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ABSTRACT 

Imitation Learning for Swarm Control using Variational Inference 

 

Hafeez Jimoh 

Swarms are groups of robots that can coordinate, cooperate, and communicate to achieve tasks 
that may be impossible for a single robot.  These systems exhibit complex dynamical behavior, 
similar to those observed in physics, neuroscience, finance, biology, social and communication 
networks, etc. For instance, in Biology, schools of fish, swarm of bacteria, colony of termites 
exhibit flocking behavior to achieve simple and complex tasks.  Modeling the dynamics of flocking 
in animals is challenging as we usually do not have full knowledge of the dynamics of the system 
and how individual agent interact. The environment of swarms is also very noisy and chaotic. We 
usually only can observe the individual  trajectories of the agents.  

This work presents a technique to learn how to discover and understand the underlying governing 
dynamics of these systems and how they interact from observation data alone using variational 
inference in an unsupervised manner. This is done by modeling the observed system dynamics as 
graphs and reconstructing the dynamics using variational autoencoders through multiple 
message passing operations in the encoder and decoder. By achieving this, we can apply our 
understanding of the complex behavior of swarm of animals to robotic systems to imitate flocking 
behavior of animals and perform decentralized control of robotic swarms. The approach relies on 
data-driven model discovery to learn local decentralized controllers that mimic the motion 
constraints and policies of animal flocks. To verify and validate this technique, experiments were 
done on observations from schools of fish and synthetic data from boids model. 
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, multi-robot systems have gained significant attention in various fields

[1], [2] including manufacturing, transportation, exploration, and surveillance. These systems

consist of multiple autonomous robots that collaborate to achieve complex tasks more effi-

ciently and effectively than individual robots. Decentralized control, where each robot makes

decisions independently based on local information, is a promising approach to achieve robust

and scalable multirobotic systems.

However, designing decentralized control strategies for multirobotic systems is a chal-

lenging problem due to the inherent complexity and uncertainty in the environment. Tradi-

tional approaches often rely on explicit modeling and explicit communication among robots,

which can be computationally expensive, prone to errors, and difficult to scale up. Therefore,

there is a growing interest[3] in developing learning-based methods that can enable robots

to acquire control policies directly from observations and adapt to dynamic environments.

Animals like fish and social insects are known to coordinate their actions to accomplish

tasks that surpass the capabilities of a single individual. For example, termites build large

and complex mounds, army ants organize impressive foraging raids, ants can collectively

carry large prey, and bees regulate the temperature of a hive. These animals rely on emergent

behavior for their daily survival and exhibit fascinating complex behavior that is efficient,

flexible, and robust [4]. The question is can we learn the dynamics of biological swarms and
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apply such dynamics for decentralized control of multi-robots system.

How the collective emergent behavior observed in animals arise from local interactions

between individuals is not fully understood. Biological swarms have limited and basic local

information about their environment, as well as limited communication capabilities. The

dynamics of animal motion and interactions between individuals are not explicitly known ei-

ther. Despite the absence of a centralized controller, these animals exhibit collective behavior

that includes flocking, formation, task allocation, collective transport, tolerance to the loss

of a group member etc. Moreover, insect colonies, for example, demonstrate flexibility and

robustness, which are highly desirable features in artificial systems. These natural examples,

with their evident advantages, serve as a significant source of motivation for robotic swarms.

Many early works in swarm robotics relied on some form of centralized control and

employed a bottom-up approach to designing controllers. In centralized control, a controller

computes control actions based on knowledge of the global state obtained from all agents.

There is a unit or agent responsible for planning the states of all other agents and provid-

ing trajectories for the entire system, which are then communicated to individual agents.

However, this approach presents challenges such as scalability and a single point of failure.

Swarm robots are intended to scale to an arbitrary number of robots, as a result the failure

of a single member or the controller itself may result in the failure of the entire group. Ad-

ditionally, global communication capabilities may be impossible or unfeasible under certain

conditions, posing a problem for the scalability of the collective system. Hence, decentralized

control becomes a necessary and attractive alternative to address these challenges. Research

in swarm robotics draws inspiration from decentralized control behaviors observed in animals

and insects.

There are already attempts to engineer flocking behavior like Reynolds boids virtual

agents [5] and Helbing model[6]. For instance, in [7] an example of how multi-robots imitated

group of ants trying to move preys by inferring rules from the ants to cooperatively push a

box. In a stick-pulling experiment from the ground, group of robots collaborated together by

generating abstracted macroscopic models that capture the dynamics of the robotic swarm.

The idea behind this work is to emulate, in a robotic swarm, complex emergent be-

havior seen in schools of fish in multiple robots. We assume that the robots have limited

sensing and communication capabilities. By using a data driven bayesian learning technique
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known as variational inference, we can capture the latent variables for understanding the

interactions and dynamics of schools of fish. Also, since the model parameters of the schools

of fish are not known, Variational Inference (VI), allows to approximate the posterior distri-

bution which is our guess of the observations over the model parameters. VI relies on bayes’

theorem that expresses the relationship between updated knowledge (the posterior), prior

knowledge and the knowledge coming from observation (the likelihood). The observations

(animal motion) are abstracted as graphs which allow to capture the inter-relationships be-

tween each agent in the system. By designing an encoder and decoder model and using VI

to generate our objective function, we are able to come up with predictions of future state of

animals given current state as well as determine the interactions between them. In addition,

the learned model allows us to apply it as controller for implementing motion policies in

robotic swarms.

1.2 Problem Statement

Schools of fish are challenging to learn and understand because they exhibit non-

linear dynamics, chaotic and noisy complex collective behavior that arises from individual

interactions. However, the swarm behavior of schools of fish are desired in robotics because

it is scalable for large number of robots, robust, flexible, reactive and tolerant to failure of

a member. The fish dynamics is not well understood, highly non-linear, noisy and chaotic.

Imitation learning with variational inference can allow us to learn dynamics of swarming

behavior in biological swarms. Thus, there is need for a system that can properly learn how

to model the dynamics of the schools of fish and come up with predictions of their next state

given a current state as well as the latent interactions between them.

This thesis aims to address this objective by proposing a graph variational

autoencoder-based approach to imitation learning of schools of fish. The proposed approach

will incorporate the graph structure of the fish interactions to learn a low-dimensional latent

representation of the collective behavior, which can then be used for imitation learning. The

approach will be evaluated on synthetic data from boids model and real-world data from

schools of fish to demonstrate its effectiveness and generalizability. The outcomes of this re-

search will contribute to our understanding of collective behavior and provide a foundation
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for the development of more effective imitation learning methods for schools of fish.

Overall, this thesis aims to contribute to the field of swarm robotics by proposing a

method for modeling the dynamics of schools of fish that is scalable, effective and efficient.

By demonstrating the feasibility of this approach, the learned dynamics can then be used to

generate motion policies to be used as control actions to our robotics system and the inter-

action graphs can help us determine how robot can communicate with each other effectively

while still exhibiting rich sets of motion to achieve their tasks.

1.3 Objectives

The core objective of this work is to develop a methodology for learning dynamics of

swarm motion. In order to achieve this, the following specific objectives would be met:

• Develop a variational inference learning technique to discover the dynamics of biological

swarm motion

• Develop a variational inference learning technique to discover the dynamics of obser-

vation data from boids model

• Validate emergent behavior in swarms for predicting future trajectories and free run

simulation using discovered dynamics from animal motion.
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Chapter 2

Background and Literature Review

2.1 Swarms Robotics and Multi-Robot Systems

According to [8], swarms intelligence is the discipline that that deals with natural and

artificial systems composed of many individuals that coordinate using decentralized control

and self-organization. In particular, the swarm robotics discipline focuses on the collective

behaviors that result from the local interactions of the individuals with each other and with

their environment. Swarm robotics is the study of how large number of relatively simple

physically embodied agents can be designed such that a desired collective behavior emerges

from the local interactions among agents and between the agents and the environment.

Swarms robotics are often inspired by natural systems -like schools and flocks of birds,ants -

in which large numbers of simple agents are modeled after swarms of insect or other animals

to perform complex collective behavior. Like in biological swarms, swarm robotics often

involve use of decentralized control mechanisms where each robots operate independently and

communicate with its neighbors to coordinate their behavior. Through the use of relatively

simple rules and local interactions, the goal of swarms robotics is to develop robust, scalable,

and flexible collective behaviors for the coordination or collaboration or cooperation of large

number of robots [9]. Swarms robotics is closely related to Multi robot systems because

both involves the use of multiple robots. The line between swarms robotics and multi-
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robotic system is blur and there is a significant overlap between the two fields because both

use multiple robots to achieve a task. Multi-robotic systems for instance borrow ideas and

techniques from swarms intelligence. Multi robotic system (MRS) is composed of collection

of 2 or more robots tasked with capability of doing tasks a single robot is not capable of

doing. MRS can have centralized control or decentralized control mechanisms and can involve

homogeneous or heterogeneous group of robots with same or different capabilities.

