hz and ft = 50Hz) to 1.5 s (for ft = 5Hz and
ft = 200Hz). on a standard desktop computer housing an
8-core 3.6 GHz Intel i9-9900K and an Nvidia RTX 2080Ti.
The returns plot for each of the trained policies is shown in
Fig. 3. The policies trained at low-frequencies (8 Hz, 10 Hz
and 25 Hz) converge a lot faster (¡10k iterations) compared
to high-frequency policies. Note, π5

b:0 suffers from poor
reactivity and is therefore harder to train.

Note that, we do not perform any dynamics randomization
(DR) while training the blind policies. Although we do use an
actuator network [26] to model the real actuation dynamics,
in Section IV, we show that introducing the actuator network
during training may not even be necessary for LFMC.

B. Evaluation

We follow the narrative of bio-inspired low-frequency
motion control (LFMC) and discuss the following key ob-
servations and reasoning in Section IV.

• LFMC policies are less sensitive to actuation dynamics
under the assumption that actuation settling time [40] is
less than control step time (Section IV-A).

• LFMC policies do not perform implicit modeling of
system dynamics necessary for predictive control at
high frequencies. Instead, LFMC policies can operate
as motion planners (Section IV-B). To support this, we
visualize the policy network Jacobians in Fig. 7.

• Since LFMC policies operate as motion planners, they
show more robustness to variations in system dynamics.
This is based on the assumption that the low-level
actuation tracker stably and reliably tracks the motion
plans. We show this to be the case in Fig. 9.

• LFMC policies are faster to train (Fig. 3).

To support these points, we evaluate the performance of
each of the individual blind πb:0 policies in RaiSim with
unstructured rough terrain generated using Perlin noise [41]
with maximum extrusion of 0.15 m. This is shown in Fig. 4.
Our motivation for this setup is twofold: (1) the terrain noise
introduces randomness allowing us to measure a probability
distribution and (2) the unexpected perturbations highlight
the reactivity of each of the policies.

Fig. 4. RaiSim simulation set up for evaluation of blind and perceptive
locomotion policies with ANYmal C traversing terrains comprising unstruc-
tured ground, stairs and bricks.

We introduce success rate (SR) as a performance metric
defined as,

SR = 1− Ne

NT
(5)

where Ne refers to the number of episodic rollouts that
were terminated early due to an invalid robot state and NT
represents the total number of rollouts. In this work, we use
NT = 100. For each rollout, we randomize the base heading
direction. This randomization occurs with the same seed
across each of the policies. An invalid robot state is defined
by the criteria: (1) arccos(RB3,3)> 0.4π which relates to base
orientation, (2) self-collisions, or (3) collision of the robot
base with ground.

We also train and compare π10
b:4 and π200

b:4 to show that joint
state history is relevant for modeling system dynamics and
is essential for high-frequency motion control as presented
in [26]. This, however, is not the case for LFMC.

To demonstrate robustness on uneven terrain, we evaluate
the performance of perceptive locomotion policies on terrains
comprising rough ground, stairs and bricks as shown in
Fig. 4. Our evaluation method for perceptive locomotion
policies is based on the setup introduced in [24].

IV. RESULTS

This section presents the key results in support of our
contribution. We provide an extended analysis on the project
website.

A. Intuitive Reasoning

Figure 5 (top) illustrates a toy example of a 1 DoF PD
controller tracking sinusoidal set points updated at 5 Hz and
200 Hz for kp ∈ {50,65,80,95} and kd = 2. For the 5 Hz
update frequency, the joint trajectories converge to very
similar states before a new set point is generated. Note that,
we use kp = 80 and kd = 2.0 for deploying our policies
on to the real robot. For a 5 Hz controller, this implies the
sensory readings at each update step are less effected by
actuation tracking dynamics in comparison for higher update
frequencies such as 200 Hz. This implies that, for an effective
control behavior, the 200 Hz policy requires observability of
the actuation dynamics.

We hypothesize that LFMC allows for operation as a
planner and refer to it as motion planning hypothesis. This
makes low-frequency motion controllers robust to actuation
dynamics under the assumption that the low-level actuation
controller stably tracks the generated joint states. Figure 5
(bottom) illustrates why the stable tracking is necessary. For



Fig. 5. Top: Tracking of sinusoidal set points updated at 5 Hz and 200 Hz
for various position tracking gains. Bottom: Step responses observed for
kp ∈ {60,100} and kd ∈ {0,2} for a series elastic actuator present on the
ANYmal C quadruped.

Fig. 6. Gait sequences for various πb:0 motion control policies. The colored
regions represent stance phase.

cases of under or over-damping, the motion controller may be
required to adapt to the settling state even with low-frequency
control.

B. Qualitative and Behavioral Analysis

We test the motion planning hypothesis by transferring
the trained motion control policies on to the real ANYmal
C quadruped. We observe extremely aggressive actuation
tracking for π200

b:0 resulting in vibrations at the rotary joints.
This aggressive behavior is reduced with lower-frequency
policies and no vibrations are recorded for π25

b:0 and lower.
We suspect that, since no dynamics randomization (DR) was
performed during training, and due to imperfect actuation
modeling, high-frequency policies overfit to the simulation
domain affecting sim-to-real transfer. Note, while we are able
to transfer π5

b:0 onto the real robot, we are only able to stably
execute low-velocity motions. The 5 Hz policy suffers from
poor reactivity and is unable to execute recovery actions in
unstable states.

