5 research outputs found

    Physical-based optimization for non-physical image dehazing methods

    Get PDF
    Images captured under hazy conditions (e.g. fog, air pollution) usually present faded colors and loss of contrast. To improve their visibility, a process called image dehazing can be applied. Some of the most successful image dehazing algorithms are based on image processing methods but do not follow any physical image formation model, which limits their performance. In this paper, we propose a post-processing technique to alleviate this handicap by enforcing the original method to be consistent with a popular physical model for image formation under haze. Our results improve upon those of the original methods qualitatively and according to several metrics, and they have also been validated via psychophysical experiments. These results are particularly striking in terms of avoiding over-saturation and reducing color artifacts, which are the most common shortcomings faced by image dehazing methods

    Color Image Enhancement Method Based on Weighted Image Guided Filtering

    Full text link
    A novel color image enhancement method is proposed based on Retinex to enhance color images under non-uniform illumination or poor visibility conditions. Different from the conventional Retinex algorithms, the Weighted Guided Image Filter is used as a surround function instead of the Gaussian filter to estimate the background illumination, which can overcome the drawbacks of local blur and halo artifact that may appear by Gaussian filter. To avoid color distortion, the image is converted to the HSI color model, and only the intensity channel is enhanced. Then a linear color restoration algorithm is adopted to convert the enhanced intensity image back to the RGB color model, which ensures the hue is constant and undistorted. Experimental results show that the proposed method is effective to enhance both color and gray images with low exposure and non-uniform illumination, resulting in better visual quality than traditional method. At the same time, the objective evaluation indicators are also superior to the conventional methods. In addition, the efficiency of the proposed method is also improved thanks to the linear color restoration algorithm.Comment: 15 page
    corecore