Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system

Abstract

This paper proposes a control structure to resolve the issue of dynamically stepping over large obstacles in the B4LC control system. We reform the local control units LegSwing, LockHip and KneeF lexion respectively. The optimization module with Particle Swarm Optimization (PSO) method is employed to tune the parameters of those controllers by formulating locomotion stability. The optimization process and further validation are conducted on a 3-dimensional simulated bipedal robot. The simulation results reveal that the suggested approach enables robot to dynamically step over a large obstacle with 20cm height by 15cm width in a short time duration

    Similar works