268 research outputs found

    Investigation of cancer cell identification in suspension by bioimpedance spectroscopy

    Get PDF
    Bioimpedance has been of great significance for its applications in exploring the electrical properties of biological materials. It has been widely applied in cancer detection of tissues. However, studies at the tissue level have not achieved a consensus over the changes of impedance parameters due to the complex structure and heterogeneity of tissue. Moreover, the relationship of biological changes and their corresponding electrical changes is still unclear. Impedance research at the cellular level will help to establish the relationship between biological and electrical properties of cancer cells, which will ultimately promote the development of cancer detection. In this thesis an application of impedance spectroscopy for cancer cell identification in suspension was proposed and investigated. Two breast cell lines, MCF-10A and MCF-7 representing normal cells and cancer cells respectively were investigated in suspension by impedance spectroscopy. In order to choose a suitable method for cell suspension measurement, a comparison of two-electrode and four-electrode measurements was carried out before the investigation of cell suspensions. Electrode polarization, which is the major problem of two-electrode measurement, was studied in order to interpret the results of the two-electrode measurement. The results indicated both impedance and its parameters were significantly different between MCF-10A and MCF-7. To further analyse the electrical parameters in the two cell lines, an electrical circuit model and a physical model were adopted in this study. The impedance parameters involved were analysed and compared between two cell lines. Furthermore, the biological difference between the two cell lines was explored with biological assays. Based on the electrical and biological changes, the relationship between electrical parameters and biological features of normal cells and cancer cells was analysed and the possible biological factors influencing the electrical properties of cell will be discussed in this thesis

    Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells

    Get PDF
    Determination of cancer aggressiveness is mainly assessed in tissues by looking at the grade of cancer. There is a lack of specific method to determine aggressiveness of cancer cells in vitro. In our present work, we have proposed a bio-impedance based non-invasive method to differentiate aggressive property of two breast cancer cell lines. Real-time impedance analysis of MCF-7 (less aggressive) and MDA-MB-231 cells (more aggressive) demonstrated unique growth pattern. Detailed slope-analysis of impedance curves at different growth phases showed that MDA-MB-231 had higher proliferation rate and intrinsic resistance to cell death, when allowed to grow in nutrient and space limiting conditions. This intrinsic nature of death resistance of MDA-MB-231 was due to modulation and elongation of filopodia, which was also observed during scanning electron microscopy. Results were also similar when validated by cell cycle analysis. Additionally, wavelet based analysis was used to demonstrate that MCF-7 had lesser micromotion based cellular activity, when compared with MDA-MB-231. Combined together, we hypothesize that analysis of growth rate, death resistance and cellular energy, through bioimpedance based analysis can be used to determine and compare aggressiveness of multiple cancer cell lines. This further opens avenues for extrapolation of present work to human tumor tissue samples

    Towards Bio-impedance Based Labs: A Review

    Get PDF
    In this article, some of the main contributions to BI (Bio-Impedance) parameter-based systems for medical, biological and industrial fields, oriented to develop micro laboratory systems are summarized. These small systems are enabled by the development of new measurement techniques and systems (labs), based on the impedance as biomarker. The electrical properties of the life mater allow the straightforward, low cost and usually non-invasive measurement methods to define its status or value, with the possibility to know its time evolution. This work proposes a review of bio-impedance based methods being employed to develop new LoC (Lab-on-a-Chips) systems, and some open problems identified as main research challenges, such as, the accuracy limits of measurements techniques, the role of the microelectrode-biological impedance modeling in measurements and system portability specifications demanded for many applications.Spanish founded Project: TEC 2013-46242-C3-1-P: Integrated Microsystem for Cell Culture AssaysFEDE

    Correlation between electrical characteristics and biomarkers in breast cancer cells

    Get PDF
    Both electrical properties and biomarkers of biological tissues can be used to distinguish between normal and diseased tissues, and the correlations between them are critical for clinical applications of conductivity (σ) and permittivity (ε); however, these correlations remain unknown. This study aimed to investigate potential correlations between electrical characteristics and biomarkers of breast cancer cells (BCC). Changes in σ and ε of different components in suspensions of normal cells and BCC were analyzed in the range of 200 kHz–5 MHz. Pearson's correlation coefficient heatmap was used to investigate the correlation between σ and ε of the cell suspensions at different stages and biomarkers of cell growth and microenvironment. σ and ε of the cell suspensions closely resembled those of tissues. Further, the correlations between Na+/H+ exchanger 1 and ε and σ of cell suspensions were extremely significant among all biomarkers (pε < 0.001; pσ < 0.001). There were significant positive correlations between cell proliferation biomarkers and ε and σ of cell suspensions (pε/σ < 0.05). The microenvironment may be crucial in the testing of cellular electrical properties. ε and σ are potential parameters to characterize the development of breast cancer

    Impedance Sensing of Cancer Cells Directly on Sensory Bioscaffolds of Bioceramics Nanofibers

