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ABSTRACT

IMPROVING OPERATOR RECOGNITION AND PREDICTION OF

EMERGENT SWARM BEHAVIORS

Phillip M. Walker, PhD

University of Pittsburgh, 2017

Robot swarms are typically defined as large teams of coordinating robots that interact with

each other on a local scale. The control laws that dictate these interactions are often designed

to produce emergent global behaviors useful for robot teams, such as aggregating at a single

location or moving between locations as a group. These behaviors are called emergent

because they arise from the local rules governing each robot as they interact with neighbors

and the environment. No single robot is aware of the global behavior yet they all take

part in it, which allows for a robustness that is difficult to achieve with explicitly-defined

global plans. Now that hardware and algorithms for swarms have progressed enough to allow

for their use outside the laboratory, new research is focused on how operators can control

them. Recent work has introduced new paradigms for imparting an operator’s intent on the

swarm, yet little work has focused on how to better visualize the swarm to improve operator

prediction and control of swarm states. The goal of this dissertation is to investigate how to

present the limited data from a swarm to an operator so as to maximize their understanding

of the current behavior and swarm state in general. This dissertation develops—through

user studies—new methods of displaying the state of a swarm that improve a user’s ability

to recognize, predict, and control emergent behaviors. The general conclusion is that how

summary information about the swarm is displayed has a significant impact on the ability

of users to interact with the swarm, and that future work should focus on the properties

unique to swarms when developing visualizations for human-swarm interaction tasks.
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1.0 INTRODUCTION

Robot swarms consist of multiple autonomous or semi-autonomous robots that coordinate

via local control laws. These laws are based on the robot’s current state and surrounding

environment [11]. Key advantages of robotic swarms include robustness to failure of indi-

vidual robots and scalability [108, 7], both of which are due to the simple and distributed

nature of their coordination. Swarms are distinct from multi-robot systems in that the lat-

ter have explicitly represented goals, form and execute both individual and group plans,

have different capabilities, and can assume different roles [31, 97, 70]. Such robots could

act independently without coordinating, e.g., multiple robots searching a different area for

victims in a search and rescue scenario. Conversely, they could also cooperate as a team

in which all members work towards known shared goals, or coalitions in which members

are self-interested. Swarms, on the other hand, involve coordination between robots that

relies on autonomous distributed algorithms and information processing. Individual robots

in the swarm are therefore not typically directly addressable by a central user. Because of

this, global behaviors cannot be explicitly stated and instead must emerge from local in-

teractions. The individual members of a swarm likely could not act independently in any

successful manner with respect to the main goal without significant redesign.

The origins of swarm robotics can be found in early work investigating collectives of

swarms in nature, such as the work by Iain Couzin [23], which in turn draws inspiration

from the established field of self-organization in biological systems (see [15, 73] for examples).

However, in the past decade swarm robotics has become an engineering discipline in its own

right [9, 4, 11, 127], with numerous researchers focused on improving the hardware and

algorithms that support swarms. Swarm robotics promises a wide range of benefits and

applications, from improving coverage during monitoring and reconnaissance missions [19],
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to improving tracking and search and rescue of multiple targets [122]. Even NASA has

investigated the use of robot swarms in space for future missions [131].

Despite the benefits, much of the research claiming to use robot swarms are actually still

multi-robot systems, in that the swarm is controlled through a centralized planner, or is not

scalable to larger number of robots. The main reason for this is likely because it is far from

clear how human operators can influence the behavior of swarms after deployment, while still

maintaining the “swarmish” characteristics of the collective. Consequently, true swarms of

robots are currently limited to laboratory settings only, with rigid, pre-defined behaviors and

numbers often less than 100. Even the largest swarms, such as the recent kilobots developed

at Harvard [106], have limited capabilities and provide few options for human intervention

after deployment. Because of these difficulties, visualization and control of robot swarms by

humans, hereafter referred to as human-swarm interaction (HSI), has been largely ignored

until recently, with researchers instead focusing on improving autonomous swarm algorithms,

communication abilities, and robot hardware in general.

One part of the difficulty in HSI comes from the fact that individual robots are typ-

ically not addressable, and global goal behaviors cannot be directly specified. Therefore,

an operator must instead influence the interactions between robots indirectly, in a manner

which moves the entire swarm along a trajectory to the intended goal. This can be achieved

through a variety of paradigms, such as behavior selection, parameter tuning, environmen-

tal influence—such as the use of virtual pheromones—and using leaders as intermediaries.

Although these paradigms can aid in proper control of the swarm, the other side of the con-

trol loop—visualization—is even less explored. Due to the distributed nature of the swarm

and restrictions in the communication channels between the operator and numerous robots,

complete information about its full global state often cannot be directly accessed. Instead,

operators must make due with summary information and use indirect or incomplete obser-

vation to infer the global state. This inherently makes knowing the proper control input

difficult, and thus improving the visualization techniques used to display a swarm to an

operator is key to advancing the field of HSI overall.

The final element to be considered in HSI is that of trust. There is a significant body of

work investigating human trust in automated systems, including robots specifically, but it re-

2



mains to be seen if swarms are viewed and trusted in the same manner. The element of trust

that will be highlighted and investigated in this thesis is that of transparency (or “process”

in [67] and “integrity” in [76]), which is simply how much information about the automation

is provided to the human during the automation’s operation. Previous work has shown that

a high level of transparency increases trust over lower levels of transparency [10, 140], but

can also decrease reliance on the automation [68]. However, because a high degree of trans-

parency for swarms can be both difficult to achieve (due to the large number of robots and

thus large amount of information to be communicated) and overwhelming for the operator,

designers of visualizations for HSI systems need to take special care to leverage the amount

of bandwidth—both in the communication channel and in the operator’s cognitive abilities—

with the state information available to give operators the best picture of the swarm’s current

state for the current task.

To summarize, the difficulties in HSI are threefold, and capture the main aspects of the

control loop that are unique to interacting with swarms as opposed to single robots or multi-

agent systems. They can be summarized in three general questions, which will be used as

the general inspiration for this thesis:

1. Visualization: How can an interface display incomplete information returned from the

swarm in a manner that gives the operator the best awareness of the current state, and

how does the current behavior affect how the swarm should be displayed?

2. Prediction: How does this visualization affect the operator’s ability to make accurate

predictions about the future state and the effect of their commands?

3. Trust : How does the behavior and visualization of the swarm impact the user’s trust in

the swarm, and does higher trust correlate with higher performance?

These questions briefly summarize a small amount of the significant research still needed

before human-controlled swarms can operate effectively in the real world. As proper visu-

alization and prediction is a necessary prerequisite for proper control, this thesis will focus

primarily on the swarm-to-human visualization channel. These questions will guide the dis-

cussion and work presented in this thesis, and will be more specifically stated in Section 1.2.
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1.1 MOTIVATION

The motivation for this dissertation comes from the intersection of three observations about

swarms, and how human operators can and cannot interact with them.

First is the fact that, in many real-world cases, communication bandwidth and latency,

compounded with the limited hardware available on each robot, are such that perfect in-

formation about every member of the swarm cannot be updated in real time. Even if full

information can be displayed, it might be overwhelming for an operator to keep track of the

entire swarm and understand the global state, especially for very large swarms. Further-

more, due to the decentralized nature of the swarm, presenting global information to a user

at a centralized interface requires special care to balance the robustness that decentralization

provides with the need for a central operator to understand what is going on. This balance

can be addressed in multiple ways—from having leaders selected in a distributed manner

aggregate information about the swarm for a centralized interface to put together, to having

the human operate amongst the swarm itself. In all cases, the information available needs

to be presented to the human in an intelligent way, so that the operator can focus on de-

termining the next proper course of action rather than deciphering the current state of the

swarm.

The second observation is that human exposure to swarms is every-day life is limited,

so researchers have little idea both how operators view swarms and how they can learn to

predict properties about the emergent behavior of a swarm, hence the question of prediction.

This means that research is required to determine what exactly displaying information in an

intelligent manner means, which requires research into how humans view collective agents

and emergent systems. The literature on human perception of biological motion and common

fate can be of particular interest here, as swarms are often seen as moving collectives, and

many artificial swarms take inspiration from biological swarms, such as bird flocks and schools

of fish—collectives that humans are more familiar with. The research in these related fields

will be reviewed in later sections and incorporated into the work presented in this thesis.

The third observation is that control of swarms is not as intuitive as control of a single

robot. For instance, previous work has introduced the concept of neglect benevolence: the

4



idea that a swarm may need time to evolve or move toward consensus between subsequent

inputs [138, 87]. While subsequent research showed that participants can learn to adapt to

this phenomenon over time [86], the results suggest that proper visualization and prediction

of the swarm state is necessary for proper control, as operators cannot immediately know

when input should be given without assistance from the display.

Not coincidentally, these questions are all centered around the problem of visualization.

When faced with incomplete information from a distributed collective of agents, designers of

an HSI system must take special care in displaying this information to the user in a manner

that is both easily digestible, and more informative than the raw data. Furthermore, we must

develop simple tasks and metrics to evaluate different methods of displaying this information

for different behaviors, so that new systems can have a basis to start from and be easily

compared to existing ones. Finally, we must determine the role trust plays in HSI, which in

turn will dictate how visualizations should be designed: the visualization should achieve the

right level of transparency to properly calibrate operator trust in the system.

There is significant overlap between the three general questions presented in the intro-

duction that can be taken advantage of when answering them. For instance, the questions

of visualization and prediction are naturally intertwined. An intelligent visualization of

available state information can improve operator prediction, and similarly better prediction

allows operators to better understand future visualization of the swarm state. Therefore, the

first goal of this thesis is to use the results of existing studies on visualizations for swarms

(e.g. [138, 90]) and control input timing (e.g. [138, 86]) to develop user studies that improve

our knowledge both about how swarm information can be visualized and how prediction

improves as a result.

Similarly, the question of trust is naturally intertwined with the questions of visualiza-

tion and prediction. We know from the large body of work on trust in automation that

proper calibration of trust increases performance [67, 80], and because transparency (i.e. the

visualization of the swarm) plays a role in the level of trust operators have in the system,

it is necessary to consider trust when investigating visualizations for swarms. The field of

trust in HSI is only beginning to be thoroughly researched however, so the work presented

in this thesis on trust will likely raise even more questions than it answers.
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1.2 RESEARCH QUESTIONS

In light of the above discussion, and before introducing the background of the concepts dis-

cussed so far when reviewing prior related work, I will explicitly state the research questions

motivating this thesis. They will guide the formation of hypotheses for the studies presented

herein, and are generally a good reference for the structure of the work proposed. The

questions are as follows:

1. What variables or characteristics of a swarm are the most valuable to improving an

operator’s ability to understand and predict the swarm state?

2. Can a visualization that maximizes operators’ abilities to understand and predict the

swarm also improve their ability to give proper control the swarm?

3. Finally, can a visualization that achieves good results in accordance with the prior two

questions also improve the operator’s trust and confidence in the swarm, and is there a

risk of a good visualization making operators too trusting?

Also note that these questions roughly correspond to each of the user studies presented

in this thesis. The first question is addressed by the Recognition (Section 4.1) and Prediction

(Section 4.2) studies, the second by the Control study (Section 4.3), and the third by the

Trust study (Section 4.4). I will now present the overall structure of this thesis, and then

review the relevant work in related fields needed to place this thesis into context.

1.3 THESIS STRUCTURE

The thesis will follow the questions posed in the previous section, and will begin with a

discussion of related work in Chapter 2, including an introduction to biologically-inspired

swarm behaviors (Section 2.1) and an overview of the limited amount of previous work

in visualizing swarms and other collectives (Section 2.2). Also included in the literature

review are discussions of other subfields relevant to this work, such as different control

paradigms for swarms (Section 2.3), neglect benevolence in swarms (Section 2.4), biological

6



motion and common fate (Section 2.5), and trust in automation (Section 2.6). After the

literature review, Chapter 3 will introduce the emergent behaviors and visualizations used

for the studies herein, as well as an overview of the simulator architecture used to make the

studies possible. Chapter 4 presents the four user studies that make up the contribution

of this thesis. The first study investigates human recognition of different swarm behaviors

against background noise (Section 4.1), the second study investigates prediction of future

swarm states when operating under these different behaviors (Section 4.2), the third study

investigates control of swarms (Section 4.3), and the final study looks at whether improving

the visualization of swarm data also improves operator trust in the swarm (Section 4.4). A

discussion of these studies, along with a summary of this work’s contribution and suggestions

for future research, will be presented in Chapter 5.
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2.0 RELATED WORK

In the following sections, I will review the relevant literature in swarm robotics and HSI

necessary for this thesis, highlighting existing holes and demonstrating how my research

questions will address them. I will also attempt to situate this work within the wider scientific

community, so that it’s results may be applicable outside HSI. This chapter will include

first an overview of biologically-inspired swarms (Section 2.1). While there are numerous

metaphors and models for swarm operation in addition to the bio-inspired model, the bio-

inspired model will be used herein primarily because is one of the more common and well-

researched models, and because it will be used as the primary metaphor for the experiments

proposed. The metaphor used in the designing of swarm algorithms is also important for the

visualization, as giving the operator an intuitive understanding of how members of a swarm

interact with each other can aid in predicting future states and the effect of new commands.

Following the introduction of bio-inspired swarms, I will review existing literature in

swarm state visualization and prediction in Section 2.2. Much of the work in visualization and

prediction is originally intended to be research into control of swarms—with the visualization

added as an afterthought—yet there are crucial lessons that can be learned from them in

terms of how information should (and should not) be presented. This section will also present

work on non-visual methods of communicating swarm state information to operators, such

as haptic feedback. Following this discussion, I will introduce prior work on control of

swarms in Section 2.3. This will allow the reader to understand the many paradigms for

swarm control, including setting control law parameters and leader selection. Understanding

leader selection is key to properly answering the visualization and prediction questions, as

leaders are popular as the in-between points from the swarm to operator. Leaders can be

used to gather aggregate information about the swarm to return to the interface, while also
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propagating user control inputs from the user to the rest of the swarm. Intertwined with the

question of proper control and propagation of user commands is the phenomenon of neglect

benevolence, which is the idea that swarms may need time to evolve before new commands

should be issued. This will be discussed in Section 2.4.

Subsequently, I will discuss prior work on human perception of biological motion and

common fate in Section 2.5, and how it may pertain to human-swarm interaction. While

this research does not concern swarms directly, it is helpful for understanding how humans

view collective motion and how such principles can be applied to HSI interfaces. I will then

review the work in trust in automation—specifically trust in robotic systems—in Section 2.6.

Finally, in Section 2.7, I will situate this work within the context of similar work—primarily

that of network visualization and agent-based modeling.

2.1 OVERVIEW OF BIOLOGICALLY-INSPIRED SWARMS

Swarm robotics was originally studied in the context of biological swarms found in nature,

but has since become its own distinctive engineering discipline [9, 4, 11, 127], since it promises

to be useful in a wide range of potential applications including reconnaissance, environmental

monitoring, tracking, exploration, search and pursuit-evasion, infrastructure support, convoy

protection, and even space exploration [131]. Despite their potential, most robot swarms are

still confined to laboratory settings and simulations; however, the biological metaphor has

been useful in making improvements in the applicability of swarms for spatially distributed

behaviors, as well as bringing swarms closer to the real world.

Biological systems have long since been an inspiration for the design of robotic systems

in terms of hardware [52] as well as behavior [3]. Much of the work on swarm robotics orig-

inated from the study of biological swarms and swarm intelligence [9]. A recent survey [11]

reviewed swarm engineering efforts and identified four areas that require further attention to

support the development of real-world applications, namely (1) modeling and specification of

requirements, (2) design of swarm behaviors, (3) verification and validation of swarm models,

and (4) human-swarm interaction. The most interesting for the perspective of this disser-
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tation is the fourth area, concerned with human operation and maintenance of swarms. In

this area, particular concern is given to enabling effective control when lacking a centralized

instance.