By applying time varying signals and networks to aggregation graph neural network,

imitation learning of global information of centralized controllers were used to learn decen-

tralized controllers that require local information and communication [10]

2.2 Learning dynamics and trajectories using Graph

Neural Networks

Graphs as shown in Fig. 2.1 consist of nodes and edges, where nodes represent

entities (e.g., atoms in a molecule, words in a sentence, a robot in a swarm etc), and edges

represent relationships or connections between nodes. The original graph neural network

(GNN) model for learning graph structured data was introduced in 2009. The work [11]

presented a supervised neural network model designed as an extension of recursive neural

networks and random walk models that can process cyclic, directed and undirected graphs.

Message Passing Neural Network is a type of neural network architecture that is designed for

learning on graph-structured data. The fundamental building block that other recent graph

neural network models build on is the message neural network (MPNN). MPNN has appeared

in a couple of works in interaction networks in learning molecular structures, predicting links

etc. [12]–[17]. The MPNN framework is built upon the concept of message passing, which

involves passing information or messages between nodes in a graph. It operates in a series of

iterative steps, where each step updates the representations of nodes based on the information

from neighboring nodes.

The gated graph sequence neural network (GGNN) [18] is an extension of GNN that

combines the strengths of recurrent neural networks and graph based models. The key idea

behind GGNN is the use of gated recurrent units (GRUs) to update the hidden states of
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Figure 2.1: Pictorial Representation of Graphs

nodes. GRUs are a variant of RNNs (recurrent Neural Network) that incorporate gating

mechanisms, which selectively control the flow of information and facilitate capturing long-

range dependencies. The GGNN employs these gating mechanisms to control the flow of

information during the iterative updates, enabling the network to focus on relevant informa-

tion from the neighborhood of each node. It outputs sequences like paths on a graph and

not just single outputs useful for graph-level classification. At each iteration, the GGNN

takes as input the current hidden states of nodes and the graph’s adjacency matrix. It com-

putes an update gate and a reset gate for each node based on its current hidden state and

the hidden states of its neighbors. These gates determine how much information from the

previous iteration should be preserved or discarded. The hidden states of nodes are then

updated by blending the previous hidden states with the computed update gate and reset

gate. This allows the network to learn how much of the new information should replace the

old information and how much of the previous hidden state should be retained.

Many of the aforementioned previous work are designed for problems with static graph

structures whose signals or relations are not dynamic. We have only considered graphs where

edges and features do not change. However, in the real world, there are many applications

where this is not the case. For instance, in social networks, people follow and unfollow

other users, posts go viral, and profiles evolve over time. In multi-robot system, a robot

may be attacked by an adversarial and the robot states evolve over time. This dynamic

property cannot be represented using the GNN architectures previously described in earlier

paragraph. Instead, we must embed a new temporal dimension to transform static graphs
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into dynamic ones. These dynamic networks will then be used as inputs for a new family of

GNNs: Temporal Graph Neural Networks (T-GNNs), also called Spatio-Temporal GNNs.

There are two categories of graphs with temporal signals generally: static graphs with

temporal signals where the underlying graph does not change, but features and labels evolve

over time and dynamic graphs with temporal signals where the topology of the graph (the

presence of nodes and edges), features, and labels change over time. For example, it can

represent a network of cities within a country for traffic forecasting: features change over

time, but the connections stay the same. In the second option, nodes and connections are

dynamic. It is applicable in social networks for instance

In recent time, there have been a number of work that deals with GNNs for spatio-

temporal signals on dynamic and static graphs. In Message Passing Neural Network with

Long Short Term Memory (MPNNLSTM) [19], two layers of LSTM were combined with

MPNN for COVID-19 epidemiological prediction. Nodes corresponds to different countries,

and edge weights denote represented total number of people that moved from one region to

another and GNN were employed to predict future cases. Diffusion Convolutional Recurrent

Neural Network (DCRNN) [20] introduced a graph based deep learning framework for traffic

forecasting and other spatiotemporal forecasting tasks. The diffusion convolutional layer

operates by iteratively aggregating information from neighboring nodes and updating the

node representations. It follows a message-passing scheme, where each node aggregates in-

formation from its neighboring nodes, combines it with its own representation, and produces

an updated representation. DCRNN is an autoencoder based model that combines RNN

with diffusion convolution in the encoder and decoder layer to come up with predictions. In

Dynamic Graph Autoencoder (DyGrAE) [21], a GGNN was incorporated with LSTM using

an encoder-decoder framework. The process involves a GGNN that allows to capture graph

topology over time and recurrent LSTM layers propagate the temporal informatioon across

the node at at each timestep. The encoder learns a latent representation and the decoder

auto-regressively reconstructs the dynamic graph structure using the latent representation.

DyGrAE was evaluated on dataset of animal behaviour and brain networks and result shows

the model achieves significant better performance compared to the state-of-the-art models

that learn static graph representation. There are a number of other works in literature

[21]–[26] that also deals with spatio-temporal forecasting of graph datasets which one can
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implement the techniques from them and apply to learning dynamical model of biological

swarms.

2.3 Learning Swarms behavior

There have been recent trend in the past few years to understand complex animal be-

haviours and apply the learnt policies to robotics system using machine learning techniques

[27]–[29]. Deep learning has enables tremendous progress in the area of pattern recognition

of very complex and high dimensional data. In some other works, multi-agent systems like

social networks, protein synthesis and molecule generation, there have been techniques to

understand how local interactions give rise to emergent complex behaviours [30]. This review

discusses specific related work that have applied reinforcement learning, graph neural net-

works and sparse regression technique to learn and imitate multi-agent systems or interacting

systems dynamics.

By using Inverse Reinforcement Learning, the work in [27] developed a technique to

predict the most likely route that an animal would have traveled by learning a reward func-

tion from animal trajectories to determine most preferable environmental features affecting

locomotion. In this study, the agents and action sequences correspond to animals and their

trajectories respectively, and the IRL algorithm provides a a trajectories shearwaters prefer

to follow. Using an actor critic approach for deep reinforcement learning [31], the control

of cooperative agents with limited sensing capabilities was investigated. The global position

of the agents is available to the critic but the actor only base decision on locally sensed

information. This work experiment was done in a simulated swarm environment using the

Kilobot robot platform. An LSTM network was trained to learn temporal dependencies

given a subset of animal trajectories [29]. The idea is to use the trained network as a motion

planning to be implemented on robots such that they can operate autonomously without

knowing their absolute position in a global frame. A neural network model based on genetic

algorithm was used in [28] to reproduce postural information and classify behavioral pattern

of zebra fish. There was no attempt to learn the interactions between the zebrafish. Path-

finding via Reinforcement and Imitation Multi-Agent Learning (PRIMAL) [32] is a method

that combines both reinforcement and imitation learning to teach multi-agent systems fully
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decentralized policies. In a randomized partially observable world, 1024 agents reactively

planned their paths. By making a Graph Convolutional Network (GCN) exploits the graph

structure of the agents in their RL control policy, the work in [32] was extended in [33]. The

GCN does dimensionality reduction by learning message passing functions that aggregates

and update information among the agents. Reinforcement based learning techniques is how-

ever not usually suitable for learning emergent behaviors of swarms because of challenge of

defining reward functions that rely on well-defined tasks [34].

Similar to [33], [35] was one of the foremost work that applied graph convolutional

network in form of variational autoencoders to interacting systems (particles connected by

springs, charged particles and phase-coupled oscillators (Kuramoto model) for learning in-

teractions between different nodes while simultaneously learning the dynamical model of the

interacting. Neural relational inference for interacting systems (NRI) [35] was one of the very

first work that inferred interpretable interactions between entities explicitly. Other works

like [36] and [37] only inferred interactions implicitly and the system dynamics could not be

inferred. NRI suffers from assuming that the graph network is static over time. Dynamic

neural relational inference (dNRI) [38] built upon this work and introduced a technique

of generating graph embeddings or latent variables for every point in time. This is more

practical for many interacting systems like animal swarms. The dNRI approach was demon-

strated on synthetic particle, human motion capture, basketball player, and traffic trajectory

datasets with significant improvement over baseline LSTM based methods and NRI previ-

ously mentioned. SwarmNet [39] is a variant of the decoder part of [35]. It however to

efficiently discover the swarm dynamics from positions and velocities of a set of agents.