    Get PDF
    Cancer cell research has been growing for decades. In the field of cancer pathology, there is an increasing and long-unmet need to develop a new technology for low-cost, rapid, sensitive, selective, label-free (i.e. direct), simple and reliable screening, diagnosis, and monitoring of live cancer and normal cells in same shape and size from the same anatomic region. For the first time on using an impedance signal, the breast cancer and normal cells have been thus screened, diagnosed and monitored on a smart bioscaffold of entangled nanowires of bioceramics titanate grown directly on the surface of implantable Ti-metal and characterized by SEM, XRD, etc. following a technology patented by Tian-lab. In experiment in the aqueous solution of phosphate buffer saline (PBS), human breast benign (MCF7) and aggressive (MDA-MB231) cancer cells, normal (MCF10A) cells, and colon cancer cells (HCT116) showed characteristic impedance spectrum highly different than that of the blank sensor (i.e. no cells on the bioscaffold surface). For two sets of mixtures each containing the normal and cancer cells over a wide range of mixing ratios, the shift of impedance signals has been linearly correlated with the mixing ratios which supports the biosensor’s selectivity and reliability. After being treated with pure glucose and chemotherapeutic drug (i.e. doxorubicin of DOX) and with one after the other, the breast cancer cells showed different impedance signals corresponding to their difference in glucose metabolisms (i.e. Warburg Effect) and resistances to the Dox, thus-fingerprinting the cells easily. Based on the nanostructure chemistry, impedance equivalent circuitry and cancer cell biology, it’s the different cells surface binding on the nanowires, and different cancer cells metabolic wastes from the different treatments on the nanowires that changed the charge density on the scaffolding nanowire surface and in turn changed the impedance signals. This new method is believed expandable to quantifying and characterizing live cells and even biological tissues of different types in general

    A Sinusoidal Current Driver With an Extended Frequency Range and Multifrequency Operation for Bioimpedance Applications

    Get PDF
    This paper describes an alternative sinusoidal current driver suitable for bioimpedance applications where high frequency operation is required. The circuit is based on a transconductor and provides current outputs with low phase error for frequencies around its pole frequency. This extends the upper frequency operational limit of the current driver. Multifrequency currents can be generated where each individual frequency is phase corrected. Analysis of the circuit is presented together with simulation and experimental results which demonstrate the proof of concept for both single and dual frequency current drivers. Measurements on a discrete test version of the circuit demonstrate a phase reduction from 25 ^{\circ} to 4 ^{\circ} at 3 MHz for 2 mAp-p output current. The output impedance of the current driver is essentially constant at about 1.1 M \Omega over a frequency range of 100 kHz to 5 MHz due to the introduction of the phase compensation. The compensation provides a bandwidth increase of a factor of about six for a residual phase delay of 4 ^{\circ

    Cell impedance of cancer cells: towards novel diagnostic and therapeutic selection methods

    Get PDF
    Cancer is caused by genetic damage to DNA, this mutant cell then grows in an uncontrolled manner in the organism. Breast cancer is a one of most common cancers among women. Early detection of breast cancer is the most important way to reduce the mortality rate. Impedance measure is one of the methods for breast cancer detection. Apoptosis is programmed cell death and plays an essential role in protection of both tissues and organisms. There are many ways to detect apoptosis such as flow cytometry of PI stained cells, caspase assays and impedance measurements. The aim of this project is to use cell impedance system (CIS) to ask whether breast cancer cell lines and a normal breast cell line can be distinguished. Furthermore, whether cells undergoing apoptosis in response to the chemotherapy reagent Etoposide can be identified using CIS

    Remote Sensing of Cell-Culture Assays

    Get PDF
    This chapter describes a full system developed to perform the remote sensing of cell-culture experiments from any access point with internet connection. The proposed system allows the real-time monitoring of cell assays thanks to bioimpedance measurement circuits developed to count the number of cell present in a culture. Cell-culture characterization is performed through the measurement of the increasing bioimpedance parameter over time. The circuit implementation is based on the oscillation-based test (OBT) methodology. Bioimpedance of cell cultures is measured in terms of the oscillation parameters (frequency, amplitude, phase, etc.) and used as empirical markers to carry out an appropriate interpretation in terms of cell size identification, cell counting, cell growth, growth rhythm, etc. The device is capable of managing the whole sensing task and performs wireless communication through a Bluetooth module. Data are interpreted and displayed on a computer or a mobile phone through a web application. The system has its practical application in drug development processes, offering a label-free, high-throughput, and high-content screening method for cellular research, avoiding the classical end-point techniques and a significant workload and cost material reduction

    A CMOS Tracking System Approach for Cell Motility Assays

    Get PDF
    This work proposes a method for studying and monitoring in real-time a single cell on a 2D electrode matrix, of great interest in cell motility assays and in the characterization of cancer cell metastasis. A CMOS system proposal for cell location based on occupation maps data generated from Electrical Cell-substrate Impedance Spectroscopy (ECIS) has been developed. From this cell model, obtained from experimental assays data, an algorithm based on analysis of the 8 nearest neighbors has been implemented, allowing the evaluation of the cell center of mass. The path followed by a cell, proposing a Brownian route, has been simulated with the proposed algorithm. The presented results show the success of the approach, with accuracy over 95% in the determination of any coordinate (x, y) from the expected center of mass.Ministerio de Economía y Competitividad TEC2013-46242-C3-1-

    Regional admittivity reconstruction with multi-frequency complex admittance data using contactless capacitive electrical tomography

    Get PDF
    corecore