One of the better-known examples of a swarm algorithm derived from a biological inspira-

tion is presented in [22]. Therein, Couzin et al. model the spatial behavior of animal groups

with simple local interaction rules. These rules are determined by three parameters, the radii

of three zones, namely zones of repulsion, orientation, and attraction. In the paper above,

this simple model can generate four qualitatively distinct swarm behaviors: 1) swarm, 2)

torus, 3) dynamic parallel, and 4) highly parallel. Which of the resulting behaviors a swarm

generates depends on the choice of parameters and initial conditions, and raises the obvious

question on how a human operator could interact with such a biological swarm model to

induce transitions between these four types or change the direction of motion for a given

type. This question was investigated in [43] through the injection of leaders and predators

under the control of an operator, a paradigm that will be discussed further in Section 2.3.4.

Couzin’s initial work has been extended in multiple ways. For instance, in [129] re-

searchers show how interactions between agents in a collective can give rise to emergent

group-level search behavior through the use of context-dependent interactions and dynami-

cally selected leaders that are selected automatically to guide the entire swarm to the source.

In [117], the researches alter Couzin’s model to allow for adaptable control laws for each

agent. In other words, the agents’ motions are not only impacted by their current state and

neighbors, but also the surrounding environment and current state of the task. For instance,

if an agent perceives itself as moving in a good direction (e.g. toward the goal), the influence

of neighbors on their heading will be decreased (so as to not steer them away from their

good direction). The authors show that this greatly improves collective motion in complex

environments, and achieves similar performance in non-complex environments (where the

adaptive nature of the laws has less of an effect).

Another paradigm that falls under bio-inspired metaphor is pheromone-based communi-

cation [112, 113]. Pheromones have been used in [98] to coordinate a swarm to for surveil-

lance, reconnaissance, hazard detection, and path finding. On a more general note, in [124]

Sumpter identifies several principles that describe biological systems that exhibit collective
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behavior. Applying these principles to engineered systems has led to a wide range of bio-

inspired systems, some of which are surveyed in [119]. Despite these previous efforts, there

is no existing work investigating how humans can interact with a pheromone-based swarm

system.

A number of recent projects have made significant progress developing swarm hardware

as well. The “Swarmanoid” project [27] developed a swarm of heterogeneous mid-sized

robots, including the popular SWARM-BOT platform s-bot [81, 28, 92]. Other projects and

experiments used available platforms including the Kobot [16], and Kilobot [106, 107]. These

examples, along with the decreasing cost of sensors and robotic hardware, and improvements

in the distributed control algorithms, suggest that real-world applications for swarms are

within reach. To achieve this, a number of challenges remain to be addressed—primarily,

the study of human interaction with such swarms. For the most part, swarms are expected

to operate autonomously. But the presence of a human operator can be beneficial and even

necessary since the operator can (a) recognize and mitigate shortcomings of the autonomy,

(b) have available “out of band” information not accessible to the autonomy and that can be

utilized to increase performance, and (c) convey changes in intent as mission goals change.

A further benefit of the bio-inspired paradigm is that it creates an easy way to assess

and develop collective behaviors commonly seen in nature, so long as the natural example is

well understood. Simple behaviors such as flocking and path finding are common in nature,

and have become equally common for swarms. The three bio-inspired behaviors that will

be the focus of the user studies in this thesis are flocking, rendezvous, and dispersion. How

these are designed and implemented will be discussed in Section 3.1, but the following will

review prior work investigating each of these behaviors specifically.

2.1.1 Rendezvous

Aggregation, hereafter referred to as rendezvous, is one of the most simple and easy to

recognize behaviors, is a process often found in natural swarm systems [15], and has been

frequently adapted to artificial swarms [130]. A similar problem in control theory has been

studied as the rendezvous problem [20]. The basic objective for both problems is to move
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all swarm robots towards a common location.

Bio-inspired aggregation behaviors have been implemented on real swarm robots in [130].

Therein the authors start with a model for a specific swarm robot, the s-bot, equipped with

an omni-directional speaker, three directional microphones, and eight infrared proximity

sensors. Weights for a neural network controller, with direct connections from every sensor

to every actuator, are evolved under a fitness function that measures aggregation via the

average distance of robots from the center of mass of the swarm. Two distinct aggregation

behaviors were discussed: one leads to multiple static aggregates while the second leads to

a single moving dynamic aggregate that resembles a flocking behavior.

Rendezvous does not necessarily entail the entire swarm aggregating at a single location.

In some cases, an operator may want the swarm to aggregate in multiple disconnected

locations, which is referred to as the multi-agent rendezvous problem. One research group

in [63] and [56] demonstrates how the technique of glowworm swarm optimization can be

used to guide a swarm to multiple disconnected rendezvous points. They provide both a

theoretical analysis of their algorithm as well as a demonstration on real robots.

The rendezvous problem has been studied in [20] from the control theory perspective.

Therein the authors define an abstract model of a robot that knows its own location and

can transmit it to neighbors within its local communication network. The topology of the

communication network is given by a proximity graph, and five different such graphs are

discussed in [20]. The authors prove theoretical guarantees for the convergence of the swarm

to the circumcenter under different static and changing communication topologies. The

algorithm itself is fairly simple: each robot moves towards the circumcenter of the point

set given by itself and all neighboring robots it communicates with, with the additional

constraint that no existing communication links are to be broken by their motion. The

analysis is more involved—particularly the work required to apply the LaSalle Invariance

Principle [64] for a changing communication topology. The main assumptions for guarantees

to hold are the ability to sense or receive the locations of neighboring robots and having an

environment without obstacles.

Further work on the rendezvous problem has led to a reduction in the required sensor

capabilities. For example, in [143] the authors present a solution to the rendezvous problem
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that does not require knowledge about the exact location of other robots, but instead uses

only a quantized bearing sensor that reports the presence of another robot in a small range

ahead of the robot.

2.1.2 Flocking

A more complex set of swarm behaviors is the formation of specific patterns of motions,

specifically flocking, or consensus on a direction and speed of movement. One of the first

algorithms to enable a swarm of robots to flock was presented by Reynolds in [104], with the

motivation to simulate flocks of birds for computer graphics. Therein individual members of

the swarm would follow simple local rules to avoid collisions (separation), match velocities

to their neighbors (alignment) and center themselves amongst their neighbors (cohesion).

Together these generate a flocking behavior. One of the earlier demonstrations of how to

control a flock of animals, with robots influencing the flock, were presented in [133]. A simple

controller for the robot was tested in a simulation with a swarm model similar to [104].

In [33], work on flocking is applied and implemented on robots with particular emphasis on

the translation of control inputs to robot motion. More precisely, the force vectors resulting

from the flocking rules for cohesion, separation, and alignment are translated into forward

and angular velocity. The experiments in [33] show improved effective travel distance when

considering magnitudes of the forces.

An overall framework for the analysis of flocking algorithms, including analysis of swarm

fragmentation, is presented in [93], following a line of work from [128] and [54]. One of

the most interesting aspects of [93] is the first introduction of a formal definition of what

constitutes flocking. This definition is established with regard to 1) how much the flock differs

from a lattice (i.e., a formation with all neighbors having a desired distance to each other)

in terms of a deviation energy, 2) to what extent velocities are matched, 3) connectedness

and cohesiveness of the flock.

Through the use of parameter manipulation, Couzin et al. [22] has shown that multiple

types of flocking can be achieved with very small tweaks. The four types demonstrated

in his work are a) swarm, b) torus, c) dynamic parallel, and d) highly parallel. The first,
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swarming, is the most chaotic, and can be envisioned with a swarm of bees hovering over a

nest. A torus is simply a swarm flocking in a circle, and the two parallel types are what are

traditionally thought of as flocking, with different degrees of rigidity between members (e.g.

dynamic parallel is more like a loose flock of birds, whereas highly parallel can be envisioned

with a tight school of fish).

2.1.3 Dispersion

Deployment of swarms, i.e., swarm dispersion governed by local control laws, is a swarm be-

havior typically used for area coverage. Swarms are expected to be ideal for area coverage,

because this task requires covering, with sensors, a large area in order to observe some phe-

nomena of interest or discover and track targets. One of the first to apply a force metaphor

(a physics-inspired perspective similar to bio-inspired metaphors) for the distribution of large

robot teams are Howard et al. in [53]. Therein, robots are repelled by obstacles and other

robots and, as a consequence, distribute throughout an environment with obstacles. Ex-

periments with 100 robots show successful dispersion in a realistic office environment and

convergence to a static equilibrium.

A different approach to area coverage, with the goal of seeing every part of an envi-

ronment, is taken in [37]. Therein the environment is given by a polygonal boundary and

robots cover the environment by creating an incremental partition of the environment as

they progress to cover it. Some results regarding convergence time and guarantees for a

given number of robots are provided. A fleet of fifty-six real robots was used in [79] to test

and compare five area coverage algorithms showing significant differences between the time

to reach various goal locations and to fully disperse in the entire environment. This work

also demonstrated how robots could self-charge, by keeping a pathway back through the

communication network to guide each agent to a charging port.
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2.2 VISUALIZATIONS OF SWARMS AND OTHER COLLECTIVES

The majority of research on HSI, including the research presented in this thesis, focuses

on remote interactions (i.e., when the human operates separately from outside the swarm).

For such interactions, the dominating constraint for improving visualization and prediction

is that of communication, usually between a user at a computer terminal and a swarm

operating at some distance from the human. This is because issues of limited bandwidth and

high latency effect how information can and should be presented, and a human operator will

need to account for these communication difficulties. Furthermore, issues such as operator

workload and situational awareness can also be more difficult for a remote swarm, as the

user is not placed within the context in which the swarm is operating. Further challenges

regarding communicating information to an operator and the effect of resulting uncertainty

from incomplete information are discussed in [48].

Despite difficulties inherent in remote HSI interaction, it is likely to be the default option

for swarms that are entering otherwise inaccessible or dangerous areas. In fact, one of the

key motivations for using swarms in real-world applications is their ability to be deployed in

locations where humans cannot travel. Therefore, one of the primary challenges of HSI is to

reconcile the distributed nature of swarms with a central human element of control and the

ability to collect information about the swarm and environment. Part of this is a technical

challenge, addressed in the study of sensor networks [142, 1] and mobile ad hoc networks [5,

100]. It is noteworthy that many swarm algorithms are also used in managing sensor networks

to overcome bandwidth and latency issues [101] and design routing protocols [109, 57].

Nonetheless, properties of the communication channel impact how the swarm can and

should be visualized. Proper visualization must balance the limitations of the communica-

tion channel between the human and swarm with the needs of the human operator. Here,

particularly, the question is how one can use the bandwidth available to display as much

information as possible to the operator, in a manner that is easily understandable. Some

previous work in HSI has addressed this from an operator control perspective [138, 90].
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2.2.1 Communication Restrictions

A significant difficulty faced by designers of a human control interface for swarms is not

only to visualize the swarm state properly, but also to facilitate the understanding of swarm

dynamics as well as the impact of control inputs. As mentioned previously, the swarm

model being employed (e.g. bio-inspired), can offer a helpful metaphor for this problem, and

should be incorporated into the visualization. For example, a visualization of forces might

aid comprehension of a biologically- or physics-inspired swarm, especially for an operator

familiar with attractive and repulsive forces. Very little research, however, has investigated

these ideas. We already know that visualization of a swarm is particularly difficult for the

operator in situations with incomplete information. Such situations arise in the real world

from constraints on bandwidth and communication latency that arise in operations taking

place in remote locations, as well as from sensing errors and uncertainty.

To illustrate this concept using a simplified example, imagine a remote environment

where high bandwidth communication back to the human operator is not possible and

where communication latency between the swarm and operator would be significant, but

where communication between swarm members has relatively low latency due to their close

proximity. Now imagine that an operator must control a 200-member swarm to perform

some task in this environment. If we assume a two-dimensional plane, at each update step

every robot would need to report, at minimum, four variables back to the operator: x-

coordinate, y-coordinate, heading, and velocity. If each of these variables is represented as

a 16-bit variable, a single update step would require 12,800 bits to be transmitted. While

this is well within current capabilities for some remote locations, such as the Moon, it still

represents a significant bandwidth requirement if updates need to be performed multiple

times per second, and would be well beyond capabilities for many currently unexplored en-

vironments, such as deep ocean exploration. Simply establishing an independent connection

between each swarm member and the human operator working at a base station would be

difficult, as messages could be received out of order and there could exist significant crowding

of frequencies as the number of swarm members that can be fielded grows. Moving on to

latency, our current understanding of physics places a floor on how low latency can go for
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a given location, bounded by the speed of light. If, for example, we wanted to operate a

swarm on Mars, the lowest latency we could achieve is between 3 and 22 minutes depending

on the relative position of the Earth and Mars in their orbits. This makes immediate feed-

back and human-swarm control as we normally imagine it impossible. Therefore, we must

design interfaces and visualizations that can help operators cope with these communication

restrictions.

As of the writing of this thesis, there are very few works that investigate overcoming

bandwidth and latency issues in swarms; however, those that do exist can provide a baseline

for future research. The first study investigating this problem viewed how a predictive display

can aid operators in controlling a flocking swarm searching for hidden targets in an open

environment [138]. In this study, participants were presented with one of two conditions:

a näıve display, where each robot’s position and heading were shown to the operator, and

a predictive display that, in addition to the näıve display, showed a prediction of where

each robot would be if they continued on their path for 2x seconds, where x was the latency

between the swarm and operator (10 seconds in this study). This means that the information

shown on the display without prediction was 20 seconds old (10 seconds of latency in each

direction). While far from perfectly accurate, this simple predictive visualization allowed

participants to find significantly more targets than those without the prediction. Both cases,

however, fared worse than a control condition in which no information latency was present.

The results of this study were the first to show that properties of the HSI system—in this

case, properties of the communication channel between the swarm and operator—could be

incorporated into the display to aid operator performance. This study was also the first

to highlight the phenomenon of neglect benevolence—a concept that will be discussed in

Section 2.4. Missing from this study, however, was a critical analysis of different manners in

which to display this prediction. For instance, taking into account robot interactions when

making the 20 second prediction may give improved performance. Similarly, displaying

summary information about the predicted state of the swarm (e.g., an estimated centroid

and ellipse containing the predicted positions of the swarm members) may be more intuitive

for an operator. This thesis will attempt to address these shortcomings by testing different

visualizations in an interface for similar tasks.
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A similar study was performed in [90]. Here, the researchers looked instead at bandwidth

restrictions in the swarm to human communication channel. Presented to participants were

one of three different bandwidth conditions (and consequently, three different displays) in

random order. The control condition, also called the full information condition, gave the op-

erators real time updates of each member of the swarm as it moved through the environment.

A second condition, called the medium bandwidth condition, assumed that, while swarm to

human communication bandwidth was restricted, bandwidth between swarm members was

not. Therefore, the swarm could collectively aggregate information and return summary

information to the user’s display. This took the form of a centroid, showing the average

position of the swarm in the environment, as well as a bounding ellipse, which showed the

average variance in the x- and y-axis of the swarm. Finally, the low bandwidth condition

assumed that both the human-to-swarm, and the inter-swarm, communication channels were

restricted. Here, the user would see only one robot’s position updated each second. The

final results showed that the summary display (medium bandwidth condition) was just as

helpful as a display with full information, in terms of total targets found. The low band-

width, single-update display performed significantly worse. The takeaway here is that full

information may not always be required for the best performance. Indeed, one can think of

situations in which it may actually be harmful to performance. For instance, when dealing

with larger numbers of robots (only 40 were used in this study), the operator may quickly be-

come overwhelmed with full information, and unable to grasp the global behavior occurring.

This thesis will further investigate these findings.

2.2.2 Other Visualization Research

Recent work [12] showed that small samples of angular velocities and concentration of neigh-

bors can be sufficient to automatically classify the behavior of a swarm following a common

flocking algorithm [58] as either flocking (moving in a common direction) or torus (mov-

ing in a circle). Reducing the amount of noise and aggregating and fusing information to

simplify the problem of determining a swarm’s state are promising research areas in swarm

state visualization. Other researchers have used multimodal feedback to improve operator
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control of swarms. In [46], the authors used a potential field approach for controlling the

swarm for a convoy protection scenario, and designed an interface that provides feedback

regarding the swarm speed, strength, capability, and dispersion. The feedback was presented

as visual, auditory, tactile, or a combination thereof. The results showed that both operator

performance increased and workload decreased with participants who used the multimodal

displays instead of a single display (e.g. visual only).