In Sparse Identification of Nonlinear Dynamics (SINDy) [40], data driven approach

with machine learning technique was used to determine the governing equations from noisy

measurement data with a strict assumption of that the governing equations are sparse in

a high-dimensional nonlinear function space. SINDy was developed on the foundations of

sparse regression via lasso regularization [41], [42] and compressed sensing [43]–[45] and can

incorporate partial knowledge of the physics, such as symmetries, constraints, and conser-

vation law. An extension to Sindy is the implicit sindy [46] which is more suited for more

complex biological networks and solves the SINDy difficulty in discovering implicit dynamics

and rational functions. A more robust variant of SINDy and Implicit SINDy is the SINDy-
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PI( Parallel and implicit) [47]. SINDy-PI includes a constrained optimization algorithm for

each candidate function selection and a rich approach to model selection. SINDy-PI could

learn implicit ordinary and partial differential equations and conservation laws from limited

and noisy data. This approach was demonstrated on 2-link pendulum, actuated pendulum

on cart, the Belousov–Zhabotinsky PDE, and the identification of conserved quantities.

While approaches like [35], [38], [39] give good approximations of original dynamic

and interpretable interactive graphs, the predicted dynamics is not interpretable. Techniques

discussed in [40], [46], [47] allows to discover interpretable implicit and explicit governing

dynamics equations, it may not perform well like machine learning based approximators

techniques using graph convolutional network. SINDy Autoencoders [48] uses a combina-

tion of the autoencoder and SINDY approach to generate rich low dimensional interpretable

dynamical model from high dimensional observation data alone. Using agent physics neural

network termed knowledge-based neural ordinary differential equations (KNODE), decen-

tralized controllers in single-robots were used to mimic flocking behavior in swarm.

This thesis relies heavily on the techniques used in [35] and [38]. However, there is

no currently no work done yet, based on the available knowledge to the author, on applying

these techniques to observation data from schools of fish with very complex yet emergent

behavior. A closely related work is [39], but the experiment in it was only done on artificially

simulated swarms that are unable to perfectly model the intricacies in biological swarms. The

fish dataset used is available in [49].

2.4 Variational Inference as Deep State Space Models

Deep state space models are a class of machine learning models that combine elements

of deep learning and state space models. State space models (SSMs) are probabilistic models

used to describe the evolution of a latent (unobserved) state over time, along with the

observed measurements associated with the state. Deep learning models, on the other hand,

are neural network architectures capable of learning complex patterns and representations

from data.

Deep state space models (SSMs) aim to leverage the strengths of both approaches

by incorporating deep neural networks into the state space modeling framework. In these
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models, the latent state is often represented by a recurrent neural network (RNN), such as a

long short-term memory (LSTM) or a Gated Recurrent Unit (GRU). The RNN captures the

temporal dependencies and dynamics of the latent state over time. The observations in deep

state space models can be either discrete or continuous, and they are typically modeled as a

probabilistic distribution conditioned on the current state. The parameters of the observation

model are learned from the data using techniques such as maximum likelihood estimation or

variational inference.

Deep State Space Models for Nonlinear System Identification [50] treated the problem

as nonlinear system identification and introduced parameter learning for deep SSMs by

combining RNNs with variational autoencoders. The VAE are used to approximate the

output distributions of the dynamics from the RNN output. The approach in this work

is very similar to the technique presented in [50]. This work builds on it and apply the

technique to graph neural network with a graph data structure as input. In the next section

of this chapter, backgrounds to what graphs are would be introduced briefly since this is a

fundamental building block used int he methodology of this project. A number of literature

references also rely on graph theory.

2.5 Introduction to Graphs

2.5.1 Nodes, Edges and Weights

A graph is a mathematical abstraction of network structure that serves as a way

of specifying the relationships and how information is shared among collection of different

items in a network [51]. A graph typically consists of nodes with links defining the relations

between nodes called edges. In mathematical parlance, a graph G = (V , E ,W) is defined by

a finite set of nodes V = {1, ...N } and a set of edges E ⊆ V × V with weights W . Edges are

ordered pairs of labels (i , j ). We interpret (i , j ) ∈ E as i can be influenced by j. Weights

wij ∈ R are numbers associated to edges (i , j ). Weights define the strength of the influence

of j on i. Two nodes are said to be neighbors if they are connected by an edge. Graphs as

shown in Fig. 2.2 are typically drawn with little circles representing the nodes and a line

representing the connection between each pair of nodes. Graphs can appear in many domains
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like computer networks, multi-robotic systems, protein molecules, biological swarms, traffic

modeling, etc.

2.5.2 Adjacency and Degree Matrix representation

The adjacency matrix of graph G = (V , E ,W) is the sparse matrix A with nonzero

entries Aij = wij ∈ R ∀(i , j ) ∈ E An adjacency matrix is a matrix that represents the edges

in a graph, where each cell indicates whether there is an edge between two nodes. The

matrix is a square matrix of size n ×n , where is the number of nodes in the graph. A graph

is unweighted if the adjacency matrix doesn’t have weights. In that case, one can say that

all weights are units; w = 1∀(i , j ) . A value of 1 in the cell (i , j ) indicates that there is

an edge between node i and node j, while a value of 0 indicates that there is no edge. For

an undirected graph, the matrix is symmetric, while for a directed graph, the matrix is not

necessarily symmetric.

Figure 2.2: An undirected graph with 5 nodes
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For example, the adjacency matrix of the graph in Fig. 2.2 can be written as:

A =



0 w12 w13 0 0

w21 0 w23 w24 0

w31 w32 0 0 w35

0 w42 0 0 w45

0 0 w53 w54 0


(2.1)

If the graph is unweighted, then;

Aij = 1 (i , j ) ∈ E (2.2)

A =



0 1 1 0 0

1 0 1 1 0

1 1 0 0 1

0 1 0 0 1

0 0 1 1 0


(2.3)

For an undirected graph G, the degree of a given node or vertex, d(vi), is the cardinality of the

neighborhood set N , that is, it is equal to the number of vertices that are adjacent to node

in G. For example, for the graph in Fig. 2.2, the neighborhood sets are : N (v1) = [v2, v2],

N (v2) = [v1, v3, v4], N (v3) = [v1, v2, v5], N (v4) = [v2, v5] and N (v5) = [v2, v3] For each node,

it is basically the sum of all adjacent neighbors connected to the node. For the graph in

Fig. 2.2, the degree of the graph is: d(v1) = 2, d(v2) = 3, d(v3) = 3, d(v4) = 2, d(v5) = 2,

The degree matrix of G is the diagonal matrix, containing the vertex-degrees of G on the

diagonal, that is:

D =


d(v1) 0 . . . 0

0 d(v2) . . . 0
...

... . . . ...

0 0 0 d(vn)

 (2.4)

where n is the number of nodes in the graph.

The adjacency matrix is a straightforward representation that can be easily visualized
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as a 2D array. One of the key advantages of using an adjacency matrix is that checking

whether two nodes are connected is a constant time operation. This makes it an efficient

way to test the existence of an edge in the graph. Moreover, it is used to perform matrix

operations, which are useful for certain graph algorithms, such as calculating the shortest

path between two nodes.

2.5.3 Preliminaries: Machine Learning on Graphs

Machine learning models typically take grid-like arrays as inputs which could be

structured 1D or 2D dimensional data or images and videos. Graph data structures are

more more complex, have complex relationships and inter-dependency between objects and

cannot be represented on euclidean space; graphs do not typically exist in 2D or 3D spaces

like images or videos. Also, in traditional machine learning tasks with 2D or 3D data, the

correlations between different variables are not modeled explicitly. This can lead to errors in

situations where the predictions per-variable are uncertain. Whereas using a model which

properly considers the correlations among variables can ameliorate this uncertainty which

makes it challenging to model them with traditional machine learning techniques.

The task of machine learning is to learn some models from data and come up with

some prediction. In supervised learning, the goal is to use the inputs to predict the values

of the outputs. In unsupervised learning, the goal is to infer patterns or clusters of points

in the data. In machine learning with graph data structures, the traditional categories

of supervised and unsupervised categories are often blurred. The classical machine learning

tasks shown in Figs. 2.3 and 2.4 are node classification, link or relation prediction, clustering

and community detection.

