2,050 research outputs found

    The Use of Bioinformatic Tools in Symbiosis and Co-Evolution Studies

    Get PDF
    Through millions of years, the multicellular organisms have coexisted and coevolved with the surrounding microorganisms, in an almost symbiotic relationship forming a complex entity known as holobiont. The composition and functions of these microbial communities were limited during many years to only a mere fraction, due to the use of culture-based techniques. The advent of molecular-based techniques allowed the identification of uncultured organisms in a culture-free manner. In recent years, the development of next generation sequencing techniques have allowed the high-throughput study of microbial communities allowing the identification and classification of otherwise uncultured microorganisms in a given environment, tissue or host through metagenomics. The next generation sequencing techniques have been used in the functional study of microbial assemblages and were able to identify the role of the microorganisms in biogeochemical cycles, pathogenic processes, metabolism and development, through metatranscriptomics. Taken together, the next generation sequencing based-studies have shown the existence of a complex metabolic network in different hosts and environments, with the microbial communities. This chapter will focus in different available bioinformatic tools that are suitable to study symbiosis and coevolution processes in a given sample

    gNOMO : a multi-omics pipeline for integrated host and microbiome analysis of non-model organisms

    Get PDF
    The study of bacterial symbioses has grown exponentially in the recent past. However, existing bioinformatic workflows of microbiome data analysis do commonly not integrate multiple meta-omics levels and are mainly geared toward human microbiomes. Microbiota are better understood when analyzed in their biological context; that is together with their host or environment. Nevertheless, this is a limitation when studying non-model organisms mainly due to the lack of well-annotated sequence references. Here, we present gNOMO, a bioinformatic pipeline that is specifically designed to process and analyze non-model organism samples of up to three meta-omics levels: metagenomics, metatranscriptomics and metaproteomics in an integrative manner. The pipeline has been developed using the workflow management framework Snakemake in order to obtain an automated and reproducible pipeline. Using experimental datasets of the German cockroach Blattella germanica, a non-model organism with very complex gut microbiome, we show the capabilities of gNOMO with regard to meta-omics data integration, expression ratio comparison, taxonomic and functional analysis as well as intuitive output visualization. In conclusion, gNOMO is a bioinformatic pipeline that can easily be configured, for integrating and analyzing multiple meta-omics data types and for producing output visualizations, specifically designed for integrating paired-end sequencing data with mass spectrometry from non-model organisms

    Metagenomic analysis of silage

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Metagenomics is defined as the direct analysis of deoxyribonucleic acid (DNA) purified from environmental samples and enables taxonomic identification of the microbial communities present within them. Two main metagenomic approaches exist; sequencing the 16S rRNA gene coding region, which exhibits sufficient variation between taxa for identification, and shotgun sequencing, in which genomes of the organisms that are present in the sample are analyzed and ascribed to "operational taxonomic units"; species, genera or families depending on the extent of sequencing coverage. In this study, shotgun sequencing was used to analyze the microbial community present in cattle silage and, coupled with a range of bioinformatics tools to quality check and filter the DNA sequence reads, perform taxonomic classification of the microbial populations present within the sampled silage, and achieve functional annotation of the sequences. These methods were employed to identify potentially harmful bacteria that existed within the silage, an indication of silage spoilage. If spoiled silage is not remediated, then upon ingestion it could be potentially fatal to the livestock.Authors would like to thank Andrew Bird for the silage samples and Audrey Farbos of the Exeter Sequencing Service for her assistance in preparing DNA sequencing libraries. Exeter Sequencing Service and Computational core facilities at the University of Exeter. Medical Research Council Clinical Infrastructure award (MR/M008924/1). Wellcome Trust Institutional Strategic Support Fund (WT097835MF), Wellcome Trust Multi User Equipment Award (WT101650MA) and BBSRC LOLA award (BB/K003240/1

    Bioinformatics for the human microbiome project

    Get PDF
    Microbes inhabit virtually all sites of the human body, yet we know very little about the role they play in our health. In recent years, there has been increasing interest in studying human-associated microbial communities, particularly since microbial dysbioses have now been implicated in a number of human diseases [1]–[3]. Dysbiosis, the disruption of the normal microbial community structure, however, is impossible to define without first establishing what “normal microbial community structure” means within the healthy human microbiome. Recent advances in sequencing technologies have made it feasible to perform large-scale studies of microbial communities, providing the tools necessary to begin to address this question [4], [5]. This led to the implementation of the Human Microbiome Project (HMP) in 2007, an initiative funded by the National Institutes of Health Roadmap for Biomedical Research and constructed as a large, genome-scale community research project [6]. Any such project must plan for data analysis, computational methods development, and the public availability of tools and data; here, we provide an overview of the corresponding bioinformatics organization, history, and results from the HMP (Figure 1).National Institutes of Health (U.S.) (NIH U54HG004969)National Institutes of Health (U.S.) (grant R01HG004885)National Institutes of Health (U.S.) (grant R01HG005975)National Institutes of Health (U.S.) (grant R01HG005969

    A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer

    Get PDF
    The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.Peer Reviewe

    DNA metabarcoding of forensic mycological samples

    Get PDF
    DNA metabarcoding and massive parallel sequencing are valuable molecular tools for the characterization of environmental samples. In forensic sciences, the analysis of the sample’s fungal population can be highly informative for the estimation of post-mortem interval, the ascertainment of deposition time, the identification of the cause of death, or the location of buried corpses. Unfortunately, metabarcoding data analysis often requires strong bioinformatic capabilities that are not widely available in forensic laboratories. The present paper describes the adoption of a user-friendly cloud-based application for the identification of fungi in typical forensic samples. The samples have also been analyzed through the QIIME pipeline, obtaining a relevant data concordance on top genus classification results (88%).The availability of a user-friendly application that can be run without command line activities will increase the popularity of metabarcoding fungal analysis in forensic samples

    Metagenomics — A Technological Drift in Bioremediation

    Get PDF
    Nature has its ways of resolving imbalances in its environment and microorganisms are one of the best tools of nature to eliminate toxic pollutants. The process of eliminating pollutants using microbes is termed Bioremediation. Metagenomics is a strategic approach for analysing microbial communities at a genomic level. It is one of the best technological upgradation to bioremediation. Identification and screening of metagenomes from the polluted environments are crucial in a metagenomic study. This chapter emphasizes recent multiple case studies explaining the approaches of metagenomics in bioremediation in different contaminated environments such as soil, water etc. The second section explains different sequences and function-based metagenomic strategies and tools starting from providing a detailed view of metagenomic screening, FACS, and multiple advanced metagenomic sequencing strategies dealing with the prevalent metagenomes in bioremediation and giving a list of different widespread metagenomic organisms and their respective projects. Eventually, we have provided a detailed view of different major bioinformatic tools and datasets most prevalently used in metagenomic data analysis and processing during metagenomic bioremediation
    corecore