Besides the aspect of designing appropriate algorithms that provide aids to humans for

swarm state estimation, there is the very important issue of whether humans may be able to

learn to understand swarm dynamics, given appropriate feedback. This question has hardly

been investigated, and is essential for operators that wish to change or properly assess swarm

behavior. In [126], the authors investigate whether human operators can learn to predict

the effects of different input behaviors to a simulated swarm. The authors use a two-choice

control task, whereby operators choose either a dispersion or a rendezvous algorithm for a

swarm randomly distributed in an environment with obstacles. The goal was to cover as

much of the environment as possible in each trial. Results from the experiments showed that

human performance increased over the 50 trials from an average of 60% to 80% correct, thus

indicating that humans could learn to estimate the results of deploying a particular behavior

on task performance. The results of this study are interesting from another perspective

as well, because they were used to create a computational cognitive model of the human

operator that mimicked the human performance [125]. This is so far the only study using a

cognitive architecture to model human operators in an HSI task.

Finally, in [85], the authors investigate whether human operators can acquire enough

understanding of swarm dynamics to predict the effects of the timing of their control input.

In this study, operators were tasked with observing a swarm moving from a random initial

state to some first formation, and determining the optimal time to give an input signaling

the swarm to move to a second, goal formation. One condition showed a naive display, where

only the positions of the robots were displayed as they moved. A second condition gave the

operators information about the robots’ velocities and headings to aid in prediction. In both

cases, operators had to give the input at the point that would minimize the convergence

time to the second formation. However, due to the phenomenon of neglect benevolence (see
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Section 2.4), the optimal input time was not necessarily as early as possible. The argument

in [85] is that an aided display is important in such cases because it is difficult to perceive the

optimal input time by simply looking at the emergent behavior of the swarm—a hypothesis

shared by this thesis. The aided display, informed by the control algorithm, seemed to help

operators overcome this issue.

These studies show promise, but existing approaches to visualizing a swarm’s state are

largely situational, and set up based on what the designers think will improve the quality of

human control. Instead, research should focus on evaluating different visualizations based

on the current swarm behavior and properties of the communication channel, and taking a

more human-centered approach by using existing literature in perception of biological motion

and common fate (see Section 2.5). Evaluations can use specific performance metrics—from

quality of operator predictions to time to convergence toward an operator’s input. This

thesis will attempt to address this shortcoming by comparing different visualizations to

determine which ones improve human control, and also what different swarm behaviors and

tasks require in terms of visualization.

2.3 SWARM CONTROL METHODOLOGIES

We will now focus on the other side of the control loop: how to properly convey input from

the operator to the swarm. Due to the fact the human control of swarms is desired to be

equally effective regardless of the swarm’s size, it stands to reason that in many cases a

swarm can be viewed as a single entity, much as a system with one robot and one human

would be, except that the properties and behavior of this system would be different than

that of a single robot. This may not always hold, as some swarms contain heterogeneous

members, and some will require splitting into disconnected parts or giving different members

of a swarm different commands. Therefore, there is a need to better formalize the types of

control an operator can exert on the swarm. In this section, I will discuss the following types

of swarm control, which make up the vast majority of current research in HSI:

1. Switching between algorithms that implement desired swarm behaviors,
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2. Changing parameters of a single swarm control algorithm,

3. Indirect control of the swarm via environmental influences, and

4. Control through selected swarm members, typically called leaders.

Within these swarm-specific types of control, a distinction will be made between con-

tinuous and discrete inputs. For example, leader-based influence can be achieved with a

continuous input to a leader (teleoperation) or with a discrete input (leaders move toward

point [x,y]). The above types are also not mutually exclusive. For example, leader-based

control can be used in conjunction with any of the other three control methods. Further-

more, each of these control methods can interact with other properties of the human-swarm

system, such as the communication scheme, and impose varying constraints on the swarm.

2.3.1 Algorithm and Behavior Selection

Control via algorithm and behavior selection assumes that the human operator is giving

control inputs at discrete time points by selecting a specific swarm algorithm, such as those

discussed in Section 2.1. It also assumes that operators have at their disposal a library of

algorithms that implement different swarm behaviors. By choosing different algorithms, hu-

man control is akin to controlling hybrid systems with the human acting as a switch. During

the time that a behavior is active, an algorithm, usually a local control law, implements

the behavior autonomously. A comparison between behavior selection and environmental

influence in [61] indicated superior performance for behavior selection for novice operators,

although the same may not be true for operators more familiar with the swarm and how it

behaves. Behavior selection was also used in [137] and [69] for swarm control. Successful con-

trol with behavior selection also presupposes that the operator can develop an understanding

and has access to an appropriate visualization of the swarm dynamics [85]. In a number of

studies, operators used this control type to select the behavior of a selected group of leaders.

This mixes the control via leaders, discussed in Section 2.3.4, with behavior selection.

Overall, control via algorithm or behavior selection appears to be an effective method

of swarm control when the robots have a high degree of autonomy and can operate largely

without error or human oversight between human inputs. Once instructed to execute a
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certain behavior, an operator largely relies on the autonomy of the swarm as well as the au-

tonomy of individual robots to deal with obstacle avoidance, robot-to-robot communication,

and local coordination. The transmission of commands from the operator for this type of

control also does not usually pose significant constraints on the communication network, as

they are infrequent. The greater challenges here relate to the selection of the right behavior,

input timing, and state estimation—the operator needs to understand what different swarm

behaviors look like in order to employ proper selection and switching.

2.3.2 Control via Parameter Setting

Most systems depend on a set of parameters for their operations, and so can many swarm

algorithms. The values for these parameters offer a clear avenue for control and influence for

an operator, in both discrete and continuous input settings. The key difference for swarms,

as opposed to single- or multi-robot systems, is that parameters do not directly influence

the behavior, but rather have indirect effects through behaviors emerging from interactions

within the swarm and its environment.

In [22] the wide range of behaviors that can be generated with a simple flocking algorithm

given different parameters is presented in great detail. These insights have not yet lead

to a human-controlled transition between emergent behaviors by changing the parameters

of the system, however. Another study that considered the setting of parameters is found

in [59], yet it focused on indirect parameter setting aided by an autonomous algorithm rather

than allowing an operator to directly modify parameters. Therein, Kira and Potter present

preliminary work for a top-down and bottom-up approach for a physics-based swarm control

system. For the top-down approach, an operator can set desired global characteristics, such

as swarm radius and maximum inter-agent distance (i.e., a parameter setting interaction).

For the bottom-up approach, virtual agents (point particles) are placed in the swarm and

interact with it via simulated gravitational forces. Evolutionary computation is then used to

learn an appropriate placement and parametrization of these virtual agents to bring about

a particular behavior (e.g., a split into two groups). An operator does not directly interact

with the swarm parameters or inject virtual particles in these cases, but instead relies on the
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learning mechanism as an intermediary. Here, placement of the virtual particles resembles

an environmental interaction (see Section 2.3.3). The algorithms were tested on a “defend a

resource” scenario first in simulation with one resource, six agents, and three virtual particles,

and also on six Pioneer robotic platforms in the laboratory. No experiments with human

subjects have been reported regarding the effectiveness of this approach.

Another example of parameter setting to control a swarm is found in [51]. Therein,

an operator controls a swarm of UAVs, in simulation, by setting the parameters for the

“personality” of UAVs, defined by four characteristics: conformity, sociability, dedication,

and disposition. These relate to thresholds in a target assignment and bidding process. In

addition, the operator can designate regions in the environment as either hot or cold. Hot

regions are suggestions to nearby UAVs that this region will contain targets while cold regions

suggest the opposite. Whether a UAV incorporates the operator’s suggestion depends on its

conformity. There were no user studies carried out in [51], nor any results presented. Some

results for a similar system are found [50], but are also lacking user studies.

Despite the examples shown above, parameter setting is most often done during the

design state of the swarm, and particular parameters that enable an operator to generate

multiple emergent behaviors are often desired. An example of this is found in [13]. Therein,

the authors investigate the parameter space for a flocking algorithm to determine a set of

parameters that allows flocking and torus formations to emerge. An operator then influences

a subset of the swarm via teleoperation to switch between flocks and torus formations. The

results indicate that it is easier for an operator to switch from a torus to a flock when the

teleoperated robots influence the rest of the swarm via their orientation. These results were

obtained using simulation runs in a “Oz of Wizard” style study [121], i.e., with simulated

human input.

Many contributions with user studies use some combination of parameter setting with

another control method, such as leader selection or behavior selection. For example, in [137],

the authors allow operators to select between two different behaviors—disperse and “go-to”,

the latter of which was similar to rendezvous, except with the rendezvous point parameter

specified by the user. Similarly, in [136], the authors task human operators with moving a

swarm guided by a leader to various goal positions around an environment by specifying the
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goal direction of the leader. This work was extended in [135] by using multiple leaders that

varied over the duration of the experiment.

2.3.3 Environmental Influence

One of the distinctly “swarmish” interaction types is to influence a swarm through environ-

mental factors. Environmental influence involves altering part of the environment, usually

virtually, but sometimes physically, to influence the behavior of a swarm within that part.

Environmental influence has been implemented as a variety of constructs, including virtual

pheromones, virtual beacons, and amorphous computing. The key characteristics of this

interaction type is that it is location-dependent and persistent through time (or slowly van-

ishing in the case of pheromones). Behavior selection in contrast sends a single instruction

that can be independent of location and affects robots when it is received and subsequently

propagated.

Environmental influence on the swarm is mediated via direct or virtual sensing of en-

vironmental changes. Robots in the swarm continue to operate under the same rules they

were deployed with and interact with the environment in a consistent manner throughout

their operation. It may be argued this is a more suitable way to control the swarm, as it

does not directly interfere with the autonomous emergence of different swarm behaviors, i.e.,

if proofs can be given to show guaranteed emergence of a behavior under some distributed

control algorithm, environmental control should not necessarily affect that guarantee. This,

however, depends on the type of environmental influence available, particularly when using

virtual pheromones and beacons, and whether the emergent properties are guaranteed in the

particular environment.

An example of environmental influence is found in [24]. Therein, the authors use the

analogy of a digital display to represent a swarm of robots, whereby each robot represents

a “pixel” in the environment, and gives information only from its local environment and

neighboring robots to a human operator. The example they give is that of a search and

rescue scenario inside a building, where a deployed swarm can spread out and, once a victim

is identified, the robot viewing them can propagate its information back through the swarm
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via virtual pheromones to the human operator. In their case, the rescuers can then view

the combined information from all nearby robots on a head-mounted display as they travel

through the environment looking for the victims. Furthermore, the human operator can

influence the swarm by injecting pheromone information to nearby robots via a handheld

display. Note that this is also a rare example of proximal interaction with a swarm, as

opposed to the usual remote interaction. Another example of virtual pheromones is given

in [139], wherein operators demonstrate the ability to use virtual pheromones to control up

to 50,000 robots in simulation. Another example of environmental influence is given in [60]

and [61], where the authors use simulated beacons that can be placed by an operator and

signal to nearby robots to execute a certain behavior. A set of seven different behaviors are

implemented. The beacons can be placed anywhere in the environment to allow the operator

to modify the overall swarm behavior via the perceived environment as he or she sees fit.

Experimental results indicate, however, that behavior selection for the same set of behaviors

leads to superior performance, as compared to placing beacons, for untrained operators on

a foraging task.

2.3.4 Leader Selection and Teleoperation

One method to deal with the complexity of controlling a swarm is to allow an operator to

select and control a subset of the swarm, thereby reducing the number of robots that have

to be considered simultaneously. Individuals or groups of robots selected by an operator are

frequently denoted as leaders, since they are expected to influence and lead the remaining

swarm as a proxy for the operator. The selection of a small set of individual robots as leaders

opens up the possibility for more engaging forms of control that are also used for single and

multi-robot systems, such as teleoperation. The key difference between swarms controlled

via leaders and other systems is that leaders have an influence that propagates through the

swarm, and an operator should attempt to control the entire swarm via this propagated

influence. In multi-robot systems, the goal is rather to avoid such interaction effects to

reduce the cognitive burden. In swarm systems one needs to exploit these interactions to the

operator’s benefit. The main questions for leader-based control are (a) how to best select the
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leader(s), (b) whether a selected leader remains a leader throughout a scenario or whether

leadership is transient, (c) how to control for propagation effects on the remaining swarm,

and (d) how leaders should interact with nearby swarm members.

2.3.4.1 Continuous Influence via Leaders In cases where more precise control over

a swarm’s operation is needed, or when a desired emergent behavior cannot be generated

autonomously and without significant human influence, continuous inputs may be given by

a human operator. These continuous inputs will have a persistent influence on selected

leaders and indirectly on the swarm, and such situations require significantly more training

and attention on the part of the operator. In its basic form, persistent influence is akin

to teleoperation. It generally involves some notion of the state of the system fed back to

the operator who can then modify the inputs accordingly. Such control usually requires

a tight feedback loop with low latency and a representation of the system state that is

interpretable for the operator. But proximal interactions are also conducive to continuous

control since the human can be sensed by the robots continuously and can direct them much

like a leader robot, and thus any movement of the operator is potentially an input to the

swarm. Section 2.2 briefly discussed the difficulties of estimating and visualizing the state

of a swarm. For controlling motion of single and multi-robot systems, visual and haptic

feedback has been used predominantly, and these do not easily translate to swarms without

modification. The selection of swarm leaders, however, can enable such control. In this case,

the control of a single leader or a group of leaders is similar to single robot or multi-robot

teleoperation. The key difference is the influence of the motion of swarm leader on the

remaining swarm that has to be taken into account.

In [6] a leader robot in the swarm is teleoperated in order to aid in the localization of a

radiation source. The swarm is influenced indirectly through the motion of the teleoperated

robot. The influence is determined by the mode of the robot and can “push” other robots or

direct them into one of four directions (up, down, left, right). Once deselected, the robot can

be instructed to maintain its mode and thereby its influence on neighboring robots. Results

of a small user study indicated that human-operated swarms were significantly better than a

fully autonomous swarm at finding the radiation sources within the environment. Goodrich
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et al. [40, 41, 42, 43] have also worked extensively on leader-based control of swarms that

follow Couzin’s control laws [22]. Therein, the authors investigate using teleoperated leaders,

which will either attract or repel neighboring robots, to allow a human operator to control the

swarm. The authors also consider swarm members, so called stakeholders, that are influenced

by the operator as well as other swarm members, in contrast to the teleoperated leaders (also

called predators in the case of repelling leaders). An emphasis is placed on determining under

what conditions operator influence can lead to different emergent behaviors and formations.

In [99], the authors implement a leader-based model both in simulation and on real

robots, using both virtual agents and a human operator as leaders in a swarm, and found

that this method scales reasonably well to larger swarm sizes in an information foraging

task without obstacles. In [136] the authors propose two methods for propagating operator

intent from a single leader to the rest of the swarm. The first is explicit, where the leader

can be distinguished from other neighboring robots, and thus its neighbors can explicitly

follow the leader’s direction; and the second is tacit, where the leaders are indistinguishable,

and implicitly bias the average speeds and headings of neighboring robots. Here, the au-

thors found that the explicit method gave human operators better control over the swarm,

but hypothesized that the tacit method could be more robust to sensing error if a larger

percentage of the swarm were leader robots to allow for faster propagation of used intent.

In [135, 134], the authors further this work by presenting an algorithm for selecting multiple

leaders dynamically in a swarm as the topology of the communication graph changes. It was

found that, while the explicit method of propagation was again superior overall, the tacit

method did indeed perform better under significant sensing error.

2.3.4.2 Discrete Influence via Leaders Numerous works have implemented discrete

control systems in which the operator sends messages to selected robots intermittently. This

method is easy to implement and requires little training for the human operator. It is also well

suited for both homogeneous and heterogeneous swarms, as different commands can be easily

and distinctly given to each type of robot. For example, in [69], operators effectively deployed

a heterogeneous swarm in an ocean setting to test the viability of swarms in monitoring data

in waterways. The operators had sparse, intermittent communication with the robots—
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being able to send and receive data only when the robots surfaced, and sending commands

to correct errors in the robots’ trajectories due to sensing error and ocean currents.

In [21] the authors present a method for a user operating amongst the swarm to select

and assign tasks to a single leader robot out of many in an indoor environment (with a

distance between the human and robot between 1 to 4 meters). Each robot first recognizes

how directly the human is looking at it through facial recognition. It then uses a ring-

based leader election algorithm to determine the single robot with the highest face detection

score. The user then commands this robot with gestures. Pilot experiments with human

participants produced encouraging results, yet it is not clear how the approach scales and

how appropriate it is for larger distances between user and robots. Also suitable for discrete

control inputs is the work presented in [39, 88, 103], which enables proximal interactions

with operators by transmitting commands to the swarm with gestures, face engagement,

and speech.