Link prediction is a task that involves predicting missing or future links in a graph

based on the existing links and node features. Node classification involves assigning labels or

categories to nodes in a graph based on their features and the graph structure. Graph Neural

Networks (GNNs) [52] have proven to be effective in node classification tasks by leveraging

the connectivity patterns and node embeddings in the graph. Clustering using Graph Neural

Networks (GNNs) involves grouping nodes in a graph into clusters or communities based on

their structural connectivity and node features. GNNs have shown promise in capturing
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Figure 2.3: Node Classification

Figure 2.4: Link Prediction

the graph topology and node attributes to perform effective clustering tasks. There are

several variations and extensions of GNNs including graph autoencoders, graph attention

networks (GAT) [53], Graph Convolutional Networks (GCN) [54], and more. The choice of

the specific GNN architecture for link prediction, node classification and clustering depends

on the characteristics of the graph and the specific link prediction task at hand [52].
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Chapter 3

Methodology

This chapter discusses the methodology developed in this work. It starts by giving a

background on graph neural network as it relates to machine learning on graphs, and intro-

duces variational autoencoders which is a neural network based technique of implementing

variational inference. These are all techniques applied in this thesis.

3.1 Graph neural Networks

3.1.1 Message Passing

Message passing is the fundamental building block of a Graph Neural Network. Mes-

sage passing Neural network was first proposed in [12]. It is analagous to a multi-layer

perceptron in a neural network. Message passing involves summing the incoming message

from neighbor and combining the aggregation with the node’s previous embedding using

a linear combination and finally applying a non-linearity like RELU. The intuition behind

message passing is that every node shares information with its neighbors by aggregating

information from its local neighbors and updating its embeddings. For example, after n

iterations, every node contains information from its n-hop neighbor. In implementing this,

the first step is to creates node feature vectors (for example position and velocity in x and y

coordinate as used in this work) that represents the message the nodes wants to send to all its

neighbors. In the second step, the messages are sent to the neighbors, so that a node receives

one message per adjacent node. These messages are then aggregated by a permutation and
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order invariant function (like sum or average) at each node. The resulting vector is passed

through a neural network layer (which just means it is multiplied by some matrix W (k)
neighb

and then a non-linear activation function is used on the result to get an updated feature

state vector. The two steps for in message passing operation for an example graph is shown

below. In Fig 3.1, we see how node 1 now contains information from its neighbor (node 2)

and node 2 contains information from all its neighbors (node 1,2,3 and 4).This information

is what is referred to as messages that are aggregated and used to update the state in each

node. The message passing operation is described below and more details about it can be

Figure 3.1: message passing operation: Image used with permission by the author [55]

found in [56]. The basic GNN message passing update can be expressed as:

h t
u = σ

(
W t

self h
t−1
u + W t

neigh

∑
v∈N (u)

h t−1
v

)
(3.1)

where, the superscript t denotes the embedding functions at successive iterations of the

message passing operation; h t
u is an hidden embedding that corresponds to each node u ∈ V .

At each iteration t , messages are aggregated from all the u’s graph neighbors N (u). h t−1
u

denotes the node u embedding on a graph in previous iteration and h(t−1)
v are the embeddings

on the neighbors v ∈ N (u). At t = 1, h(0)
u represents the initial embeddings which is

equivalent to the input features for all the nodes, i.e. h0
u = xu ,∀ u ∈ V . Thus, we can

see that the GNN message passing neural network requires that we have the node features

xu ,∀ u ∈ V as input to the model. W t
self and W t

neigh are learnable neural network parameter

matrices. σ(. . . ) also denotes a non-linear activation function (RELU or tanh). In more

compact form, the message passing can be written as:

h t
u = UPDATE(h t−1

u ,m t
N (u)) = σ(W t

self h
t−1
u + W t

neighm
t
N (u)) (3.2)
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m t
N (u) =

∑
v∈N (u)

h t−1
v (3.3)

where: m t
N (u) is the “message” that is aggregated from u’s graph at time t. neighborhood

N (u)

m t
N (u) = AGGREGATE(h t

v ,∀ v ∈ N (u)) (3.4)

Since W t
self and W t

neigh comes from a neural network, (3.1) can be written in terms of f (t)
... as:

h t
u = f t

u

(
h t−1
u , f t

emb

( ∑
v∈N (u)

h t−1
v

))
(3.5)

where f t
u denotes the neural network for updating a node and f t

emb denotes the neural network

for aggregating embeddings from neighbors of a node. After t iteration the output of final

embedding layer can be defined as:

zu = h t
u ,∀ u ∈ V (3.6)

By using a neural network to learn the weights transformation for the aggregation of the

messages, graph neural networks can learn a non-linear function that captures these complex

relationships and interactions. During training, the network is trying to determine how much

modification through a non-linear transformation we need to apply on a current node feature

and its neighbors. This enables the model to effectively leverage the rich structure of the

graph and incorporate information from the node’s local and global neighborhoods in a more

expressive and flexible way.

Summarily, the basis of message passing neural algorithm is to find a non-linear

function that updates node values. Just like any neural network, our goal is to find an

algorithm to update these node values which is analogous to a layer in the graph neural

network. And then one can of course keep on adding such layers. Just as node values get

updated through message passing operation, edge values are also updated.
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3.1.2 Graph Convolutional Network (GCN)

The message passing operation in previous section is the basic building block of the

graph convolutional network. The GCN employs multiple layers of message passing operation

as shown in Fig. 3.2 to propagate and update node representations by aggregating and

transformation of neighbors information. In the GCN proposed in [54], the message passing

operation simply had a normalization factor ci ,j included in it

h t
u = σ

(
W t

self h
t−1
(u) + W t

neighbci ,j

∑
v∈N (u)

h t−1
v

)
(3.7)

where:

ci ,j = D̃− 1
2 ÃD̃− 1

2 (3.8)

In (3.8), Ã = A + IN is the adjacency matrix for the undirected graph with N nodes. The

addition of the identity matrix corresponds to adding self loops to the graph. D̃ii =
∑

j Ãij

represents the degree matrix of the graph. The above definition of the normalization factor cij

corresponds to that proposed in [54]. Di represents the degree of node i and Dj represents the

degree of node j . The logic behind GCNs is similar to that of conventional neural networks

where the the output of one layer is fed to the next one as input. The number of layers in

GCNs determine how far the messages from each node will be able to travel through the

connections of the data structure. In a two-layer network, for example, the message passing

operations happens twice and the signal will only do two hops from the source node and won’t

be affected by the info from outside of the subgraph. The specific of the problem determines

how deep the number of GCN layers. At the same time, to prevent overfitting, the selection

of depth of the GCN is carefully choosen and this can be regarded as an hyperparameter in

the algorithm.

3.1.3 Gated Graph Network Network (GGNN)

The GGNN is based on the technique discussed in [15]. In a GGNN, each node in

the graph is associated with a hidden state vector, and the connections between nodes are

represented by edges. The GGNN updates the hidden state of each node by iteratively

aggregating information from its neighboring nodes. The key idea in a GGNN is the use
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Figure 3.2: Graph Convolutional Network architecture
(Image used with permission by the author [54])

of gated recurrent units (GRUs) to control the flow of information between nodes. At each

time step, the GGNN performs the following steps:

• Message Passing: Each node aggregates information from its neighbors by passing

messages along the edges. The messages are computed by applying a learned transfor-

mation to the hidden states of neighboring nodes.

h t
v = m t

N (u) =
∑

v∈N (u)

h t−1
v (3.9)

• Update Gate: The update gate determines how much of the aggregated information

from neighboring nodes should be incorporated into the node’s hidden state. It is

typically computed using a sigmoid function, which outputs a value between 0 and 1.

