202 research outputs found

    Description and composition of bio-inspired design patterns: a complete overview

    Get PDF
    In the last decade, bio-inspired self-organising mechanisms have been applied to different domains, achieving results beyond traditional approaches. However, researchers usually use these mechanisms in an ad-hoc manner. In this way, their interpretation, definition, boundary (i.e. when one mechanism stops, and when another starts), and implementation typically vary in the existing literature, thus preventing these mechanisms from being applied clearly and systematically to solve recurrent problems. To ease engineering of artificial bio-inspired systems, this paper describes a catalogue of bio-inspired mechanisms in terms of modular and reusable design patterns organised into different layers. This catalogue uniformly frames and classifies a variety of different patterns. Additionally, this paper places the design patterns inside existing self-organising methodologies and hints for selecting and using a design patter

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    Improving Operator Recognition and Prediction of Emergent Swarm Behaviors

    Get PDF
    Robot swarms are typically defined as large teams of coordinating robots that interact with each other on a local scale. The control laws that dictate these interactions are often designed to produce emergent global behaviors useful for robot teams, such as aggregating at a single location or moving between locations as a group. These behaviors are called emergent because they arise from the local rules governing each robot as they interact with neighbors and the environment. No single robot is aware of the global behavior yet they all take part in it, which allows for a robustness that is difficult to achieve with explicitly-defined global plans. Now that hardware and algorithms for swarms have progressed enough to allow for their use outside the laboratory, new research is focused on how operators can control them. Recent work has introduced new paradigms for imparting an operator's intent on the swarm, yet little work has focused on how to better visualize the swarm to improve operator prediction and control of swarm states. The goal of this dissertation is to investigate how to present the limited data from a swarm to an operator so as to maximize their understanding of the current behavior and swarm state in general. This dissertation develops--through user studies--new methods of displaying the state of a swarm that improve a user's ability to recognize, predict, and control emergent behaviors. The general conclusion is that how summary information about the swarm is displayed has a significant impact on the ability of users to interact with the swarm, and that future work should focus on the properties unique to swarms when developing visualizations for human-swarm interaction tasks

    Imitation Learning for Swarm Control using Variational Inference

    Get PDF
    Swarms are groups of robots that can coordinate, cooperate, and communicate to achieve tasks that may be impossible for a single robot. These systems exhibit complex dynamical behavior, similar to those observed in physics, neuroscience, finance, biology, social and communication networks, etc. For instance, in Biology, schools of fish, swarm of bacteria, colony of termites exhibit flocking behavior to achieve simple and complex tasks. Modeling the dynamics of flocking in animals is challenging as we usually do not have full knowledge of the dynamics of the system and how individual agent interact. The environment of swarms is also very noisy and chaotic. We usually only can observe the individual trajectories of the agents. This work presents a technique to learn how to discover and understand the underlying governing dynamics of these systems and how they interact from observation data alone using variational inference in an unsupervised manner. This is done by modeling the observed system dynamics as graphs and reconstructing the dynamics using variational autoencoders through multiple message passing operations in the encoder and decoder. By achieving this, we can apply our understanding of the complex behavior of swarm of animals to robotic systems to imitate flocking behavior of animals and perform decentralized control of robotic swarms. The approach relies on data-driven model discovery to learn local decentralized controllers that mimic the motion constraints and policies of animal flocks. To verify and validate this technique, experiments were done on observations from schools of fish and synthetic data from boids model

    Information Transfer in a Flocking Robot Swarm

    Get PDF

    Robot swarm democracy: the importance of informed individuals against zealots

    Get PDF
    Abstract: In this paper we study a generalized case of best-of-n model, which considers three kind of agents: zealots, individuals who remain stubborn and do not change their opinion; informed agents, individuals that can change their opinion, are able to assess the quality of the different options; and uninformed agents, individuals that can change their opinion but are not able to assess the quality of the different opinions. We study the consensus in different regimes: we vary the quality of the options, the percentage of zealots and the percentage of informed versus uninformed agents. We also consider two decision mechanisms: the voter and majority rule. We study this problem using numerical simulations and mathematical models, and we validate our findings on physical kilobot experiments. We find that (1) if the number of zealots for the lowest quality option is not too high, the decision-making process is driven toward the highest quality option; (2) this effect can be improved increasing the number of informed agents that can counteract the effect of adverse zealots; (3) when the two options have very similar qualities, in order to keep high consensus to the best quality it is necessary to have higher proportions of informed agents
    corecore