2.3.4.3 Teleoperation The selection of single leaders or small groups of leaders has

been the default choice for much of the work on HSI that involves persistent and continuous

influence. One of the few exception is found in [91]. Therein operators used a haptic joystick

to give continuous inputs to the entire swarm during a target searching-task. The human

teleoperated the swarm via broadcast commands by manipulating the joystick. The swarm

itself handled obstacle avoidance and maintenance of proper robot-to-robot distances, but

global goal direction and speed of the robots was controlled by the human. The haptic

feedback given to the operator is computed as the average of all forces exerted on all swarm

robots resulting from repulsion from obstacles, similar to the approach in [53]. The authors

found that giving continuous inputs with haptic feedback allowed for superior control and

more targets found.

In general, teleoperation of robots has been studied extensively, but the primary emphasis

has been on single robots. I will now review some of the work done for bilateral teleoperation

of multi-robot systems, for which there is usually a master robot that a human uses to control

a slave robotic system. Information is fed back and forth (as forces) between the human

and the slave system through the master robot or haptic device. Haptic feedback can be
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used to augment existing methods like continuous visual feedback. Recent efforts in this

area are found in [118, 105, 35]. These can be broadly put in two categories depending

on the communication (and control) architecture between the master and slave systems:

(a) Centralized approaches - where each robot communicates individually with the master

system [118, 105, 17] and (b) Decentralized approaches - where the robots coordinate among

themselves and only a single robot communicates with the master robot [35, 114, 66, 36].

Control and communication should ensure safety and stability, i.e., avoid collision and track

a desired reference trajectory (e.g., maintaining a certain formation).

A decentralized strategy was proposed by Franchi et al. [35] based on a leader-follower

approach where the slaves are assumed to have second order point mass dynamics. The key

contribution is to design a potential function (and hence a control law) that ensures that

the overall system passive. The controller has been tested with a human controlling a team

of up to six simulated UAVs. Although the authors allow the agents to make or break links,

there is no guarantee that the connectivity of the robotic network is maintained. In [38]

and [114], the authors have extended the work from [35, 66] to ensure that the designed

haptic control laws ensure stability even in the presence of delays. Similar techniques have

also been used for haptic control of UAV formation where the UAVs only use the bearing

information of their neighboring agents [36]. The above control schemes have been limited

to either formation control or target tracking. Haptic control schemes for other multi-robot

tasks (e.g., area search and coverage, foraging, cooperative mapping, etc.) are not available.

To apply this work on teleoperation to a swarm, in particular a selected subgroup of leaders

in the swarm, the repercussions and effects of the motion of this subgroup on the overall

swarm behavior and dynamics would need to be integrated into the control scheme so that an

operator can control the subgroup while being aware of the implications and compensating

for the overall swarm behavior.
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2.4 NEGLECT BENEVOLENCE

Not only is the method of giving different commands of concern to human operators and

those designing the HSI system, but also the timing of those commands. Since some swarm

algorithms require time to converge and stabilize after an operator command is issued, it

is possible for the same types of commands to have different—sometimes adverse—effects

depending on the state of the swarm. To capture the idea that humans may need to observe

the evolution of the swarm state and wait some time before acting, a novel concept called

neglect benevolence was investigated. This concept is in some sense the converse to neglect

tolerance [94, 120] in human-robot interaction (HRI) of independent and non-coordinating

robots, where it is assumed that the performance of an individual robot degrades with time,

and hence the attention of the operator needs to be scheduled so that the time between

servicing robots (the neglect time) is minimized [75].

To illustrate the phenomenon of neglect benevolence, consider a simple flocking algo-

rithm. One of the issues that may occur for flocking is the fragmentation of the swarm, and

frequent instructions for changes in direction of the flock may lead to such fragmentation

unless the swarm regains its cohesion before the next instruction. The risk of fragmenta-

tion is increased by delays in coordination, errors in motion, and sensing as well as external

perturbations. In [87], it was shown that improper timing of control input could lead to

swarm fragmentation. Also, in [138], the authors show evidence of neglect benevolence in

swarms during a simple target-searching task. In that work, operators who issued commands

frequently showed lower levels of performance than those who allowed the swarm to adjust

between new commands. This was the first study to give evidence to the concept of neglect

benevolence by showing that commands given too frequently to a swarm exhibiting emergent

behavior could actually degrade performance.

Neglect benevolence is formally defined in [87], where the authors proved the existence of

neglect benevolence for linear time invariant systems, developed an algorithm to determine

the optimal input time for such a system. In [85] the authors further investigate human

performance in the face of neglect benevolence and showed that human study participants

learned to approximate the optimal time over the course of the experiment in a formation
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control task. Neglect benevolence and optimal timing studies are just beginning to emerge

and they are an interesting area for future research. Additionally, algorithms to determine

optimal human timing could be incorporated to provide operator decision support.

Proper visualization of a swarm is key to understanding how to time proper inputs for an

operator. Neglect benevolence, being a somewhat opaque phenomenon, requires smart visu-

alization in order for näıve users to understand, as it is difficult to time commands properly

if the current state is not understood fully. The work in this thesis will aid in future research

on neglect benevolence by investigating how researchers can construct correct visualizations

which allow for the best understanding and predictive abilities of swarm operators.

2.5 BIOLOGICAL MOTION

In order to address human recognition of biologically-inspired swarms, I will also take inspi-

ration from previous work in perception of biological motion. Human perception of biological

motion has been investigated extensively since the 1970s. While humans are generally good

at picking out motion, we seem especially adapted to picking out biological motion. In [55]

the authors present the seminal work on perception of human such motion, showing that

participants exhibited perfect accuracy when discerning a walking human given only 10-12

points of light (i.e. joints, etc.). The authors argue that this is an inherent ability in humans,

and not one that is learned from the environment. Furthermore, they argue that humans can

not only perceive humans walking given such limited information, but also subtle differences

in gait, such as walking vs. running, limping, etc.

The argument that such ability is an intrinsic property of the human visual system is

further supported by later research. In [34], the authors show that infants as young as 4

months old give preference to this sort of biological motion over other types of motion. Other

research has shown the ability of participants to discern differences between male and female

gaits [74], and between different emotions [26]. Since the early days of this research, the idea

that humans are especially good at identifying human-like motion, and to a lesser degree

animal motion [102], is well-established, and areas of the brain where this sort of recognition
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occurs have been identified [45, 95].

This work does not necessarily mean that humans will be good at recognizing all kinds

of biological motion, however. Of particular importance to this thesis is recognition of non-

human biological motion. To this end, some researchers have investigated human perception

of common fate, or how well humans can discern groups of agents moving in a linear manner

against background noise [132, 123]. However, this work is limited to linear motion and its

limits (i.e., how far from parallel can dots stray before they are not identified as a common

group). The research has yet to determine how well humans can combine this with the work

mentioned previously. In other words, how humans perceive collective biological motion—the

type of motion that would be present in swarming robots. Such research is an essential part

of HSI, as it determines how well human operators are able to determine what behavior the

swarm is performing, and thus how much information is sufficient for the swarm to return

to the human to allow for proper recognition. This thesis will begin to address these points.

2.6 HUMAN TRUST IN AUTOMATION AND SWARMS

In human interaction with automation, it has been observed that the human may fail to

use the system when it would be advantageous to do so. This has been called disuse,

underutilization, or under-reliance of the automation [96]. People also have been observed

to fail to monitor automation properly (e.g. turning off alarms) when automation is in use,

or they accept the automation’s recommendations and actions when inappropriate [72, 96].

This has been called misuse, complacency, or over-reliance. Disuse can decrease automation

benefits and lead to accidents if, for instance, safety systems and alarms are not consulted

when needed. Another maladaptive attitude is automation bias [83, 30, 65, 77, 111], a user

tendency to ascribe greater power and authority to automated decision aids than to other

sources of advice (e.g. humans). When the decision aids recommendations are incorrect,

automation bias may have dire consequences [82, 84, 2, 78] (e.g. errors of omission, where

the user does not respond to a critical situation, or errors of commission, where the user

does not analyze all available information but follows the advice of the automation).
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Researching and improving visualizations of swarms without also taking into account user

trust on the swarm system would be misguided. In the literature on trust in automation,

there is the concept of transparency, which looks at how the information provided to the

operator by the autonomous system affects their trust in said system. According to the

commonly-cited models in [67] and [76], the extent to which a human can understand the

way in which an autonomous system works and predict its behavior will influence trust

in the system. There is far less research on effects of transparency, with most involving

level of automation manipulations. An early study [68] in which all conditions received full

information found best performance for an intermediate level of automation that facilitated

checks of accuracy (was transparent). Participants, however, made substantially greater use

of a higher level of automation that provided an opaque recommendation. In that study,

ratings of trust were affected by reliability but not transparency.

More recent studies have equated transparency with additional information providing

insight into robot behavior. Researchers in [10] compared conditions in which participants

observed a simulated robot represented on a map by a status icon (level of transparency 1),

overlaid with environmental information such as terrain (level 2), or with additional uncer-

tainty and projection information (level 3). What might appear as erratic behavior in level

1, for example, might be “explained” by the terrain being navigated in level 2. Participants

ratings of trust were higher for levels 2 and 3. A second study manipulated transparency

by comparing minimal (such as static image), contextual (such as video clip), and constant

(such as video) information for a simulated robot team mate with which participants had in-

termittent interactions but found no significant differences in trust. In [140], researchers took

a different approach to transparency by having a simulated robot provide “explanations” of

its actions. The robot guided by a POMDP model could make different aspects of its deci-

sion making such as beliefs (probability of dangerous chemicals in building) or capabilities

(ATR has 70% reliability) available to its human partner. Robot reliability affected both

performance and trust, and explanations did not improve performance but did increase trust

among those in the high reliability condition. As these studies suggest, reliability appears

to have a large effect on trust, reliance/compliance, and performance, while transparency

about function primarily influences trust only.
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Because the concept of trust in autonomy will increase in importance as robots and

swarms become more prevalent and more complex, the final study presented in this thesis

will also look at how improving or changing the visualization of a swarm (transparency) can

influence operator trust in a semi-autonomous swarm.

2.7 PLACE WITHIN LARGER CONTEXT

It is my hope that this research is applicable not only to researchers in HSI, but also those

working in related fields. I believe there is much to be gained from situating this work within

the context of similar fields. Specifically, there is significant connection between this work

and research investigating how to visualize wireless sensor networks [110], as well as network

graphs for social networks [49, 29] and research communities [25]. The primary difference

between this work and those mentioned, however, is that HSI involves visualizing a moving

network of robots, rather than a static display of a social network, for instance. Similarly,

HSI typically requires time-sensitive human input, which requires constant human attention

and vigilance, whereas static networks typically do not.

Despite these differences, there are multiple insights from these works that can inform the

work of this thesis. For instance, in [29], the authors demonstrate that human recognition of

overlapping groups, or clusters, within networks can be improved with smarter visualization

techniques, such as highlighting cliques with different colors and convex hulls, and that these

visualizations should be made interactive to allow for changes by users on the fly. Similarly

to the work proposed in this thesis, [110] show that wireless sensor networks with severely

limited communication abilities can be visualized intelligently using protocols built in to the

ZigBee framework and a dynamic smartphone application.

The growing research on agent-based modeling (ABM) also has a large intersection with

this work in HSI. Agent-based modeling uses independent virtual “agents” to simulate a

dynamical system. The drawbacks of this approach over more traditional mathematical

models are similar to the drawbacks in robotic swarms, in that global behavior cannot be

specified, and proofs guaranteeing convergence or certain outcomes are difficult to provide.
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However, the benefits of ABM are that they are extremely useful for simulating systems with

emerging properties and many independent interacting agents, such as human systems [8],

economics [32], and biology and ecology [115, 44]. This fact gives the field of ABM significant

overlap with robotic swarms.

Of particular interest for this thesis is the work in [62], which focuses on improving the

design of visualizations in ABM. Therein, the authors point out that much research in ABM

neglects the visualization side of their model, making presenting their results more difficult

than it needs to be. Particularly, they point out that commonly-known work in perception

and visualization, such as Gestalt principles and graphics, should be used in conjunction

with ABMs to improve the reach of their work. This is true for visualization of swarms in

HSI systems as well, and thus is an important influence on the work in this thesis.
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3.0 SYSTEM DESIGN

The following chapter will introduce the common framework built to conduct the user studies

presented in this thesis. This first includes the control algorithms used to generate the three

behaviors employed in the user studies in Section 3.1, followed by an overview of the CUDA-

based swarm simulator in Section 3.2 and the two methods for selecting swarm leaders in

Section 3.3: random competition clustering (RCC) and minimum volume enclosing ellipse

(MVEE). Following, I will conclude this section by introducing the four visualizations used to

display the swarm in Section 3.4. While each of the user studies is based on this framework,

there are some small differences between them. Such differences will be explained within

their corresponding user study sections in Chapter 4 where appropriate.

3.1 CONTROL ALGORITHMS

Before discussing the general architecture of the simulator, it is necessary to introduce the

underlying control laws for each of the three behaviors that will be employed in the pre-

sented user studies. As discussed in the introductory chapter, the behaviors are: rendezvous

(Section 2.1.1), flocking (Section 2.1.2) and dispersion (Section 2.1.3). Figure 3.1 gives ex-

amples of each of the behaviors, along with the neighborhood regions used. The presented

algorithms use several common parameters that are defined in Table 3.1.
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Table 3.1: Common simulation parameters for all user studies.

Variable Description

d1 Close range (meters)

d2 Mid range (meters)

r Maximum range (meters)

vmax Maximum velocity (meters/second)

αmax Maximum angular velocity (radians/second)

wa Align vector weight

wc Cohere vector weight

wr Repel vector weight

3.1.1 Rendezvous

The rendezvous behavior is executed by computing two vectors each time step: the repel

vector, ~rr and the cohere vector, ~cr. Vector ~rr is defined as the sum of vectors from each

neighbor robot within d1 to this robot’s (x, y) position. Vector ~cr, is defined as the vector

from the robot’s position to the center point of the rectangle R = (xmax, ymax, xmax, ymax),

where xmin and ymin are the minimum x and y coordinates of the robots in the neighbor set

N within r, respectively, and xmax and ymax are the maximum. The computation of this

cohesion vector is adapted from the parallel circumcenter algorithm for rendezvous in [14].

The final goal vector is then computed using the following equation:

~g = wr ~rr + wc~rc (3.1)

3.1.2 Dispersion

The dispersion behavior is computed using only one component vector, the repel vector,

~rd, which is computed by taking the sum of the vectors from each robot in N within the

maximum range r. Note that this is the same as the repel component of rendezvous, except
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that the robot will repel from any neighbor within maximum range r, not the closer range

d1. The goal vector for dispersion is equal to ~rd. Note that the result of this control law set

is a swarm where each robot is exactly at distance r from each of its neighbors.

3.1.3 Flocking

For the flocking algorithm, control leaders are selected according to the distributed RCC

leader selection algorithm, presented in Section 3.3.1. The non-leader robots each compute

a repulsion vector ~rf identically to the rendezvous algorithm (Section 3.1.1), except using d2

as the maximum range instead of d1 so as to maintain clearer visual separation and cover

more area. The cohesion vector, ~cf , is computed by taking the average of the vectors from

this robot’s to each neighbor robot’s (x, y) position within r. An alignment vector, ~a, is

also used only by the flocking behavior, but was computed differently depending on whether

or not the robot was a leader. If the robot is a leader, ~a is set to match the control input

(heading) given by the operator. If the robot is not a leader, but it is within range r of one,

this robot will set ~a to match the closest leader. If the robot is not a leader nor in range of

one, ~a =
∑N

n=1 an, where an represents the alignment vector of the n-th neighbor in N , the

set of neighbors of this robot within range r. In other words, a robot’s alignment vector is

equal to the average of its neighbors’ alignment vectors.