A value close to 0 means that the node decides to ignore the information from neighbors,

while a value close to 1 means that the node fully incorporates the information.

u t
v = σ(Uz · [h t−1

v ] + Wz · m t
N (u)) (3.10)

• Reset Gate: The reset gate vector determines how much of the node’s previous hidden

state should be forgotten. It allows the node to selectively reset its hidden state based
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on the incoming messages. The reset gate is also computed using a sigmoid function.

r t
v = σ(Ur · h t−1

v + Wr · m t
N (u)) (3.11)

• Update Hidden State: Based on the update (u t
v) and reset gates (r t

v ), each node updates

its hidden state (h t
v). The new hidden state is computed by combining the previous

hidden state with the updated information from the aggregated messages. The update

gate (u t
v) in (3.13) determines the proportion of the updated information that is in-

corporated, while the reset gate (r t
v ) determines the proportion of the previous hidden

state that is forgotten.

h̃ t
v = tanh(Uu · [r t

i ⊙ h t−1
v ] + Wu · m t

N (u)) (3.12)

h t
v = (1− u t

v)⊙ h t−1
v + u t

v ⊙ h̃ t
v (3.13)

Wz ,Uz ,Wr ,Ur ,Wu ,Uu are all trainable and optimizable weight matrices from a neu-

ral network. By repeating the message passing, update gate, reset gate, and hidden state

update steps for a fixed number of iterations, the GGNN allows information to propagate

and flow through the graph structure. This enables the nodes to exchange information and

capture dependencies and relationships between nodes in the graph. The final hidden states

obtained after the iterations can be used for various downstream tasks, such as node classi-

fication, link prediction, or graph-level prediction. The node v aggregates messages from all

its neighbors like in a simple message passing. Thereafter, the GRU-like update functions

takes node embeddings from the other nodes and from the previous timestep to update each

node’s hidden state. hv gathers the neighborhood information of node v together with infor-

mation from the update and reset gate to determine the updated node v embedding. Thus,

given a graph, (3.13) can be concisely written in terms of the of GRU as:

h t
u = GRU(h t−1

u ,m t
N (u)) = GRU(h t−1

u , h t
v) (3.14)

where the GRU function comprises of the update gate, reset gate and update hidden state
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formulation of (3.1), (3.10), (3.11) and (3.12). v signifies all neighbors N (u) of each node u.

h t
u = GGNN(h t−1

u , h t
v ,A) (3.15)

3.2 Relation between the Boids model and Message Pass-

ing Neural Network

The Boids algorithm, developed by Craig Reynolds in 1986 and has since been widely

used in computer graphics, animation, and artificial intelligence, is a model used to simulate

the flocking behavior of birds. It is used to capture the collective behavior of a flock of birds

by defining simple rules that govern the movement and interaction of individual agents, or

"boids," within the flock.

The behavior of each boid is influenced by three main rules: Separation, Alignment

and Cohesion By combining these three rules, the Boids model can generate emergent/-

collective behavior that resembles the flocking patterns observed in real birds. Individual

boids respond to their local interactions corresponding to positions and movements of nearby

boids, leading to self-organization and the formation of cohesive flocks.

The Boids algorithm can be implemented in a computer simulation by representing

each boid as a point in space with attributes such as position, velocity, and acceleration.

In each simulation step, the algorithm calculates the updated position and velocity for each

boid based on the three rules and the positions and velocities of neighboring boids.

The fundamental basis of the message passing neural network is to learn and quantify

how much information to aggregate from all neighbors to update each node embeddings

in a graph. In each message passing operation, there is a convolution operation between

node embeddings (which are agents states) and the adjacency matrix. The idea of the

adjacency matrix is basically to make sure information is only exchanged with neighbors.

The aggregated message is eventually combined with current node embedding to determine

its next state. In the boids model, agents apply cohesion, separation and alignment forces

to adjust positions and velocity in a way that mimics the flocking behavior of animals and

produce collective motion patterns. The social policies for boids are given in (3.16)-(3.18)
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and (3.19) defines the boid controller.

C =
1

Ñ

[ Ñ∑
j=1

pj

]
− pi (3.16)

S =
Ñ∑

j=1

pi − pj

|| pj − pi ||n+1
(3.17)

A =
1

Ñ

N∑
j=1

vj (3.18)

vj+1 = kcC + ksS + kaA (3.19)

When the agents apply these forces: cohesion C, separation S and alignment A as shown in

(3.16)-(3.18), they are basically informing other agents in its neighbor their local information.

In the boids model, each boid do not have global view or knowledge of the entire flock but

only pat attention to local neighborhood information. This is similar to what happens in the

message passing neural network where messages comprising of node embeddings of adjacent

neighbors. The neural network is attempting to learn the weights to give to all contributions

from other neighbors and eventually update the node. This is analogous to selecting an

optimal gain parameters in (3.19) for the separation, cohesion and alignment forces.

The similarity between the Boids model and GNN message passing lies in the idea

of local interactions and information propagation. In the Boids model, each boid interacts

only with its nearby boids, following simple rules. Similarly, in GNN message passing, each

node in the graph interacts with its neighboring nodes by passing messages, which are then

aggregated to update the node’s representation.

where pi and pj are the 2D agents i and j. pj and vj are the 2D positions and velocity of each

agent i neighbors. kc, ksand ka are gain vectors that weight each social policy: cohesion (C),

separation (S) and alignment (A). Ñ defines the agents within a particular radius r defined

as:

Ñ = j || pj − pi ||≤ r (3.20)
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Figure 3.3: Traditional autoencoder

3.3 Traditional Autoencoders

Autoencoders are a type of unsupervised neural network that have been widely used

in machine learning for tasks such as data compression, feature learning, and data recon-

struction. The basic idea behind autoencoders is to learn a lower dimensional representation

of the input data that captures the most important features of the data. This compressed

representation is then used to reconstruct the original data with minimal loss of information.

Autoencoders as shown in 3.3 consists of two main components: an encoder that maps the

input data X to a compressed representation Z, and a decoder that maps the compressed

representation back to the original data. The encoder and decoder are trained jointly to

minimize the difference between the input data and the reconstructed data.

One of the key advantages of autoencoders is their ability to learn useful features

from high-dimensional data. By compressing the data into a lower-dimensional space, au-

toencoders can learn a more efficient representation of the data that captures its most salient

features. This compressed representation can then be used for a variety of downstream tasks,

such as classification, clustering, or anomaly detection. Autoencoders have been successfully

applied in a wide range of domains, including image recognition, speech processing, and nat-

ural language processing. Despite their success, autoencoders can be sensitive to the choice

of hyperparameters and the quality of the training data, and their performance may degrade

when applied to data that is significantly different from the training data.
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Figure 3.4: Variational graph autoencoder

3.4 Variational Graph Autoencoders

The key idea behind a Variational Autoencoder (VAE) is to learn a probability dis-

tribution over the latent variables that encode the graph. This is achieved by introducing

a probabilistic layer as shown in Fig 3.4 into the encoding process, which models the latent

variables as random variables with a specific prior distribution. During training, the net-

work learns to adjust the parameters of the prior distribution such that the encoded graph

representations can be accurately decoded back into the original input graph. The use of a

probabilistic model in the encoding process allows the VAE to generate new graph represen-

tations by sampling from the learned probability distribution. This makes VAEs a powerful

tool for generating novel data points, which can be useful for data augmentation or as a

starting point for further analysis.

We want to build a variational graph autoencoder that applies the idea of VAE to

graph-structured data. We want our variational graph autoencoder to be able to generate

new graphs. However, we can’t just straightforwardly apply the idea of VAE because graph-

structured data are irregular. Each graph has a variable size of unordered nodes and each

node in a graph has a different number of neighbors, so we can’t just use convolution directly

anymore

26



3.5 Bayesian Learning with Variational Inference

The Bayesian paradigm is a statistical/probabilistic paradigm in which a prior knowl-

edge, modelled by a probability distribution, is updated each time a new observation, whose

uncertainty is modelled by another probability distribution, is recorded. The whole idea that

rules the Bayesian paradigm is embed in Bayes theorem that expresses the relation between

the updated knowledge (the “posterior”), the prior knowledge (the “prior”) and the knowledge

coming from the observation (the “likelihood”).

Let’s assume a model where data x (containing position and velocity of agents in 2D)

is observable and are generated from a probability distribution depending on an unknown

parameter z. z is a latent variable that we don’t observe and that is not part of the data. Let’s

also assume that we have a prior knowledge about the parameter z that can be expressed as

a probability distribution p(z ). Then, when data x are observed, we can update the prior

knowledge about this parameter using the Bayes theorem as follows:

p(z | x ) = p(x , z ) = p(x | z )p(z )
p(x )

(3.21)

p(x ) =
∫

· · ·
∫

z
p(x , z ) dz0 . . . dzk (3.22)

From (3.22), it is observed that p(x ) is intractable and cannot be computed. Since p(x ) is

intractable, p(z | x ) is also intractable.

Thus instead of finding p(z | x ), we find an approximating function q(z | x ) that

is as close as possible to p(z | x ) and optimize by minimizing the error between the two

distributions by computing KL divergence between the two probability distributions. In

other words, our objective is to find:

q∗(z ) = argmin
q(z |x)∈Q

{DKL(q(z | x ) || p(z | x ))} (3.23)

Mathematically, it is the difference between entropies of probabilities distributions

DKL(Q || P) = HP − HQ (3.24)
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DKL(Q || P) = −
∫

X
PX (x ) log (PX (x )) dx +

∫
X

QX (x ) log (QX (x )) dx (3.25)

The first part of (3.25) −
∫
X PX (x ) log (PX (x )) dx can be re-expressed as

−
∫
X QX (x ) log (PX (x )) dx because the KL divergence is with respect to Q, the approxi-

mating distribution.