We also observe interesting behavior with regards to
the stance (foot-in-contact) and swing (foot-not-in-contact)
phase duration. Low-frequency policies exhibit larger stance
and swing phases compared to high-frequency policies
(Fig. 6). We expected this to be an artifact of the scaling of

Fig. 7. Visualization of the mean of network Jacobians recorded for π10
b:4

and π200
b:4 for 2 s. Dark blue regions correspond to high gradients whereas

white corresponds to zero gradients. The brown regions separate different
observations and have only been included for visual aid. Note that, joint
state history is sampled at 200 Hz for both the policies. Sampling joint state
history at 10 Hz for π10

b:4 resulted in near-zero gradients for history terms.

action smoothness reward term (which penalizes large devi-
ations between current and previous actions) with variations
in motion control training frequencies. This, however, was
not the case when we introduced joint state history (N ≥ 4)
into the state space. Hwangbo et al. hypothesized that the
joint state history implicitly modeled contact detection [26].
While this has been consistent with our analysis of observing
the absolute of policy Jacobians, |dπθ (s)/ds|, as presented
in [17], we also observed that high-frequency control policies
are more dependent on joint state history than low-frequency
policies. We posit that joint state history improves the domain
observability through implicit encoding of actuation dynam-
ics [42] and is therefore more relevant for high-frequency
policies.

We further investigate this for π10
b:4 and π200

b:4 . Figure 7
illustrates the mean of the policy Jacobians recorded for a
duration of 2 s. Dark blue regions suggest higher gradients,
implying larger dependency. Compared to 10 Hz, the 200 Hz
policy requires more observations to execute the same task
relating to larger dependency on system dynamics. Interest-
ingly, the gradients for joint velocities are quite low for π10

b:4
while π200

b:4 utilizes joint velocities more than joint positions.
For high-frequency πb:0, we suspect the fast contact

switching behavior occurs due to partial observability of
the system dynamics. In our experience, we have observed
this to be the case for poorly designed state spaces. This,
however, needs further investigating. For the 200 Hz policy,
the increase in stance and swing phase duration, compared
to 100 Hz policy, is due to poor tracking with lower stability.

C. Robustness Analysis

One of our main objectives with this work is to demon-
strate robustness with low-frequency motion control. Fig-
ure 9 shows that π10

b:0 performs better than most of the



Fig. 8. Motion control policy trained and deployed at 8 Hz stably tracking heading base velocity of 1.5 ms−1.

Fig. 9. Success rate observed for various motion control policies, πb:0, for
different perturbations and dynamics parameters.

policies. π25
b:0 offers both high robustness and reactivity

whereas π8
b:0 falls behind π10

b:0 due to inadequate reactivity for
traversal over rough terrain. We also investigate robustness
to actuation latencies and show that LFMC policies offer
higher robustness than high-frequency policies (Table I).

D. Dynamic Locomotion

Based on our robustness analysis, we perform qualitative
evaluation on the real robot. We demonstrate high-speed
dynamic locomotion with π8

b:0. As shown in Fig. 8, we are
able to achieve a heading velocity of approximately 1.5 ms−1

traversing a distance of 2 m in roughly 1.33 s.
We also trained a perceptive locomotion policy π8

p:0 based

TABLE I
MAXIMUM ACTUATION DELAY THAT πb:0 POLICIES CAN BE ROBUST TO

RIGHT BEFORE FAILURE MEASURED AT A RESOLUTION OF 5 ms.

Training Frequency (Hz) 5 10 25 50 100 200
Latency (ms) 90 90 65 50 30 20

on [27] for locomotion over uneven terrain. We show that
8 Hz motion control is sufficient for robust traversal over
considerable obstacles (wooden railway sleepers) and steps
(both up and down) as presented in Fig. 1.

We further compare the behavior of policies trained with
and without DR. The DR parameters are based on [35] and
have been provided on the project website. This is shown
for 10 Hz and 200 Hz perceptive policies in Table II. As
expected, DR allows for better performance over uneven
terrain. Introduction of joint state history is not as effective as
doing both, introducing joint state history and DR. Joint state
history and DR allow for better observabiliy of environment
interactions, necessary for uneven terrains [17], while also
encouraging generalizability to unseen domains.

We are also able to demonstrate transfer on to the physical
system with policies trained without the actuator network.
The behavior is stable, however, not as smooth as policies
trained with the actuator network. We detail upon the ex-
tended analysis on the project website and summarize our
evaluation in the overview video.

TABLE II
SUCCESS RATES OF 10 Hz AND 200 Hz PERCEPTIVE POLICIES MEASURED

FOR 100 RUNS EACH.
10 Hz 200 Hz

πp:0 πp:0 (DR) πp:4 πp:4 (DR) πp:0 πp:0 (DR) πp:4 πp:4 (DR)
Rough 0.94 0.94 0.94 0.95 0.87 0.92 0.93 0.94
Stairs 0.86 0.93 0.92 0.94 0.52 0.59 0.88 0.95
Bricks 0.66 0.71 0.69 0.80 0.58 0.62 0.64 0.76

V. CONCLUSION

This work aims to start the discussion within the robotics
community about the role and benefit of high- versus low-
frequency motion control, especially within the context of
learning-based approaches. From biological studies we know
that animals can perform robust and dynamic locomotion
at low motion control frequencies and, with this work, we
showed how robots can achieve this too.

We demonstrated dynamic and robust quadrupedal loco-
motion with as low as 8 Hz of motion control frequency. We
further provided empirical evaluations to support our claim
that motion control policies trained at low-frequencies do
not require dynamics randomization or actuation modeling
to perform a successful sim-to-real transfer.
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