If the robot is a leader, the goal vector is represented by the following (notice that leaders

do not have a repel vector):

~g = wa~a+ wc~cf (3.2)

If the robot is not a leader, the goal vector is represented by the following:

~g = wr~rf + wa~a+ wc~cf (3.3)

3.1.4 Movement Towards Goal

In each the above behaviors, both velocity v = ||~g|| and angular velocity, α are capped at

vmax and αmax, respectively. Here, α is the difference in heading between the goal vector

at the previous time step, ~gt−1, and the goal vector at the current time step, ~gt. Once a
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Figure 3.1: The three behaviors used in the presented studies: rendezvous (top right),

flocking (bottom left), and dispersion (bottom right). The diagram in the top left shows the

three regions used in generating the behaviors.

robot has computed its goal vector using the relevant component vectors for the current

behavior (repulsion, flocking, cohesion), the next state of the robot is computed by first

turning the robot toward the heading of the goal vector, up to a maximum change of αmax,

the maximum angular velocity. Because there were 60 simulation steps per second, for each

step this maximum angular velocity would be αmax/60s. Once rotated, the robot would then

move forward at the maximum velocity vmax. Again, for each step this would be vmax/60s.

As mentioned previously, the parameters discussed here (e.g. vmax) differ between the

presented studies and thus will be defined within their corresponding sections. Because the

studies involved different types of tasks with different sizes of swarms, it was impractical to

use the same parameters for each study.
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3.2 ARCHITECTURE OVERVIEW

The simulation is written in CUDA C and uses a significant amount of parallelization with

a GPU to perform the computation of each robots control loop in parallel. Due to the large

sizes of the swarms in the first study, parallelization is necessary in order to maintain a con-

stant 60 Hz control loop for each robot. CUDA is NVIDIA’s free-to-use parallel computing

framework usable on the majority of their consumer and business GPUs [89]. OpenGL is

used to draw the environment and robots within it, and to handle user input, such as giving

new directions to a swarm, when necessary. The simulation consists of both a GPU and

CPU step (see Figure 3.2), where the GPU step (performed first) handles leader selection

and the control of each individual robot, and the CPU step (performed last) handles the

visualizations given in Section 3.4 (except full information), data logging, user input, and

some of the computations of global swarm properties.

CUDA allows for interoperability with OpenGL, which is implemented in the simulation

by treating each robot’s position as a member of an array mapped to an OpenGL vertex

buffer object (VBO). During a simulation step, the VBO is mapped to this CUDA array of

positions, and the GPU then launches two kernels to handle leader selection and each robot’s

simulation step in parallel. The use of parallelization allows a significant increase in the

number of robots the simulation can handle—if the CPU-side computations are relatively

light, up to 214 robots can be simulated at 60 Hz performing any one of the behaviors

discussed in Section 3.1. In addition to the positions stored in the VBO, the robots’ velocities,

leader status, and other variables are stored as arrays on the CUDA device and used in the

computation of the robots next position within a simulation step. Due to the VBO mapping,

the positions of the robots need not be copied back from GPU memory between each step

to be displayed, and instead are directly updated on the screen just as vertices and textures

are updated in common 3D graphics applications. This provides significant advantages, as

memory copies between the device (GPU) and host (CPU), especially in frequent, small

bursts, is costly. Some non-positional data is copied to the CPU after each step, largely for

logging purposes; however, this can be done asynchronously so long as it is not needed for

displaying extra elements of the visualization in the current step.
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Simulation Step Outline

Start

Side Kernel
• Leader selection
• Adjacency/Laplacian 

matrix

Main Kernel
• Sample neighbors
• Update goal vector
• Update robot position

Global Operations
• Data logging
• Process user input
• Draw visualization 

elements

End

GPU operations
(performed 
concurrently)

CPU operations

Figure 3.2: An overview of a single simulation step. The simulation first launches concur-

rent kernels on the GPU to perform leader selection, data collection, neighbor sensing, and

position updating. Then the CPU finishes the step by adding extra visualization elements,

handling user input, and logging relevant data.

The first CUDA kernel launched by the simulation is reserved exclusively for leader

selection algorithms (see Section 3.3 for more details), as well as computation of the adjacency

and laplacian matricies of the communication graph of the swarm, which are used for data

logging purposes. The second kernel performs the main control loop step for the robots.

Within this kernel, a single robot performs all of the operations necessary to update their

position for that step of the simulation in parallel with every robot of the swarm. This

begins by checking every other robot in the swarm to determine if they are a neighbor,

and then updates their align, cohere, and repel vectors according to the active control law

(see Section 3.1). The kernel completes by summing these component vectors of the control
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laws for each neighbor interaction, adding in the obstacle avoidance vector computed from

the occupancy grid of the environment (if obstacles are present), and resizing the resulting

vector if necessary to ensure its magnitude is no greater than the maximum speed per step

(vmax/60). The angular velocity (angle between the current and previous steps’ velocity

vectors) is similarly capped at αmax/60. The robots position is then updated in accordance

with this final velocity.

Due to the fact that each robot’s control loop and part of the distributed leader selection

algorithms is done on its own in parallel, this provides an excellent way to ensure the sim-

ulation still maintains the “swarmish” aspect of a robot swarm. Specifically, in enforces the

restriction against using centralized algorithms from performing computations that would

not be possible in a real-world swarm. For instance, selecting leaders for swarm control could

be done at a central point easily and more quickly than a distributed algorithm; however,

because there is typically no “central point” of an engineered swarm, this must be done in

a distributed fashion. This also provides better scalability and a potentially easier avenue

for moving the code to a real robot. Although certainly a simulation is crude approxima-

tion for a real-world swarm, the fact that the algorithm used by each member to update

its leader status and determine how it will move is independent of other robots means that

the underlying architecture of the CUDA kernel can be helpful in programming a real robot

performing similar swarming tasks.

3.3 LEADER SELECTION

The following section will detail the two leader selection methods implemented in the user

studies. The first of these two, modified random competition clustering (RCC), is adapted

from the RCC algorithm in [141] used to select cluster heads for wireless sensor networks in

a distributed manner. The RCC method therefore selects leaders that are relatively evenly

distributed throughout that swarm, in such a manner where typically no robot is greater

than one connection of the communication graph from a leader. In reality, due to the motion

of the swarm there are occasionally robots not connected to a leader in between cycles of
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the algorithm’s timers. The second of the two, minimum volume enclosing ellipse (MVEE),

is first presented in [71], similarly uses the communication graph of the swarm and selects

the robots which, as points, define the smallest ellipse that encloses the entire swarm. In

contrast to the RCC leader selection method, MVEE selects leaders only on the perimeter

of the swarm. Another important difference is that the number of leaders selected by the

MVEE method is constant (eight), whereas the number of leaders selected by RCC varies

depending on the structure of the communication network, from a minimum of one to a

maximum of N/2, where N is the total number of robots.

At this point it is important to introduce the difference between control leaders and

information leaders. For the studies presented herein, control leaders are those that receive

the input from the user and then propagate this information throughout the swarm by biasing

the control laws of their neighbors. For instance, when the user gives a new goal direction

for a flocking swarm, the goal heading is transmitted to the leaders, who then set their

alignment to this new direction (see Section 3.1.3), which is then observed by the neighbors

of this leader. Information leaders, however, are leaders that aggregate information about

the swarm from its members and then relay this information back to the user. Oftentimes

control and information leaders will be the same, but this is not necessary. In particular, for

the studies in this thesis, the information leaders are what will vary between display types,

whereas the control leaders will always be those selected by the RCC method.

3.3.1 Random Competition Clustering

The first leader selection method I will introduce is the modified version of the Random

Competition Clustering (RCC) algorithm for selecting cluster heads in WSNs [141]. This

algorithm runs on each robot, and takes as input the period of the leader update timer,

t. This timer is the number of steps after which a robot will switch its leader status (some

random variation is added by each robot during the algorithm). Pseudocode for the following

modified RCC algorithm can be found in [135].

When the algorithm begins, the robot initializes its leader value l to false and its timer

t0 = t plus some variance ε. In each of the presented studies, t = 600. During each step of
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the simulation, the robot will first broadcast its leader value to each of its neighbors, and

then receive the leader status of each of its neighbors. If at this point the robot’s leader

timer has expired, it will flip its leader status (i.e., if it is currently a leader it will become

a non-leader, and vice versa) and reset its leader timer to 600 + ε. If the leader timer has

not expired however, it will check each of its neighbors’ leader statuses to determine if any

neighbors are leaders. If so, it will reset the leader timer to prevent two neighbors from

becoming leaders at the same time, otherwise, the robot will do nothing. Finally, the robot

will decrease the leader step timer by one step, and wait for the next step to begin.

3.3.2 Minimum Volume Enclosing Ellipse

The minimum volume enclosing ellipse algorithm similarly treats the swarm as a communica-

tion graph, where robot is a vertex, and an edge between two vertices exists if the two robots

are within communication range. The MVEE algorithm works by computing a coreset of up

to eight robots in a distributed manner that roughly correspond to the points which define

an enclosing ellipse—specifically, the smallest such ellipse that covers each member of the

network. Unlike the RCC leader selection algorithm, the MVEE method is unmodified from

its original source, the details of which are explained in [71].

3.4 VISUALIZATION METHODS

Four different display types are used to show the current state of the swarm to the participant.

The first is called Full Information, and shows each robot’s (x, y) position and heading

updated at 60Hz. This display requires a high amount of bandwidth from the swarm to

operator, as it must transmit three variables (x-coordinate, y-coordinate, and heading) for

each of the robots at 60Hz.

The second display type, called Centroid/Ellipse shows only three pieces of information.

First, an ellipse bounding the swarm displayed in red, using the distributed MVEE algorithm

presented in [71] to select a set of robots that defined the ellipse. A second smaller ellipse,
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Algorithm 1 modified RCC (int t), where t is the step countdown timer after which this

robot will become a leader (600 steps in the user studies presented here).

1: Define int resetT imer() = {t+ rand(1, 60)}

2: Define leader status l = false

3: Define timer t0 = resetT imer()

4: while true do

5: broadcast(i, l)

6: N = {l0...ln} = getNeighborSet()

7: if t0 = 0 then

8: if l = false then

9: l = true

10: t0 = resetT imer()

11: else

12: l = false

13: t0 = resetT imer()

14: end if

15: else

16: for li ∈ N do

17: if li = 0 then

18: t0 = t

19: end if

20: end for

21: end if

22: t0 = t0 − 1

23: end while

in yellow, is displayed within the bounding ellipse. This smaller ellipse bounded the middle

50% of the swarm, which allows the participants to see some measure of spatial distribution

throughout the swarm. For instance, if the inner ellipse is off-center relative to the bounding
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ellipse, the participant can infer the swarm is denser on one side than the other. The

final piece of information shown to the participants is a green cross, with the intersection

at the centroid of the swarm. The centroid is defined as midpoint of both the minimum

and maximum coordinate (x, y) in each dimension. This display requires significantly less

information, as the swarm need only transmit the eight points which define each ellipse (32

variables), plus two variables for the coordinates of the centroid.

The third and fourth display types show participants a small subset of the swarm, called

the leaders. The first of these display types show only the leader set computed by MVEE

algorithm, which is referred to as the MVEE Leaders display. This requires the lowest

amount of bandwidth amongst all display types, as the algorithm gives a maximum of eight

leaders, which can be defined by 16 variables (x coordinate and y coordinate for each). The

second display type shows the leader set as computed by the modified random competition

clustering (RCC) algorithm, first presented in [135] and based on the RCC algorithm in [141].

This is referred to as the RCC Leaders display. The amount of information to be transmitted

using this display type depends on the number of leaders selected, which in turn depends on

the structure of the communication graph of the swarm. The number of leaders can range

from one (if the graph is a star shape, with the leader in the middle and all other robots

connected to it) to N/2 (if the communication graph forms a chain). All display types are

shown visually in Figure 3.3.
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Figure 3.3: The four display types used in the presented studies: Full Information (top left),

Centroid/Ellipse (top right), MVEE Leaders (bottom left), and RCC Leaders (bottom right).

Greyed-out robots are still present in the simulation, but not visible to the participants.
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4.0 USER STUDIES

As mentioned previously, my prior studies present a broad overview of the questions I will

focus on in the proposed dissertation. The first studies investigating the effect of commu-

nications restrictions on an operator’s ability to control a flocking swarm introduced the

concept of neglect benevolence, and showed that limits in the communication channel could

be overcome by smart displays and intelligent use of information [138, 90]. The leader-based

control studies demonstrated that swarms could be controlled using dynamically selected

leaders, which allows the operator to send commands to only a small subset of the swarm,

instead of each robot [136, 134, 135]. This will likely be a common method for informa-

tion aggregation to facilitate visualization. Together, these studies show that HSI can be

greatly improved by focusing on the aspects of the swarm state that best aid operators in

recognizing, predicting, and controlling a swarm.

The studies presented in this chapter will address the three questions posed earlier. The

first serves as a proof of concept that different emergent behaviors are recognized differently,

and thus may require different levels of information to be shown (Section 4.1). The second

user study looks at how visualization can aid in recognition of the swarm’s trajectory or

goal state (Section 4.2). For many behaviors, this will entail a recognition of consensus.

For instance, for flocking, the swarm should eventually reach consensus by moving along

a physical trajectory towards a goal direction. Specifically, this study will investigate how

different proposed visualizations can aid in recognition of goal trajectory for different swarm

behaviors. The third study will investigate the performance of the different visualizations

used in a control task, where operators are asked to move a swarm between multiple goals

regions, and hopefully demonstrate that proper visualization is important and that full

information about the state can be summarized to improve bandwidth requirements without
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sacrificing performance (Section 4.3). The final study will investigate how visualizations

impact user trust in a swarm performing a target-searching task, and demonstrate that

more information about a swarm’s state and progress will improve both performance and

trust (Section 4.4).

4.1 FIRST STUDY: BEHAVIOR RECOGNITION

The study involving participants dealing with a system that exhibited neglect benevo-

lence [86] showed that operators could learn to better time their inputs over the course

of interacting with the swarm. Because having a good internal model of a system—and

recognizing how the system evolves—usually helps with deciding and timing inputs, this

naturally begs the question of how well an operator can recognize these emergent behaviors

in general. This is especially important if the behaviors take some time to reach consen-

sus. Furthermore, if we are able to understand which behaviors are easier or harder than

others to recognize, this could help designers of interfaces for human-swarm systems know

what properties of the swarm state to display, and how much information is needed for the

operator to best learn to time their inputs during different exhibited behaviors.

To that end, this study is designed to investigate how well operators recognized three of

the most common emergent swarm behaviors as an investigation into how we might improve

human control of swarms in general. This study contrasts and complements [116], which

studied perception of biological swarm behaviors and subsequently compared their perception

with that of simpler displays of rotating dots. Similar to the aided condition [86], the display

used in this study shows robot positions and velocities to inform the operator about the

current state of the swarm. This study asks participants to discriminate between three types

of behavior in the presence of background noise: rendezvous, flocking, and dispersion.
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4.1.1 Study Design

This study involves the human participant viewing a series of videos with one of three types

of swarm behaviors: rendezvous, where each robot moves to the center of the bounding x-

and y-axis values of its neighbors (the parallel circumcenter algorithm [14]); flocking, where

each robot tries to match the velocity of its neighbors while also maintaining a minimum

distance from close neighbors and maximum distance from far neighbors; and dispersion,

where each robot moves away from the average position of its neighbors. The values for

the parameters used for these control algorithms (Section 3.1) are given in Table 4.1. The

heading input used by the leaders as defined in Section 3.1 is randomly assigned from ±π.

In each video, there was some amount of background noise, i.e., some of the swarm members

moved randomly, ignoring all neighbors. The goal of the study is to determine how much

background noise can be present before the participants stop recognizing the behavior being

performed. Each participant started at 50% background noise for each behavior. If the

participant answered correctly for a behavior, the next time they view a video with that

same behavior the noise level was increased according to the following formula:

e1 = (100 + e0)/2 (4.1)

Where e0 and e1 are the current and new noise percentages, respectively. In other words,

the noise increased to the halfway point between the previous noise level and 100% noise.

If the participant answered incorrectly, the next time they viewed that behavior the noise

level would be set as follows:

e1 = (50 + e0)/2 (4.2)

Note that this means the noise level can never fall below 50%, even if a participant responded

to a video with 50% noise with the incorrect behavior. In this study, participants always

correctly recognized a behavior with 50% background noise. The participants viewed each

behavior six times, along with six videos with 100% noise, for a total of 24 videos. The

videos with 100% noise serve as a baseline to ensure that participants can also discriminate

between an organized behavior and no behavior at all. All videos are presented in a random

order.
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Table 4.1: Simulation parameter values for recognition study.