DKL(Q || P) = −
∫

X
QX (x ) log (PX (x )) dx +

∫
X

QX (x ) log (QX (x )) dx (3.26)

=

∫
X

QX (x ) log
(

QX (x )
PX (x )

)
dx (3.27)

From (3.27), KL divergence between the posterior p(x | x ) and the approximating

distribution q(z | x ) is given as:

DKL(q(z | x ) || p(z | x )) = Eq(z |x)

[
log

q(z | x )
p(z | x )

]
=

∫
q(z | x ) log q(z | x )

p(z | x )
d(z ) (3.28)

where Eq(.) denotes the expectation under a distribution q(.) and DKL denotes the Kullback-

Leibler divergence.

From (3.21),

DKL(q(z | x ) || p(z | x )) =
∫

q(z | x ) log q(z | x )p(x )
p(z , x )

d(z ) (3.29)

DKL(q(z | x ) || p(z | x )) =
∫

q(z | x ) log q(z | x )
p(z , x )

d(z ) +
∫

q(z | x ) log p(x )dz (3.30)

DKL(q(z | x ) || p(z | x )) = Eq(z |x) log
q(z | x )
p(z , x )

+ Eq(z |x) log p(x )dz (3.31)

DKL(q(z | x ) || p(z | x )) = −Eq(z |x) log
p(z , x )
q(z | x )

+ log p(x )dz (3.32)

DKL(q(z | x ) || p(z | x )) = −L(q) + log p(x ) (3.33)

DKL(q(z | x ) || p(z | x )) = Eq(z |x) log
q(z | x )
p(z , x )

+ Eq(z |x) log p(x )dz (3.34)
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DKL(q(z | x ) || p(z | x )) = Eq(z |x)[log q(z | x )]− Eq(z |x)p(z , x ) + log p(x ) (3.35)

where: log(p(x )is the marginal log likelihood(which cannot be computed)

We note that log p(x ) does not depend on q and we do not have an analytical solution

for it. It should also be noted that DKL is non-negative. Rearranging (3.35)as:

log p(x ) = Eq(z |x)[p(z , x )]− Eq(z |x)[log q(z | x )] + DKL(q(z | x ) || p(z | x )) (3.36)

log p(x ) = −L(q) + DKL(q(z | x ) || p(z | x )) (3.37)

if DKL(q(z | x ) || p(z | x )) ≥ 0, then we know that at minimum,

log p(x ) ≥ −L(q) (3.38)

This is why −L(q) is referred to as the evidence lower bound (ELBO). Therefore, as a func-

tion of the variational distribution, minimizing the KL divergence is equivalent to maximizing

the ELBO. The difference between the ELBO and the KL divergence is the log normalizer—

which is what the ELBO bounds. The Evidence lower bound (ELBO), L(q), can be written

as:

L(q) = Eq(z |x) log p(x )− DKL(q(z | x ) || p(z | x )) (3.39)

Eq(z |x) log p(x ) is a reconstruction error of the output of the decoder which can be

a mean square error or negative log likelihood. It defines how well the model is able to

reconstruct the data. The KL divergence is a measure of closeness between the variational

distribution and the posterior distribution. From (3.33), we see that there is still a depen-

dence on log p(x ) which is shown in (3.22) to be intractable. As a result, the objective

is re-expressed in a form that can be computed shown below. Since we now know that

minimizing KL is equivalent to maximizing the ELBO, we start with the expression of the

ELBO.
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L(q) = Eq(z |x) log
p(z , x )
q(z | x )

(3.40)

L(q) = Eq(z |x)[log p(z , x )− log q(z | x )] (3.41)

L(q) = Eq(z |x) log p(z , x )− Eq(z |x) log q(z | x ) (3.42)

L(q) = Eq(z |x) log p(x | z )p(z )− Eq(z |x) log q(z | x ) (3.43)

L(q) = Eq(z |x) log p(x | z ) + Eq(z |x) log p(z )− Eq(z |x) log q(z | x ) (3.44)

L(q) = Eq(z |x) log p(x | z ) + Eq(z |x)[log p(z )− log q(z | x )] (3.45)

L(q) = Eq(z |x) log p(x | z ) + Eq(z |x)[log
p(z )

q(z | x )
] (3.46)

L(q) = Eq(z |x) log p(x | z )− Eq(z |x)[log
q(z | x )
p(z )

] (3.47)

L(q) = Eq(z |x) log p(x | z )− DKL(q(z | x ) || p(z )) (3.48)

All terms in (3.48) are known and this serves as the objective. The KL term is the

negative divergence between the variational distribution q(z | x ) and the prior. Its objective

is to encourage probabilities distribution that are close to the prior.

3.6 Dataset Collection and Pre-processing

This subsection presented the method utilized to obtain and preprocess the dataset

for training. We also showed the steps involved in building and training the network based

on techqniues previously intriduced in the previous sub-sections.

Two datasets were used for the experiments in this work: biological swarms data

from schools of fish and artificial data boids model. For the biological swarms, the data was

obtained from the works of [57]. Real life video motion capture data of guppies are provided

and were passed through trex software [58] to obtain the observation data (position and

velocity in 2D) and visual field information. To obtain the adjacency matrix, We relied on

visual field information data and assume edges connection only when a fish is in the field of

view of another fish. Fig. 3.5 shows the visual field information in 2D space (a projection
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Figure 3.5: Visual field of view of Focal 1 Individual. Image used with permission by the
authot [57]

from the 3d scene). In Fig 3.5, the focal individual(1), the field of view of the left eye is

marked by orange, the right eye is marked by blue color and binocular vision marked by the

pink region. The focal individual(1) can see most of the other fishes except 3 which is the

grey region. Visible individuals are marked with (Ai ,j = 1) in the adjacency matrix where i

is the focal individual index and j are all the neighbors of i.

In Fig. 3.5, the Right field of the fish is represented with blue and left fields with

Orange. Regions of binocular region are marked pink. The trajectories generated by the

biological swarms and observations from Boids model using (3.16)-(3.19) are of the size

T × N × D where T is the length of the time series, N is the number of agents in the

environment and D is the dimension of the space in which the N entities exist. A graph which

represents how the agents interact each other is associated with each step of a trajectory. The

observations from each agent is given by the vector [x (t), ẋ (t)] where x (t) is the coordinate

vector of an entity and ẋ (t) is the velocity vector. In our experiments, an assumption that

the trajectories from boids exist in a two-dimensional x and y coordinate is made, which

means that x ∈ R4 for position and velocity. At each time step, the graph structure contains
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the node embeddings for each node with dimension of D=4.

The dataset was divided into training, validation and test set and they were all nor-

malized between 0 and 1 as shown in the eqn. (3.49) below:

xnorm
i =

xi − xmin

xmax − xmin

(3.49)

3.7 Architecture design

We use an unweighted graph Gt = (Vt , Et) to describe the topological structure of the

schools of fish/agent, and treat each fish/agent as a node, where Gt is an ordered sequence of

T graph snapshots G = G1,G2, ...,GT . V is a set of nodes, V = {v1, v2, , vN}, N is the number

of the nodes, and e t
kj ∈ Et is a pair of nodes (k , j ) ∈ Et : Vt × Vt and represents an edge at

time step t. Et is a set of edges. The adjacency matrix A is used to represent the connection

between roads, A ∈ RN×N . The adjacency matrix contains only elements of 0 and 1. The

element is 0 if there is no link between roads and 1 denotes there is a link. The adjacency

matrix is dynamic and changed every time step with respect to the field of view/occlusion

of the agents.

The architecture design used to implement this work is shown in Fig. 3.6. The feature

matrix X N×T×D represents the states information of the fish for all timestep T with N nodes

and D dimension. At a single time step t, we have Xt ∈ RN×D where D = 4 representing the

position and velocity in x and y direction. Generally, the node feature is the state of the fish

that is observable. AT each training epoch, a graph Gt = (Vt , Et) which can be described by

the node features and adjacency matrix of (N ×N ) passes through the network at once, the

network calculates the loss and in the next N × D timestep repeats the same process until

all T graphs passes through the network for one epoch. The losses for all T for this epoch is

calculated and averaged, back propagation happens and the process repeats itself for several

epochs until wet of parameters that minimize error or achieve training objective is met.