Variable Value

d1 0.5 meters

d2 1.5 meters

r 2.0 meters

vmax 1.0 meters/sec

αmax 6π radians/sec

wa 1.0

wc 0.9

wr 1.0

The videos are generated via the simulator described in Section 3.2 with 2,048 robots.

The robots begin at random positions in a 2D plane, bounded by [-15,15] meters in both

the x- and y-axis. The viewport shows as far as ±20 meters in each direction, to allow the

participants to see the entire swarm at the beginning, as well as to allow for some expansion

in the overall swarm area before leaving the viewport (especially important for the dispersion

behavior). The videos are each 20 seconds long, to give the participants plenty of time to view

the behaviors and distinguish between them, although participants could select a response

at any time. Total viewing time before selecting a response is recorded along with their

response for data analysis. A simulation step is performed 60 times a second, whereby each

robot sensed its neighbors and moved according to the algorithms described in Section 3.1,

giving a total of 1,200 steps per video.

4.1.2 Participant Details

Participants were selected from the Amazon Mechanical Turk user-base, and were given a

short questionnaire to complete, asking their age, gender, average weekly computer use,

and average weekly spent playing computer games. After the videos were finished, each
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participant was asked to describe their strategy for recognizing the behaviors, if any. A total

of 72 participants were collected. Of these, 32 participants were female and 40 were male,

and ages ranged from 20 to 72 years old (median of 32).

4.1.3 Hypotheses

Because of humans’ innate ability to recognize biological motion and common fate [55, 123],

the first hypothesis is that participants in general will be good at recognizing all behaviors,

even when background noise is high. Results in [123] report discrimination with noise levels

as high as 97%, although because these behaviors are more complicated than simple straight

motion in a common direction, it is expected here that noise thresholds for recognition will

be slightly lower. More importantly, the second hypothesis is that there will be significant

differences between the behaviors in terms of recognizably, and in the factors, including

individual differences, that give rise to recognizability. Furthermore, it is believed that the

flocking behavior will benefit from longer viewing times before a response is given due to

the time it takes for consensus to emerge and the collective movement to begin before the

behavior becomes apparent. To summarize, the hypotheses for this study are as follows:

• H1: The average maximum level of background noise with correct recognition will be

high (> 80%).

• H2: There will be significant differences between the emergent behaviors in the average

maximum level of background noise with correct recognition.

• H3: Flocking will benefit from longer viewing time before response, whereas rendezvous

and dispersion will not.

4.1.4 Results

Due to how the noise was adjusted for each behavior-type (see Section 4.1.1), the final correct

answer given by the participant for each behavior is also the maximum noise percentage for

that behavior where recognition was still successful. Therefore, for each participant, we can

easily find the maximum noise percentage with correct recognition for each behavior. Using

a Welch’s t-test, rendezvous was found to be significantly easier to recognize than either
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Figure 4.1: The average highest percentage of background noise at which participants still

recognized the emergent behavior correctly.

flocking (t(137.86) = 3.521, p < .001) or dispersion (t(140.16) = 2.619, p = .01). Flocking

and dispersion were not significantly different (t(141.49) = 0.889, p = .375). Figure 4.1

shows these results.

A similar measure of recognizability is the number of correct answers for each behavior,

which should roughly correlate with the maximum noise percentage presented previously.

Indeed, the same results were found here. Using a Welch’s t-test, rendezvous allowed for

more correct answers by participants than either flocking (t = 3.153, p = .002) or dispersion

(t = 4.146, p < .001), with no significant difference between flocking and dispersion (t =

53



1.278, p = .204). Interestingly, results show that participants correctly recognized a lack of

behavior (100% noise) significantly less often than any of the three behaviors (t = 5.310,

p < .001 for rendezvous; t = 3.480, p < .001 for flocking; and t = 2.645, p = .009 for

dispersion).

Results also show that, on average, the longer a participant views a video before submit-

ting a response the more likely they were to be correct, but only for the flocking behavior (see

Figure 4.2). Taking longer to view a video of flocking behavior before giving a response cor-

responded to correct responses at higher noise percentages for flocking (F = 14.94, p < .001,

r2 = 0.164). This effect was marginally significant for rendezvous (p = .053), and there was

no such effect for dispersion (p = .919). These results were again mirrored when considering

total correct answers instead of maximum noise.

Effects of demographic data were also analyzed to determine if age, gender, computer

use, or video gaming frequency impacting the performance of operators. While there was no

correlation between age and the average maximum noise across all behaviors and responses,

age did have a small positive correlation with total average viewing time of the videos

(F (1, 70) = 5.697, p = .020, r2 = 0.062), although this did not translate to higher maximum

noise values for correct responses in the flocking behavior as might be expected. Surprisingly,

there was a difference in performance between genders, with females recognizing behaviors

at a higher noise level than males (F (1, 70) = 5.26, p = .025), although like the correlation

between age and viewing time, this effect was small. This could be due to the fact that

females, on average, viewed the videos for a longer period (F (1, 70) = 2.975, p = .089,

r2 = 0.027), although this effect was also marginal. Computer usage was assessed by asking

participants to estimate how often they used a computer in a week, at 10-hour intervals (i.e.

0-10 hours, 10-20 hours, etc.). Higher computer use correlated with better recognition at

higher noise rates, but for rendezvous only, and the results were only marginally significant

(F (1, 70) = 3.00, p = .088, r2 = 0.027).

Perhaps the most telling results for individual differences come from the subjective qual-

itative responses of the participants. The final question of the survey asked if they could

describe any strategies they used for recognizing behaviors, and there were many common

themes across the responses, primarily supporting the idea that humans are good at recog-
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Figure 4.2: The correlation between time to issue a response and highest correct recognition

threshold for the flocking behavior.

nizing patterns and collective motion. A common strategy seemed to be to unfocus and view

the bigger picture to recognize global patters, instead of focusing on individual robots. For

instance, many participants mentioned “unfocusing [their] eyes” or “watching for patterns

to emerge”. Some characteristic responses are reported in Table 4.2.

4.1.5 Discussion

The results of this study and feedback from the participants clearly show that some behav-

iors are easier to recognize than others, confirming H2, and provides evidence that humans
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Table 4.2: Behavior recognition strategies reported by participants in recognition study.

ID Description of Strategy

p8 “I tried to look at everything as a whole and pick out certain

patterns”

p15 “I tried to unfocus my eyes and recognize the general

movement pattern of the dots.”

p18 “I watched for the density to change in the picture and then

tried to discern some sort of pattern from that.”

p21 “I tried to let my focus widen and not stare too hard.”

p30 “The strategy I used for recognizing behaviors was to unfocus

my eyes from any particular spot and try to notice if there

seemed to be a pattern within the large group.”

use the Gestalt properties of swarm behaviors such as common alignment, common velocity,

and proximity to recognize different behaviors. Rendezvous, which involves an easily visible

aggregation to a common point, was the easiest to recognize from background noise. Fur-

thermore, flocking benefited from longer viewing times, as this gave the user more time to

pick out the common fate of the flocking (non-noise) swarm members, which confirms H3.

The average highest level of noise where recognition was still successful is 85.38%, which as

hypothesized is high, but not as high as the signal-to-noise ratio for common fate reported

in [123], confirming H1. This is likely because the swarm behaviors tested were slightly more

complex than simple common motion—primarily due to interactions with neighbors.

The responses by participants further reinforce the idea that operators take a holistic

approach to viewing the collective motion inherent in emergent swarm behaviors. This could

mean that the underlying metaphor used for the design of swarm algorithms may be less

important, as long as the end result is recognizable via base perceptual mechanisms, such as

collective motion and common fate as studied in [123]. Furthermore, this also helps explain

why flocking was the only behavior to benefit from longer viewing times. Flocking requires
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a period of time where the robots have not yet reached a consensus on direction, whereas

rendezvous and dispersion do not. These results lay the groundwork for the future studies,

which will use the different display methods presented in Section 3.4 to determine how the

visualization of a swarm can be simplified to save on both bandwidth and visual complexity

while still maintaining the ability for operators to recognize and control a swarm.

In light of the recent results presented here, in [116], and the results of work on neglect

benevolence, the next logical step for this line of research is to investigate how different

visualizations of a swarm affect users’ abilities to predict future states of the swarm. For

instance, are there ways of displaying summary information about a swarm (namely, centroid

and spatial bounds or a subset of leaders) that improve or maintain predictability when

compared to viewing full information (i.e. each individual robot’s position and heading)?

Because summarizing this information can be done at the swarm level, it necessarily requires

a lower amount of bandwidth to transmit this data between a swarm and remote human

operator compared to full information.

4.2 SECOND STUDY: BEHAVIOR PREDICTION

The goal of this study is to determine if different methods of displaying a swarm change the

ability of an operator to predict the swarm’s future state. During a single trial, participants

were shown a swarm performing one of three different behaviors: rendezvous, flocking, or

dispersion. Furthermore, the swarm is displayed on the screen using one of four display

methods (see Section 3.4). Each trial lasted 30 seconds, during which the participant was

asked to draw on a touch screen what they predicted to be the final shape of the swarm at

the end of the trial. Finally, each participant saw each behavior-display pairing twice, giving

a total of 24 trials over the course of the study (3 behaviors × 4 display types × 2 viewings).
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Table 4.3: Simulation parameter values for prediction study.

Variable Value

d1 1.0 meters

d2 2.0 meters

r 5.0 meters

vmax 1.0 meters/sec

αmax 6π radians/sec

wa 1.0

wc 0.9

wr 1.0

4.2.1 Study Design

The swarm consisted of 256 robots, which begin at random positions and orientations within

a 24 × 24 meter box centered at a random point within 10 meters of the origin of the

simulation environment. The environment extended from ±100 meters in the x-dimension,

and ±35 meters in the y-dimension. These dimensions were chosen because they gave a close

enough view of the swarm to make each detail of the GUI visible, while still allowing the

entire swarm to be visible throughout each trial, regardless of the current behavior being

performed. The values for the parameters used in the control algorithms (Section 3.1) are

given in Table 4.3.

Participants used a 23-inch Dell touch screen display with a resolution of 1920 × 1080p

to both view the swarm and give input indicating their prediction. During a trial, the

participant is asked to use the touch screen to draw a shape that they believe would bound

the final position of the swarm at the end of the 30-second trial period. A progress bar

showing the time remaining in the trial was displayed at the top of the screen at all times.

Participants could give multiple predictions over the course of the experiment—allowing

them to update previous predictions if they deemed them inaccurate. Each prediction input
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was converted into the convex hull of the user-drawn points and, along with the convex hull

of the final positions of the swarm members, is used for data analysis purposes to determine

the accuracy of the prediction input.

Before completing the 24 trials in a random order, the participants were allowed to

complete three training trials to get accustomed to the interface and touch screen. These

training trials consisted of one each of the three behaviors, all with the Full Information

display. Upon completing the 24 trials of the main experiment, participants finished with a

short survey, asking them to rank the four displays in order of their perceived helpfulness,

both overall and for each of the three behaviors. Because each participant viewed all trials

in every condition, this study uses a within-subjects design.

4.2.2 Participant Details

Participants were recruited from the University of Pittsburgh and surrounding area. There

were 26 participants in total, with an age range of 18-65 years old (median of 25). Of the 26

participants, 13 were female and 13 were male.

4.2.3 Hypotheses

The first hypothesis is that the Full Information and Centroid/Ellipse display types will give

the best prediction accuracy across all behaviors, and will be equal to each other in terms

of accuracy, similarly to what was found in [90]. Therefore, the hypothesis also states that

the leader-based displays will both give lower predictions than either the Full Information or

Centroid/Ellipse displays overall; however, for individual behaviors that may not hold true.

Specifically, for the flocking behavior, where the current heading of the swarm members is

necessary for determining their future position, the hypothesis is that one or both of the

leader-based displays will outperform the Centroid/Ellipse display, as the latter does not

display any heading information. Finally, the second hypothesis is that rendezvous will give

the highest prediction accuracy overall, as it was shown to be easiest to recognize in the

previous study. To summarize, the hypotheses for this study are as follows:
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• H1: The Full Information and Centroid/Ellipse displays will give the best prediction

accuracy overall, but the leader-based methods will be best for flocking specifically.

• H2: The rendezvous behavior will give the highest prediction accuracy overall.

4.2.4 Results

The main method for evaluation of participants’ predictions of the final state of the swarm

was accuracy as compared to the actual final state (the positions of the robots at the end of

the 30 seconds of the trial). Each time the user gave a prediction, their chain of drawn points

was used to compute a convex hull around those points. Similarly, the final robot state was

represented by the convex hull of the positions of the robots at the end of 30 seconds. Given

two convex hulls, it is therefore easy to compute the accuracy according to the following

equation:

A = (Hu ∩Hr)/(Hu ∪Hr) (4.3)

where A is the accuracy variable, Hu is the convex hull of the user-drawn estimate, and Hr

is the convex hull of the final robot positions. This measure of accuracy was used because it

penalizes inaccuracy in the position of the swarm, as well as both overestimating the shape

(i.e. drawing a large shape covering much more area than the swarm takes up in reality)

and underestimating the shape (drawing a small shape in the middle of the swarm).

Using an analysis of variance test (ANOVA), results presented in Figure 4.3 show that

there are significant differences for accuracy between both behavior (F (2, 1651) = 414.4,

p < .001) and display type (F (3, 1650) = 8.68, p < .001). The accuracy of predictions

for the dispersion (65.8%) behavior were significantly higher than both rendezvous (43.1%,

t = 26.97, p < .001) and flocking (40.0%, t = 27.63, p < .001). Accuracy for rendezvous

was also significantly higher than flocking (t = 3.35, p < .001). For display types, there

was no significant difference between the accuracies for the Full Information (50.5%) and

Centroid/Ellipse (51.2%) displays; however, both were significantly more accurate overall

than the MVEE (45.5%, p < .001 for each) or RCC (46.9%, p = .008 and p = .002,

respectively) Leader displays. Accuracy between the two leader-based displays was not

significantly different.
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As one of the main hypotheses is that different behaviors will require different displays to

maximize the accuracy of prediction, the data within each behavior were analyzed to deter-

mine if this hypothesis is true. Results show that, while accuracies in the two leader-based

displays were lower than either the Full Information or Centroid/Ellipse displays overall

across all behaviors, when investigating the dispersion behavior significantly prediction ac-

curacy using RCC Leaders (65.3%) were not significantly different than the Full Information

or Centroid/Ellipse displays, while the MVEE Leaders display gave significantly lower pre-

diction accuracies (62.8%) than both the Full Information (t(234.11) = 2.88, p = .004) and

Centroid/Ellipse displays (t(238.98) = 3.21, p = .002).

4.2.4.1 Timing of Predictions Accuracy is only one of the important qualities of a

prediction; the other is the time a prediction is made. Earlier predictions are more beneficial

than later predictions, assuming equal accuracy, because they allow information to be gained

earlier. Therefore, the analysis was repeated using only predictions made in the first half

(first 15 seconds) of a trial. Results show that the differences in accuracy between each

behavior for early predictions remain the same as when comparing between behaviors using

all predictions (F (2, 720) = 522.00, p < .001), with dispersion giving significantly higher

accuracy (63.1%) than both rendezvous (34.4%, t(485) = 25.33, p < .001) and flocking

(25.4%, t(454.14) = 30.62, p < .001). Similarly, early predictions for the rendezvous trials

were on average more accurate than those in flocking trials (t(472.06) = 7.12, p < .001).

When restricting predictions to only the first half of a trial, the differences between the

display types overall are not present (F (3, 719) = 0.91, p = .436). However, when looking

within behaviors the differences become evident. For rendezvous, early predictions using

the Centroid/Ellipse display were significantly more accurate (37.5%) than the RCC Leader

display (31.7%, t(120.86) = 2.40, p = .018), and marginally significantly more accurate than

the MVEE Leader display (33.0%, t(119.89) = 1.85, p = .067. The Full Information display,

surprisingly, was not significantly different from either of the two leader-based displays or

the Centroid/Ellipse display.