The function of the encoder is to infer latent embeddings for the graph per timestep. Given

input node features x = [x t
1 , ẋ t

1 , x t
2 , ẋ t

2 ] corresponding to the position and velocity in x and

y coordinate at time t for each nodes (N = 10), the encoder computes q(z | x ) through a

series of mesgraph Gt = (Vt , Et) which can be described by the node features and adjacency
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Figure 3.6: Variational Graph autoencoder architecture design

matrix of (N × N ) passes through the network at once, the network calculates the loss and

in the next N × D timestep repeats the same process until all T graphs passes thrpugh

the network for one epoch. The losses for all T for this epoch is calculated and averaged,

back propagation happens and the process repeats itself for several epochs until wet of

parameters that minimize error or achieve training objective is met.sage passing operations

using Graph Convolution network previously discussed in 3.1.2 for each time step t ∈ T

where z is a latent representation of the states in a graph. The input x at each time step

is a N × 4 vector. The other input A is an adjacency matrix of N × N of 0 or 1 entry to

denote the presence or absence of edges between all the N agents The encoder network

consist of a Gated Graph Neural network (GGNN) as discussed in section 3.1.3 followed by

2 Graph convolutional layers discussed in section 3.1.2. The output from the 2 GCNs is

used to generate the parameters (mean µi and variance log(σi)) of the latent embeddings.

The mean and variance is then used to create a probabilistic distribution of the latent

distributions.

In the architecture, GGNN has input dimension equivalent to dimension of the node

feature (input dimension, D = 4) and the output dimension is chosen to be 16. In the GCN1,

the input dimension is the output dimension of the previous layer and the output dimension

of GCN2 is 16 also. In GCN3, input dimension is 16 and output dimension is 4. GCNµ and
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GCNσ both have input dimension of 4 and output dimension of size 4.

h t
u = x t

u (3.50)

h t−1
v1 = [xv ]

t−1 (3.51)

h t
v1 = GGNN(h t

u , h
t−1
v1 ,A) (3.52)

h t
v2 = GNN2(h t

v1,A) (3.53)

h t
v3 = GNN3(h t

v2,A) (3.54)

µ = GNNµ(h t
v3,A) (3.55)

log σ2 = GNNσ(h t
v3,A) (3.56)

x t
u and x t

v are features of a node u and neighbors v respectively at time t used to initialize

the input for the architecture in the GGNN layer. h t
v1, h t

v2,h t
v3, µ, log σ2 are the output at

each respective layers of the encoder in the architecture as indicated in (3.52), (3.53), (3.54),

(3.55) and (3.56).

Decoder: The decoder uses latent representation q t(z | x ) at each time step to compute

p(x | z ) and the adjacency matrix for next timestep. There are two separate decoder

models in the network architecture. The first decoder model is made up of layers of fully

connected layers for predicting node embeddings p(x | z ) with the sizes of each respective

layers indicated in Fig. 3.6. The output of this decoder is imitated agent states in the

next time-step denoted as X ′ in the architecture design of Fig. 3.6.The other decoder is for

link prediction or adjacency matrix reconstruction. Both decoders take as input the latent

embeddings. For the link prediction decoder, matrix factorization using inner product is

performed using node embeddings – similar nodes would basically have similar embeddings.

Ã = Sigmoid(ZTZ ) = σ(ZTZ ) (3.57)

where Z is the node embedding matrix obtained from the output of the encoder. σ is a non

linear activation function that returns a value between 0 and 1 given an input.

34



σ(x ) =
1

1 + e−x (3.58)

Using the dot product, nodes that are similar have the dot product to be maximal and nodes

that are different have maximal dot products. Since the idea is to connect similar nodes, one

is able to reconstruct the adjacency matrix using dot product to approximate each element

(link) of the adjacency matrix.

3.7.1 Re-parameterization trick

The re-parameterization trick [59] is a key technique used in the training of variational

autoencoders (VAEs). One of the challenges in training VAEs is that the back-propagation

algorithm used to update the network parameters relies on the assumption that the latent

variables are differentiable functions of the input data. However, since the latent variables

are modeled as random variables with a specific prior distribution, this assumption is not

true. To address this challenge, the re-parameterization trick is used to obtain a differentiable

approximation of the latent variables.

The re-parameterization trick involves sampling from a standard normal distribution

and transforming the samples using the mean and variance parameters learned by the net-

work. This transformation is differentiable and allows the gradient to be back-propagated

through the sampling process. By using the re-parameterization trick on the latent embed-

dings corresponding to the output of encoder: (mu and σ), the VAE can be trained using

standard stochastic gradient descent technique.

Z = µ+σ · ϵ (3.59)

ϵ ∼ Norm(0, 1)

3.8 Implementation

This work was implemented with Pytorch using Pytorch framework environment with

the Pytorch Geometric library [60]. Xavier Initialization [61] was used to initialize the weights
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of the network by initializing the biases to be 0 and the weights Wij at each layer to be:

Wij ∼ U

[
− 1√

n
,

1√
n

]
(3.60)

where U
[
− 1√

n ,
1√
n

]
is the uniform distribution in the interval

[
− 1√

n ,
1√
n

]
and n is the size

of the previous layer (the number of columns in W).

Adam[62] optimizer was used for stochastic optimization of the VAE optimization task.

The training of the model was done with 300 epochs using learning rate of 0.005. The

development environment was done using JupyterLab by making use of High performance

computing (HPC) GPU environment at WVU.

36



Chapter 4

Experiments and Result

4.1 Evaluation Metrics

Since we sample states discretely using the Boids model, the error is dependent on

the sampling frequency and unot of distance used. Thus, it may become challenging to

correctly estimate how the model performs. To alleviate this dependency and be able to

how accurate is a step ahead prediction with, we normalize the error using the normalization

factor L which is the mean average distance of the state vectors between two consecutive

steps in ground truth data. The AMD (Average Minimum Distance) is an evaluation metric

proposed in [63] that measures how cohesive agents in a swarm are over time. For swarms

exhibiting pure focking behavior, for example, AMD should converge to a fixed value and

not reach zero since it is assumed agents will not collide with each other. AMD is given by

(4.4). The Average Velocity Difference (AVD) also proposed in [63] measures how aligned

the velocity vectors are across all agents. For swarms exhibiting pure focking behavior, AVD

is also expected to converge to a constant value. It is given by (4.5)

L =
1

2NT

T∑
t=1

N∑
i=1

∣∣xi(t + 1)− xi(t)
∣∣ (4.1)

MSE =
1

2LN (T − 1)

T−1∑
t=1

N∑
i=1

(xi(t)− x ∗
i (t))

2 (4.2)
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MAE =
1

2LN (T − 1)

T−1∑
t=1

N∑
i=1

∣∣∣(xi(t)− x ∗
i (t))

∣∣∣ (4.3)

AMD(t) =
1

N

N∑
i=1

min
j

∣∣∣∣pi(t)− pj (t)
∣∣∣∣ (4.4)

AVD(t) =
2

N (N − 1)

∑
i ̸=j

∣∣∣∣vi(t)− vj (t)
∣∣∣∣ (4.5)

where t is the current timestep, N is the number of agents, xi and xj represents the observed

states (position and velocity) of agents i and j respectively; and pi and pj are the positions

of agents i and j, respectively; vi and vj are the velocity vectors of agents i and j .

4.2 Result with Biological Swarms and Boids

Utilizing the trained model of the VAE network architecture earlier presented in

previous section, we generated new swarm configurations by sampling from the latent space.

The generated swarms exhibited diverse and realistic behaviors, demonstrating the VAE’s

ability to learn and reproduce the complex dynamics of swarms. Experiments were done for

different step predictions. This result shows and compare predicted (imitated) trajectory

to actual trajectory of the agents observed for each agents. A collective trajectory for the

original and imitated trajectory for all 10 boids agents is shown in Fig. 4.1a and Fig. 4.1b.

Similar results were obtained for biological swarms shown in Fig. 4.2a and 4.2b. Predicted

trajectory of 10 boids agent using the learnt controller is shown in Fig. 4.3 and 4.4 for the

boids agents and fish respectively. During training, the MAE and MSE error for the schools

of boids and fish (guppies) per epoch is as shown in Fig. 4.9 and 4.10. On the test data, the

model tries to predict for K prediction steps ahead. Fig. 4.11 and 4.12 shows the MSE and

MAE obtained per K prediction step.

Furthermore, we evaluated the reconstruction accuracy of the VAE by comparing

the original swarm observations with their reconstructed counterparts, and achieved rela-

tively appreciable reconstructions, indicating the effectiveness of the VAE in capturing and

representing swarm behavior. Fig. 4.5 shows the snapshot at different time steps of the re-
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constructed graph network that represents the interactions among the agents. The numeric

value of the reconstruction accuracy per timestep is shown graphically in Fig. 4.13. Table I

and II shows the aggregated AMD and AVD for the boids and fish agents when evaluated on

the test date split. Comparions of evaluation metric was made in the tables between tech-

nique using Graph VAE in this work, DCRNN [20] and [21] which were previously briefly

discussed in the literature review.

(a) (b)

Figure 4.1: a: Ground Truth Boids trajectories, b: Imitating Boids trajectories

(a) (b)

Figure 4.2: a: Ground Truth Boids trajectories, b: Imitating Boids trajectories
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Predicted trajectory of 10 boids agent using the learnt controller. The sub-
figures (a)-(f) show the snapshots of the swarm at t = 100, 200, 300, 500, 700 and 900
respectively. 40



(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Predicted trajectory of 10 guppies agent using the learnt controller. The
subfigures (a)-(f) show the snapshots of the swarm at t = 100, 200, 300, 500, 700 and 900
respectively. 41



(a) Ground Truth Interactions at t=100 (b) Predicted Interactions at t=100

(c) Ground Truth Interactions at t=200 (d) Predicted Interactions at t=200

(e) Ground Truth Interactions at t=500 (f) Predicted Interactions at t=500

Figure 4.5: Swarm interactions for the 10 agents using the learnt controllerat t = 100, 200,
and 500
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(a) Boids (b) Fish

Figure 4.6: Edge Reconstruction accuracy

(a) AMD (b) AVD

Figure 4.7: Evaluation Metric on boids imitated trajectory
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(a) AMD (b) AVD

Figure 4.8: Evaluation Metric on Guppies imitated trajectory

(a) MSE per epoch for Boids (b) MAE per epoch for Boids

Figure 4.9: MSE and MAE per per epoch on training data for boids

4.3 Free Run Experiment

One of the main idea behind this work is to answer the question: Can agents flock

given an initial position and a discovered dynamics from observations?. In order to answer

this question, free run experiments was done to evaluate the observations of agents given

an initial position. This model was tested on the model trained by the schools of fish data.

The result obtained is shown in Fig. 4.14. The AMD and AVD obtained which measures
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(a) MSE per epoch (b) MAE per epoch

Figure 4.10: MSE and MAE per per epoch on training data for Fish data

(a) MSE per prediction step for artificial
swarms

(b) MAE per prediction step for artificial
swarms

Figure 4.11: MSE and MAE per Prediction steps for boids. Subfigures a-b show the MSE
and MAE per on test data

how cohesive and aligned agents are with one another also indicates that there is some level

of swarm behavior observed. The animation here also better represents flocking behavior

observed given a random initial position.
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(a) MSE (b) MAE

Figure 4.12: MSE and MAE per Prediction steps for guppies. Subfigures a-b show the
MSE and MAE per on test data

Graph VAE DyGrEncoder DRCNN
MSE 0.146 0.902 0.3452
AMD 0.96 0.957 0.902
AVD 3.47 2.451 2.5734

Table I: Evaluation Metric on Imitated trajectories with Guppies

Graph VAE DyGrEncoder DRCNN
MSE 0.354 0.235 0.415
AMD 0.7123 0.5642 0.763
AVD 1.542 0.956 1.345

Table II: Evaluation Metric on Imitated trajectories with Boids Artificial Swarm
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(a) (b)

Figure 4.13: Edge Reconstruction accuracy
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(a) (b)

(c) (d)

Figure 4.14: Free run simulations different initial positions
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Chapter 5

Discussion and Conclusion

5.1 Discussion

A key main findings of this research is that variational inference provide a powerful

framework and optimization objective for capturing and modeling the learning dynamics of

biological swarms. Through the encoding and decoding processes of VAEs, we were able to

extract representations of swarm behaviors and reconstruct them. This suggests that VAEs

can effectively capture the underlying structure and patterns of swarm dynamics, enabling

us to study and analyze their learning processes in a systematic manner. The result obtained

for the AMD and AVD is able to give us a measurement of how much cohesive and aligned

are the floacking properties of the agents. The MSE error evaluates the distance between

the imitated trajectory and original swarm trajectory. Normalizing the MSE as discussed

in the previous chapter allows us to quantify and give meaning to the MSE. We are able

to understand that MSE error close to a value of 1 indicates that the imitated(next step

prediction) trajectory is as close to the average of the difference between successive steps.

The plots shown for the reconstructed edges in Fig. 4.13 indicates that we are able to recon-

stuct accuracy to a certain extent but the accuracy result obtained is not so high hence such

result needs improvement possibly through other techniques or hyperparameter tuning. Im-

portantly, the findings also shed light on the role of individual agent in collective behavior in

biological swarms. It was observed that the VAE not only captured the collective behaviors

of the swarm but also revealed the individual variations within the swarm. This suggests that
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individual learning and adaptation contribute to the overall dynamics and emergent proper-

ties of the swarm. Understanding the interactions between individual and collective learning

can provide valuable insights into how biological swarms achieve robustness, flexibility, and

adaptability in response to changing environmental conditions.

The implications of the findings extend beyond the specific domain of biological

swarms. The application of VAEs to model and understand complex systems has broader

relevance in fields such as robotics, artificial intelligence, and social sciences. The ability

of VAEs to capture the dynamics of collective behaviors and uncover underlying patterns

can inform the design of intelligent systems that exhibit emergent properties and robust-

ness which is particularly useful for imitation learning using decentralized controllers for

multi-robot systems.

5.2 Limitations and Future directions

While this study has provided valuable insights into the learning dynamics of bi-

ological swarms using VAEs, there are several directions for future research that warrant

exploration. Firstly, an effective way of measuring how good the result of this work is

comparison of evaluation metrics with other learning methods like [35], [38]–[40], [46], [48]

discussed in the literature review. This is an important step and result common to similar

works in the literature and a future direction that is worthy of exploration.

Also, investigating the impact of different swarm parameters, such as swarm size,

density, and communication range, on the learning dynamics would provide a more compre-

hensive understanding of swarm behavior. Additionally, incorporating external stimuli or

environmental factors into the VAE framework could shed light on how swarms adapt and

learn in response to changing conditions.

Moreover, exploring the potential of reinforcement learning techniques combined with

VAEs could enable the study of swarm learning in more complex and dynamic environments.

Reinforcement learning can help elucidate the decision-making processes and learning strate-

gies employed by biological swarms, leading to a deeper understanding of their intelligence

and adaptability.

Furthermore, at the moment, the encoder latent representation is not informative and
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interpretable. While it is a latent representation, the idea is that the encoder should capture

latent variables like cohesion force, separation force and alignment forces of boids model that

determine the progression of agent states over time.

In the future, we would like to implement the controller on multiple robots to test the

effectiveness of the proposed method in the real world. A promising direction is testing and

adapting the GNN controller for specific application scenarios like flocking and goal seeking.

This would also open up the possibilities of adding perception capabilities (such as vision)

and exploring communication techniques that work well with the decentralized controller.

5.3 Conclusions

In this work, we have explored the application of variational inference techniques to

multi-robot systems. Our primary goal was to develop a framework that allows robots to

imitate and learn from the collective behaviors of biological swarms, with the aim of achieving

enhanced coordination, adaptability, and efficiency in multi-robot systems.

Through extensive experimentation and analysis, we have demonstrated the effec-

tiveness of variational inference in tackling key challenges in multi-robot systems. We have

shown that variational methods can accurately infer the latent variables governing robot

behaviors and provide robust estimates even in the presence of incomplete and noisy data.

Furthermore, our proposed algorithms have proven to be scalable, allowing for the efficient

inference of large-scale multi-agent systems.

One of the primary contributions of this work is the development of novel varia-

tional inference algorithms. By considering the unique characteristics of these systems, such

as inter-robot dependencies and coordination, we have designed algorithms that effectively

capture the joint behavior of multiple agents while still maintaining computational tractabil-

ity.

While this work has made significant progress in advancing the field of variational

inference for multi-robot systems, there are still several avenues for future research. One

important direction is the exploration of online and distributed variational inference algo-

rithms that can handle real-time and dynamically changing environments. Additionally,

incorporating more expressive probabilistic models and designing algorithms that explicitly
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capture complex inter-robot interactions could further enhance the capabilities of multi-robot

systems.

In conclusion, this work has demonstrated the power and potential of variational infer-

ence in addressing the challenges of multi-robot systems. By developing novel algorithms and

leveraging probabilistic modeling, we have shown that variational inference can effectively

infer latent variables, handle uncertainties, and allow for imitation of flocking bahaviour ob-

served in bioligical swarms. We hope that our findings will inspire further research in this

area, leading to more robust, adaptive, and intelligent multi-robot systems in the future.

The link to the code to run and repeat the experiments in this work can be found here: Link

to Code on Github
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