Similar results are found for dispersion, except with the Full Information display being

superior, instead of the Centroid/Ellipse display. Early predictions using the Full Information
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Figure 4.3: The average accuracy of participants’ final swarm position estimates across both

behavior and display type.

display (66.3%) were significantly more accurate than both the MVEE Leader display (61.6%,

t(90.84) = 2.10, p = .038) and RCC Leader display (61.2%, t(114.27) = 2.52, p = .013).

There were no significant differences between the Centroid/Ellipse display and either leader-

based method, nor was there a significant difference in early prediction accuracies between

the two leader displays. Overall results of accuracy based on trial time of position estimates

during each behavior are available for rendezvous, flocking, and dispersion in Figures 4.4,

4.5, and 4.6, respectively.
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Figure 4.4: Each final position estimate given by participants during the rendezvous behavior,

based on the time the estimate was given.

4.2.4.2 Participant Feedback Feedback from participants, while subjective, is impor-

tant for interface designers of any system merging both autonomy and human intelligence—

HSI systems are no different. To get qualitative feedback from participants, they were asked

to complete a short survey ranking their preferred display types after the experiment com-

pleted. The responses here clearly show that the Full Information condition was widely

preferred by participants, with the Centroid/Ellipse display coming in a distant second.

Neither of the leader-based display methods received the top ranking overall by any partici-

pant; however, the MVEE Leader display does seem to be preferred slightly more than the
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Figure 4.5: Each final position estimate given by participants during the flocking behavior,

based on the time the estimate was given.

RCC Leader display (see Figure 4.7).

4.2.5 Discussion

The results of this study suggest that there are differences in the predictive abilities of

operators depending on what behavior a swarm is exhibiting, as well as what display mode

is being used. While results show that the dispersion behavior allowed for significantly more

accurate predictions overall, which allows us to reject H2, this could be due to the fact that

small differences between the boundaries of the user-drawn and final robot convex hulls make
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Figure 4.6: Each final position estimate given by participants during the disperse behavior,

based on the time the estimate was given.

up a smaller percentage of the overall area of their union than in the flocking or rendezvous

behaviors. Specifically, due to the fact the participants could not be perfectly precise down

to the pixel level, there is always going to be some inaccuracy in drawing the estimated final

swarm shape on a screen; however, because this inaccuracy does not increase with swarm

size, it makes up a larger percentage of the overall swarm area when the space covered by

the swarm is small—as it is in flocking and rendezvous—thus giving those behaviors lower

accuracies.

Results within each behavior are more telling. Because the Full Information and Cen-
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Figure 4.7: Participant rankings of each display type in the prediction study.

troid/Ellipse displays gave equal accuracy regardless of the display type or behavior, in

bandwidth-limited situations it may be preferable to display a bounding ellipse and centroid

instead of full information about each robot. This confirms the results of the swarm control

study conducted in [90], as well as hypothesis H1. This does not mean that leader-based

displays are useless, however. Because the task in this study involved estimating the spa-

tial qualities of a swarm, the Full Information and Centroid/Ellipse displays may have been

superior because they give better spatial information. The Centroid/Ellipse display in par-

ticular gives only spatial information. The leader-based displays, however, may be better

suited for tasks where other characteristics need to be estimated—such as consensus of the

swarm on a goal direction, or overall connectivity of the sensing or communication graphs.

Future studies could extend this research to predictions where non-spatial information is

more important, to see if other display methods become necessary.

Another possible explanation for the high accuracy of predictions in the Centroid/Ellipse

display is that this display preserves the global, Gestalt-type properties of a swarm. Namely,
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with a centroid and ellipse operators get a clear picture of the overall shape and position of the

swarm in a single glance. With leader-based displays, operators must infer this information

from the positioning of the leaders. Doing so while the swarm is moving may be difficult

enough to give the lower performance seen here.

The results of this study lead to a natural next step, which will be covered in the following

section: investigating how these different displays for common swarm behavior can be used

not only to predict swarm behavior, but also control it. The next study will investigate how

these same displays affect an operator’s ability to direct a flocking swarm to goal regions

within an obstacle-filled environment. The focus here will be specifically on flocking, because

it requires some input from the user to guide the swarm in the proper direction (i.e. the goal

heading), whereas rendezvous and dispersion in and of themselves do not require this.

4.3 THIRD STUDY: BEHAVIOR CONTROL

The goal of this study is further test a hypothesis originally stated in the prediction exper-

iment given in Section 4.2: that different behaviors and tasks require the operator to have

knowledge of different state variables, and thus the display should be adapted to highlight

the most relevant state variables for the task. This experiment expands on the previous by

investigating a control scenario—rather than asking the participant to be passive and only

give predictions, we are now asking them to actively interact with the swarm.

Similarly to the prediction study, this study investigates how different methods of dis-

playing a swarm affect measures of the operator’s performance, this time in a simple task of

guiding the swarm past obstacles to a goal region. In this experiment, the swarm operates

under a standard flocking algorithm only (rendezvous and dispersion are not used), whereby

each robot coheres to neighbors far away, repels from those close, and otherwise tries to align

its heading with a nearby leader robot (or, if no leader is available, the average heading of

its neighbors). Refer to Section 3.1.3 for details of the flocking algorithm used. Values for

the parameters used in flocking algorithm are given in Table 4.4.
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Table 4.4: Simulation parameter values for control study.

Variable Value

d1 0.5 meters

d2 2.0 meters

r 4.0 meters

vmax 2.0 or 1.5 meters/sec

αmax 6π radians/sec

wa 1.0

wc 1.0 or 1.25

wr 1.25

4.3.1 Study Design

The swarm consisted of 256 robots, which begin at random positions and orientations within

a 24× 24 meter box centered at the origin of the simulation environment. The environment

extended from ±200 meters in both the x- and y-dimension. The operator had two possible

commands during a trial: change the goal heading of the leaders (done by dragging a line on

the screen in the desired direction), or switch between “compact” and “standard” flocking

mode. The switch from standard to compact increased the weight of the cohesion vector

wc for each robot from 1.0 to 1.25 and lowers vmax from 2.0m/s to 1.5m/s, resulting in a

swarm that is more compact and less likely to break apart, but moves slower as a result. The

environment always has 20 randomly-generated rectangular obstacles, each with a random

length and width between 5 and 50 meters. Overlaps creating more complex, non-rectangular

obstacles were allowed, but no obstacles were allowed within the swarm’s starting space, or

within the goal region.

There are four measures by which participants are evaluated. The main measure is the

time (in simulation steps) that it took for them to reach the goal. The goal is always placed

at 80 meters away from the center, but due to the random generation of obstacles, the
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optimal path is not always a straight line from center to goal. Secondary to this is the length

of the path the swarm centroid took from the origin (beginning) to the goal. This should

correlate with time taken. The two secondary measures are the participants estimate of

swarm shape and average heading, which were taken at three randomly-placed pause points

for each trial. During a pause point, the simulation stops and participants are asked to draw

a shape bounding the swarm (in a manner identical to the prediction study), and then to

give an estimate of the swarms average heading (by drawing a line in the estimated direction

on the screen).

There are four possible conditions for a trial based on the four display types possible.

Each participant completed three blocks of four trials each. Within each block the four

possible conditions are given in a random order. Thus, each participant completed 12 trials

total, with 3 for each display type, giving 9 pause points per behavior type per participant.

Before the participant begins a block, they were allowed to practice controlling the swarm

with each display type to become comfortable with the display and controls. Figure 4.8 gives

a screenshot of this task under the Full Information condition.

4.3.2 Participant Details

Participants were recruited from the University of Pittsburgh and surrounding area. There

were 21 participants in total, with an age range of 19-31 years old (median of 24). Of the 21

participants, 14 were female and 7 were male.

4.3.3 Hypotheses

Given the results of prediction study presented in Section 4.2, the main hypothesis is that the

Full Information and Centroid/Ellipse display type will give the performance, as measured

by time to reach the goal, across all behaviors. Similarly, the secondary hypothesis is that

those same two displays will give the best accuracy for position estimates of the swarm, but

that the Centroid/Ellipse display will be the worst for heading estimates, as this display

gives no heading information other than what the viewer can infer by watching the centroid

move across the screen. In summary, the hypotheses for this study are as follows:
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Figure 4.8: A screenshot of the beginning of a trial for the behavior control study with

the Full Information display (all robots visible). Obstacles are shown in white and the goal

region in red. The top shows a green progress bar indicating how much time remains in the

trial, along with text indicating if the swarm was in compact or standard mode. Robots

in red are the control leaders (i.e., they respond directly to user input, and bias the goal

alignment headings of non-leaders).

• H1: The Full Information and Centroid/Ellipse displays will both give the best perfor-
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mance on the main metric (time to goal).

• H2: The Full Information and Centroid/Ellipse displays will both give the best per-

formance for the position estimates, yet only Full Information will be best for heading

estimates, with the Centroid/Ellipse display being the worst for this measure.

4.3.4 Results

The main result is that there were significant differences between display types for the time

it took participants to reach the goal region (F (3, 233) = 6.165, p < .001) with the MVEE

display being significantly worse (longer time-to-goal) than any other method. The other

three methods were not significantly different from each other (see Figure 4.9). Next, the

analysis looked at the quality of the position estimates given by participants. As with

the previous study, accuracy is given by equation 4.3. The results again show a difference

between display types for position estimate accuracy (F (3, 233) = 12.1, p < .001). Further

analysis shows accuracy of user estimates were statistically identical for the Full Information

and Centroid/Ellipse display modes, which matches the performance seen in the previous

study. These two modes were both significantly better than the RCC Leader mode (p < .001

for each) and MVEE Leader mode (p < .001 for each). The MVEE and RCC modes were

not statistically different from each other, however (see Figure 4.10).

Results for the heading estimates given by participants when queried similarly show a

significant effect of display type on the accuracy of heading estimates (F (3, 233) = 7.05, p <

.001, see Figure 4.11). Results show that Full Information gave significantly lower estimate

errors than any of the other displays, while the MVEE Leader display did significantly worse.

The RCC Leader display and centroid ellipse display were statistically equivalent (t = 0.36,

p = .721).

Two other secondary measures that were logged were the time taken to give input for

both heading and position, and the total length of the path taken by the swarm from initial

state to goal. The input time showed no significant differences between display types for

either the position or heading input—participants were relatively uniform in how long it

took them to give estimates. However, the path length did show significance between the
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Figure 4.9: The average number of steps to reach the goal region for each display type. Each

step is 1/60 of a second (i.e. 1 minute is 3600 steps).

conditions (F (3, 233) = 2.449, p = .063). The results here match the main results (time to

goal), with MVEE Leader conditions resulting in significantly longer paths than any other

condition (see Figure 4.12); however, the variance was much higher than that of the time

taken to reach the goal. Further analysis shows a very weak correlation between the accuracy

of the position and heading estimates and total time to reach the goal, with higher accuracy

in both correlating with faster success (r2 = 0.05, p < .001 for both).

Finally, Figure 4.13 shows the participant rankings for each display type. They were

asked to rank each display in order of helpfulness to complete the task (both moving the
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Figure 4.10: The average accuracy of the user-drawn position estimates for the swarm control

study.

swarm to the goal and giving estimates). The subjective responses from the participants

largely match the previous study, in that the Full Information and Centroid/Ellipse displays

were both clearly superior to the MVEE and RCC Leader display modes. As before, the Full

Information condition is slightly preferred over the Centroid/Ellipse, and MVEE Leaders

seems more preferred over RCC. Interestingly, however, participants preferences did not

correlate with their performance on the task, or their position and heading estimates.
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Figure 4.11: The average error of the user-drawn heading estimates during the swarm control

study.

4.3.5 Discussion

Results from this study largely confirm, on average, those of the previous—that the Full In-

formation and Centroid/Ellipse displays are preferred over leader-based displays for spatially

oriented tasks in general. However, in this study the RCC Leader display actually performed

significantly better than the MVEE display. Indeed, it was equally as effective as the Full

Information and Centroid/Ellipse displays in the time taken to reach the goal, the average

error of heading estimates, and in the average path length to reach the goal. Interestingly,

the RCC Leader display was not as effective as Full Information or Centroid/Ellipse at the
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Figure 4.12: The average path length of swarm across a trial.

position estimates. Overall, this allows us to confirm H1 and reject H2.

One possible explanation for the RCC Leader display not matching performance with

Full Information and Centroid/Ellipse on position estimates is similar to the explanation

given in the previous study for why dispersion gave the highest accuracy: for RCC Leaders,

the bounds of the swarm are not easily recognizable, whereas for Full Information, Cen-

troid/Ellipse, and MVEE Leaders the bounds are shown on the screen (either as robots in

the first and third of these, and as a drawn ellipse in the second). What this means is that

tasks in which the bounds of the swarm need to be known concretely should focus on a

summarizing display, such as the Centroid/Ellipse methods, but that other tasks may be
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Figure 4.13: Participant rankings of each display type in the control study.

able to use RCC Leaders, or another leader selection method that keeps a relatively even

distribution of leaders throughout the swarm.

The interesting finding for this study is that, in contrast to the prior study, RCC Leaders

did quite well. One explanation for this is that because the task involved moving a swarm

into a goal region, the strict bounds of the swarm were not as important, but rather the

location and shape of the swarm. Because RCC Leaders selects robots evenly throughout

the swarm, this information is still accessible to the user, although not as directly. MVEE

Leaders, on the other hand, do provide some measure of spatial bounds of the swarm, but

lacks information about the internal density of robots and in general makes using Gestalt

properties to recognize swarm behavior difficult. Also interesting is that the participant

rankings do not match their performance for the display. Participants ranked the RCC

Leader method as least preferred, yet MVEE Leaders performed the worst. This suggests

that users may feel less confident about or trusting toward the swarm under the RCC display

method. While not necessarily detrimental to performance, this is still worrisome from the
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designer’s perspective. Ideally, performance should match the user’s trust or confidence in

the swarm.

The final study, presented next, will begin to investigate this question of trust. Because

the visualization of a swarm is the easiest way to impact user trust outside of modifying the

swarm’s behavior, particular care needs to be taken to ensure the display does not cause

confusion or undesirably decrease the operator’s trust.

4.4 FOURTH STUDY: SWARM TRUST

Visualizations of swarms can serve many purposes. The main one, as explored in the pre-

vious studies, is to improve operator understanding, prediction, and control of the emer-

gent behaviors the swarm performs. A secondary purpose is to ensure the user has proper

trust in the swarm. While performance and trust do not always correlate, undertrust or

overtrust—where operators rely too much or too little on the automated system—is gener-

ally undesirable. Transparency, however, has been shown to increase trust in automation,

and therefore it important to see if the visualizations of swarms—in effect, the vehicle for

transparency—has the same effect as transparency in other types of automation.

The overall design of the study is similar to the previous task, with the main change

being that user trust is now queried in pre- and post-questionnaires, as well as during the

trials themselves. Furthermore, the task has changed from moving the swarm to a predefined

goal region, to a more open-ended target searching task, which forces the user to interact

with the swarm more, and provides greater opportunities for success or failure. The final

difference is that rendezvous is used in conjunction with flocking—the main task will have

users employing flocking most of the time, however rendezvous is a helpful tool to recollect

the swarm if it becomes disconnected into many parts, which is undesirable for this particular

task.

The parameters used for the flocking in this particular study are given in Table 4.5. The

rendezvous algorithm used is different from the one presented in Section 3.1, however, and

will be introduced in the following section.
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Table 4.5: Simulation parameter values for trust study.

Variable Value

d1 2.5 meters

d2 3.0 meters

r 6.0 meters

vmax 3.0 meters/sec

αmax 6π radians/sec

wa 1.0 or 0.6

wc 1.0

wr 1.25

4.4.1 Study Design

The swarm consisted of 32 robots, which began at random positions and orientations within

a 10× 10 meter box centered at the origin of the simulation environment. The environment

extended from ±200 meters in both the x- and y-dimension. The participants had two

possible commands during a trial: change the goal heading of the leaders (done by dragging

a line on the screen in the desired direction) during flocking, or switch to rendezvous, which

sets the goal vector of each robot to the center of mass of the entire swarm. This allowed the

user to reconnect disconnected parts of the swarm: by invoking the rendezvous command, the

interface queries each robot for its position, and then computes the center point coordinates

and returns that to the swarm. While this is not “swarmish” in the sense that it breaks the

scalable, distributed nature of swarms, it is meant to be a rarely-used, emergency reconnect

command. The environment always had 20 randomly-generated rectangular obstacles, each

with a random length and width between 5 and 25 meters. Overlaps creating more complex,

non-rectangular obstacles were allowed, but no obstacles were allowed within the swarm’s

starting space.

The main task involves moving the swarm throughout the environment to discover ini-
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tially hidden targets. There are 100 targets total randomly dispersed throughout the free

space of the environment. At each simulation time step, if a robot is within range of a

target, one “unit” of information from that target is collected and relayed to the nearest

leader to return to the display. Once 1,200 units of information about a target are gathered,

the target is considered found and added to the total count discovered. Note that this is

roughly equivalent to a single robot viewing a target for 20 seconds, or five robots viewing

a target simultaneously for 4 seconds. This was used to mimic real-world scenarios where

lots of information about a particular object or region need to be gathered. For instance,

in human search and rescue scenarios expending resources to extract a person is costly, so

an operator needs to be extra careful to ensure something reported by a robot is actually

a victim in need of rescue, and not a piece of furniture or rubble that merely looks like a

person. This also highlights the importance of keeping the swarm together: many robots

together can identify targets quickly while still moving in a group. If instead the user spreads

each robot out to its own exclusive region, more suspected targets may be seen initially, but

it will take longer for each one to be identified. Furthermore, it will be more difficult to

move a disconnected swarm to a new region, as they will either have to be reconnected or

each commanded individually (which, as is the case in this study, is often not even possible),

both of which are costly actions that consume a lot of the operator’s time.

The participants were separated into two groups, for a between-subjects design. The

control group was shown a näıve display, where the robot positions, environment, and number

of targets found were shown. The second group was called the “high transparency” group.

This group received all the information of the control group, but in addition were shown the

connections between the robots (i.e. a line is drawn between two robots on the display if they

can communicate), as well as a graph on the side which shows the last one minute of statistics

about the swarm size and number of targets found. Therefore, these participants could see

when the swarm becomes larger (covers more area, but is at a higher risk of separation)

along with when targets were found, and determine for themselves if there is a benefit to

having a larger or smaller swarm. The display of the robots is shown in Figure 4.14 and the

high transparency information graph in Figure 4.15.

Prior to the main experiment, participants filled out a survey asking about their general
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Figure 4.14: Display of the swarm and environment during the trust study. The robots

are shown on the left in black, with gray lines between robots that can communicate with

each other. The yellow region shows where the swarm has already explored. Identified,

but unverified targets are seen at the edges of the explored region, and are shown in green.

Verified targets are shown in purple. Obstacles are shown in teal. In the control group (low

transparency) the robot connections are not shown.

trust in automation, adapted with permission from [18] (see Appendix), after which they

had a chance to train on the simulator with the swarm by performing the main task for

five minutes in their condition group (control or high transparency). The participants then

completed three five-minute trials of the task described above in the assigned condition. The

first trial is exactly as described above. The second of these trials was distinct in that, at five

instances throughout the trial, the weight of the alignment vectors of every robot dropped
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Figure 4.15: Information graph shown to participants in the high transparency conditions

of the trust study. The blue line of the graph tracks the swarm size in m2 (here currently

488m2), and the purple markers denote when targets were found (19 total in the previous

60 seconds). The graph tracks the last 60 seconds of the trial. In the control group (low

transparency) the graph is not shown—only a text label displaying the total targets found

so far is visible to the participant.

from 1.0 to 0.6. This was employed to mimic failures in robot sensing or movement that

can often occur in real-world systems, to determine if trust is adversely affected. The failure

points were randomly assigned so that one occured during each of the five minutes of the

trial, no two failure points were within 30 seconds of each other and no failure point occured

in the first 20 seconds of a trial. Having trials both with and without these failures allowed

for a comparison of how high transparency impacts trust both when the swarm is performing

correctly and when it is unreliable. In both of the first two conditions, the user was also
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queried for their trust value in the swarm at thirty-second intervals, on a scale from -10

(lowest trust value) to +10 (highest trust value). Participants were free to adjust this value,

which is always present, at any time, but the mandatory update points were added to ensure

the current trust value in the system—and shown on the display—accurately reflected the

users current trust. The third and final trial were be identical to the second, except that

participants were queried for trust after each command given, instead of every 30 seconds.

The main performance measure is the number of targets found during each of the five-

minute trials. Secondary to that is the total area explored, which should correlate with

targets found. Other secondary measures include the number of rendezvous and flocking

commands given, as well as the total time spent performing each behavior. More time

flocking will generally mean more targets found, as rendezvous typically does not move the

swarm throughout new area, and thus is unlikely to lead to the discovery of new targets.

Furthermore, these measures, in addition to the trust explicitly reported by the user, are

useful for future work to build a model of user trust whereby the swarm itself can estimate

the operator’s current trust level and adapt its behavior accordingly. Such work is out of the

scope of this thesis, but is useful to consider for future research nonetheless. The analysis

will use these measures of performance to determine if the high transparency condition leads

to better performance at the task or higher trust in the swarm. Furthermore, the data can

be used to see if features of the swarm, such as heading variance of its members or total size

taken up, correlate with higher or lower trust and performance.

After each of the trials, participants were given a specific trust questionnaire, similar to

the general trust questionnaire and also adapted with permission from [18] (see Appendix).

The specific trust questionnaire is divided into three categories of three questions each:

Performance Expectancy, Process Transparency, and Purpose Influence. The participants

also complete a NASA-TLX survey after each trial [47].

4.4.2 Participant Details

Participants were recruited from the University of Pittsburgh and surrounding area. There

were 22 participants total, with an age range of 19-37 years old (median or 25). Of the
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participants, 11 were male and 11 were female.

4.4.3 Hypotheses

The primary two hypotheses of this study is that the high transparency condition will give

both better performance and higher trust overall. This is due to the fact that the high trans-

parency condition shows more information about the swarm’s size and degree of separation,

which should allow the users to feel more confident in their assessments of whether the swarm

is going to stay together or is about to break apart. This higher degree of performance will

mean more targets found and more area explored. Therefore, the hypotheses for this study

are as follows:

• H1: The high transparency condition will give better performance (more targets found)

on average.

• H2: The high transparency condition will lead to higher trust as reported by participants.

4.4.4 Results

The analysis first focuses on comparing the main performance measures between trans-

parency conditions. The results found that those in the low transparency (control) group

did no worse at finding targets than those in the high transparency group (F (1, 51) = 2.84,

p = .104). If we relax the requirement to include targets seen but not fully explored, we

find that those in the high transparency group found more targets, but only at a marginal

significance level (F (1, 51) = 3.65, p = .062). The results also show that failures did not

impact participants’ abilities to find more targets, as there was no significant difference be-

tween trials with failures and those without (F (1, 51) = 2.33, p = .133). If we focus on

explored area instead of targets found, we discover that those in the high transparency con-

dition cover more area than those in the control condition, but again the results are only

marginally significant (F (1, 51) = 2.86, p = .097).

If we look specifically at the results for transparency between failure and non-failure

trials, we find nearly identical results. In the trials without failures, those in the high

transparency group found statistically the same number of targets as those in the control

83



group (F (1, 51) = 1.44, p = .241). Relaxing the requirement to include targets seen but

not fully explored, we similarly find that those in the high transparency condition perform

better, but only at the marginally significant level (F (1, 51) = 3.55, p = .071).

Moving on to the comparison of trust as reported by the participants, we find that there

were no significant results between transparency and control conditions for the trust level

reported by users during the trial (F (1, 51) = 2.46, p = .123). Participants also report no

differences in trust during the trials between failure and non-failure trials (F (1, 51) = 1.09,

p = .301, see Figure 4.16). However, we do find significant results when looking at the post-

survey responses of user trust. Surprisingly though, those in the control condition reported

higher trust on the surveys than those in the high transparency condition (F (1, 51) = 8.91,

p = .004). This seems to be driven largely by the increase in trust for Performance Ex-

pectancy (F (1, 51) = 4.26, p = .044) and Purpose Influence (F (1, 51) = 13.24, p < .001).

Interestingly, the section of the survey focused on transparency—Process Transparency—

gave no significant result (F (1, 51) = 2.17, p = .147). Another interesting finding is that

the results from the NASA-TLX survey given at the end of each trial show that partici-

pants reported a higher workload in the high transparency trials than in the control trials

(F (1, 51) = 12.93, p < .001, see Figure 4.17). However, a simple mediation analysis shows

that the relationship between condition (high transparency vs. control) and trust was not

mediated by workload. Significance of this indirect effect was tested using nonparametric

bootstrapping procedures using 1,000 samples. The bootstrapped effect was measured at

0.27, and the 95% confidence intervals ranged from [-0.07, 0.89], p = .180.

Investigating trends for participants overall gives some significant correlations. Generally

speaking, more targets found resulted in a higher level of trust as reported during the trials,

although the effect was small and results only marginally significant (t = 1.86, r2 = 0.045,

p = .068). Similar results were found for all targets seen, not just those fully explored

(t = 1.74, r2 = 0.037, p = .089). By investigating features of the swarm we see that

swarm size correlates with trust as reported during trials, although the effect was small and

significance marginal (t = 1.86, r2 = 0.04, p = .068). Average variance in swarm heading,

however, more strongly correlated with trust during the trials, with higher variance giving

lower trust (t = 3.60, r2 = 0.187, p < .001).
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Figure 4.16: Average total trust scores given by users for the final trust survey.

Finally, if we look at the third trial, where participants reported their trust after each

command issued, we can make comparisons between trusted and untrusted commands—that

is, commands where the participants reported positive or neutral trust versus commands

where participants reported negative trust (distrust). Here, we find that untrusted com-

mands came during periods of higher variance in the swarm members’ headings (p < .001)

and larger physical swarm sizes (p < .001). No other swarm state features yielded significant

results.

4.4.5 Discussion

The results clearly fail to confirm both hypotheses H1 and H2 in Section 4.4.3. Higher

transparency failed to either improve performance or improve trust. In fact, the higher
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Figure 4.17: Average workload scores given by users for the NASA-TLX survey.

transparency actually led to lower trust in some cases. One possible explanation for the lack

of improvement given by the higher transparency involves how the transparency was given to

participants. In the experiment, extra information was shown on the left side of the screen,

away from the main operation of the swarm. Responses given by participants after the

experiments completed indicated many of them felt it was either unnecessary or distracting,

as it drew their attention away from the operation of the swarm. Therefore, a conclusion

that can be drawn is that if improved or more detailed visualization is to be added to a

human-swarm interface, it should be overlaid or integrated with the swarm itself—having

participants move their gaze between different disconnected areas of the interface seems to

have a negative impact. This would explain particularly why trust dropped, as participants

distracted by those extra visualization elements felt as though the system (which includes

86



the interface) was deliberately making things more difficult.

The recommendation then is not that improved visualization is always a bad thing,

but that it should be significantly limited and not distract from the main operation of

the swarm. In future studies, designers of HSI interfaces should focus on displaying more

information about the swarm within the swarm itself. For instance, to display variance in

swarm headings, one could overlay a cone on the swarm whose width increases or decreases

based on heading variance. Similarly, future studies could investigate this fact more deeply

by asking participants about which elements the preferred and which they did not. It may

be the case in the study herein that participants found displaying the connections between

the robots as helpful, but the extra display on the side unhelpful.
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5.0 CONCLUSIONS

The aim of this dissertation is to begin a line of researching investigating how displays

of swarms for human operators can be improved, and what aspects of swarms need to be

highlighted in such displays. Up until this point, there has been little to no research inves-

tigating these questions, and it is my hope that the work presented herein will help guide

future research in the field.

Overall, the main conclusion is that the current behavior of a swarm has a significant

impact on how operators view and respond to changes in the swarm’s configuration. Some

behaviors are easier to recognize and predict than others, and therefore different behaviors

require some elements of the swarm state to be highlighted by a display, and other behaviors

may require different elements. For instance, from the results presented herein, flocking (and

likely other consensus-based behaviors) could benefit from summary information about the

degree to which consensus has been reached. Furthermore, all behaviors seem to benefit from

displays that keep the holistic, Gestalt nature of swarms intact. This research, along with

the large body of work in human perception, give credence to the idea that large collectives

of things moving in sync with each other tend to be viewed as a single group or single entity.

Therefore, breaking this will likely be to the detriment of the main task at hand.

We can now begin to answer the questions posed at the beginning of this work:

1. What variables or characteristics of a swarm are the most valuable to improving an

operator’s ability to understand and predict the swarm state?

The most important variables to show, from the results presented herein, are global vari-

ables describing the overall nature of the swarm. These are variables such as total swarm

size or heading variance. Particularly, variables upon which the swarm is performing
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consensus may be of particular interest to operators of the swarm. Furthermore, dis-

plays of these variables should show them in a way that does not either detract from the

singular, holistic nature of swarm movement or distract the user from the swarm and the

task at hand.

2. Can a visualization that maximizes operators’ abilities to understand and predict the

swarm also improve their ability to give proper control the swarm?

The results of the first three studies were remarkably similar, so it would seem that

displays good at achieving proper recognition and prediction for users of the swarm’s state

are also useful for control tasks—at least with simple flocking-style control algorithms for

completing the task. Future work should investigate whether this holds for other more

complex tasks.

3. Finally, can a visualization that achieves good results in accordance with the prior two

questions also improve the operator’s trust and confidence in the swarm, and is there a

risk of a good visualization making operators too trusting?

Using the results of the first three studies, the fourth study aimed to focus on flocking,

and display extra information about variables that seemed important from the prior

studies: particularly that of swarm size and whether or not the swarm was cohesively

composed as a single entity. However, results from the final study showed that these

elements as they were displayed actually gave poorer performance. This does not mean

that visualizations highlighting these seemingly important variables are a bad idea, but

rather that special care should be taken to ensure they are not distracting from the main

task. Future work should focus on limiting the cognitive impact of these extra interface

elements and determining if smarter visualizations can indeed improve performance.

There are numerous avenues for future work to build off of the results presented here.

Primarily, researchers in human-swarm interaction should focus on integrating elements of

the display with the swarm itself, and investigate how to best overlay important global data

that may not be immediately evident by viewing the swarm by itself. Furthermore, research

should expand this work to include other types of tasks and behaviors to see if the results here

translate more generally to HSI, or are specific to certain types of tasks. Finally, and most

importantly, as the cost of robots and sensor continue to decrease, researchers should move
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this work to robots performing desired tasks in the real world. Moving from simulation to

actual implementation always presents unforeseen problems, and answering questions about

how to best display information about a swarm to its operator requires real-world swarms

to fully answer. The important takeaway from this work, however, is that visualization of

swarms is considerably more complex than single robots or multiple independently-operating

robots, and that smarter visualization of swarms does not always mean more visualization.

The important thing that any designer of an HSI interface should remember is not to break

the natural appeal and easy recognition of coordinating collectives of agents. Humans have

been viewing such collectives in flocks of birds and schools of fish for millennia, and we should

use this to our advantage when displaying artificial swarms.
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APPENDIX

ITEMS IN TRUST QUESTIONNAIRES

The following tables show the trust questionnaires given in the final experiment. These

questionnaires are adapted from those first presented in [18].
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Table A1: General trust questionnaire - given before experiment.

Performance Expectancy

Allowing a computer to automate tasks increases my effectiveness

Allowing a computer to automate tasks improves my output quality

Allowing a computer to automate tasks increases my chances of achieving

higher performance

Process Transparency

The information provided by computers when automating tasks is generally of

high quality

Computers provide sufficient information about their automation process

I am satisfied with the information provided by computers when they automate tasks

Cultural-Technological Context

I prefer to use a computer to automate tasks under high workload situations

Using a computer to automate tasks allows me to expend less effort

Using a computer to automate tasks poses less risk than performing the task manually
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Table A2: Specific trust questionnaire - given after experiment.

Performance Expectancy

The automated control laws improved my performance

The control laws enabled me to accomplish the task more quickly

The control laws increased my productivity

Process Transparency

My interaction with the swarm was understandable

Interacting with the control laws was user-friendly

The control laws made the correct choices while the swarm was moving

Purpose Influence

I am confident about the performance of the control laws

When a difficult issue arose, I felt comfortable depending on the control laws to

guide the swarm

I could rely on the control laws to ensure good performance
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