427 research outputs found

    Bio-molecular cancer prediction with random subspace ensembles of support vector machines

    Get PDF
    Support Vector Machines (SVMs), and other supervised learning techniques have been experimented for the bio-molecular diagnosis of malignancies, using also feature selection methods. The classification task is particularly difficult because of the high dimensionality and low cardinality of gene expression data. In this paper we investigate a different approach based on random subspace ensembles of SVMs: a set of base learners is trained and aggregated using subsets of features randomly drawn from the available DNA microarray data. Experimental results on the colon adenocarcinoma diagnosis and medulloblastoma clinical outcome prediction show the effectiveness of the proposed approach

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space

    Random subspace ensembles for the bio-molecular diagnosis of tumors.

    Get PDF
    The bio-molecular diagnosis of malignancies, based on DNA microarray biotechnologies, is a difficult learning task, because of the high dimensionality and low cardinality of the data. Many supervised learning techniques, among them support vector machines (SVMs), have been experimented, using also feature selection methods to reduce the dimensionality of the data. In this paper we investigate an alternative approach based on random subspace ensemble methods. The high dimensionality of the data is reduced by randomly sampling subsets of features (gene expression levels), and accuracy is improved by aggregating the resulting base classifiers. Our experiments, in the area of the diagnosis of malignancies at bio-molecular level, show the effectiveness of the proposed approach

    An adaptive ensemble learner function via bagging and rank aggregation with applications to high dimensional data.

    Get PDF
    An ensemble consists of a set of individual predictors whose predictions are combined. Generally, different classification and regression models tend to work well for different types of data and also, it is usually not know which algorithm will be optimal in any given application. In this thesis an ensemble regression function is presented which is adapted from Datta et al. 2010. The ensemble function is constructed by combining bagging and rank aggregation that is capable of changing its performance depending on the type of data that is being used. In the classification approach, the results can be optimized with respect to performance measures such as accuracy, sensitivity, specificity and area under the curve (AUC) whereas in the regression approach, it can be optimized with respect to measures such as mean square error and mean absolute error. The ensemble classifier and ensemble regressor performs at the level of the best individual classifier or regression model. For complex high-dimensional datasets, it may be advisable to combine a number of classification algorithms or regression algorithms rather than using one specific algorithm

    Sparse Coding Based Ensemble Classifiers Combined With Active Learning Framework For Data Classification

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (M.Sc.) -- İstanbul Technical University, Instıtute of Science and Technology, 2016Günümüzde metin sınıflandırma, görüntü kategorizasyonu, ses ve müzik türü sınıflandırması gibi makine öğrenmesi konusunda farklı disiplinlerden pek çok alanda sınıflandırma algoritmalarına olan ihtiyaç bir hayli artmıştır. Bu amaçla yeni sınıflandırıcı modeller geliştirilmekte ve mevcut algoritmaları da iyileştirme çalışmaları çoğalarak devam etmektedir. Sinyalleri ya da elimizde bulunan her bir problem örneğini bir sözlüğün temel elemanlarının ayrık doğrusal kombinasyonları olarak temsil etmekte olan sözlük öğrenme algoritmasından da bu doğrultuda veri sınıflandırma ve kümeleme alanlarında çokça faydalanılmakta olup sinyal, görüntü, ses ve video işleme uygulamalarında kullanılmaktadır. İki aşamada gerçekleştirilen sözlük öğrenmesi modelinde ayrık kodlama ve sözlük güncelleme adımları uygulanmakta ve belirli bir yakınsama elde edene kadar bu süreç iteratif olarak devam etmektedir. Ana amaç, yeniden yapılandırma hatasını azaltarak en çok ayrık gösterimi veren sözlük yapısını elde etmektir. Birçok sınıflandırıcının modellendiği ve her birinden gelen kararların birleştirilerek tek bir çıktı ürettiği süreç topluluk öğrenme olarak bilinir. Literatürde makine öğrenmesi uygulamalarının çoğunda sınıflandırıcı topluluklar tek sınıflandırıcı yöntemlerinden daha iyi başarım gösterebilmektedir. Topluluk öğrenme algoritmaları hem örnek hem de öznitelik alt uzaylarında uygulanabilmektedir. Random subspace algoritması öznitelik uzayında ve bagging algoritması da örnek uzayında en çok uygulanan topluluk öğrenme yöntemlerindendir. Öte yandan veriye erişimin kolaylaşması ile birlikte çok büyük miktarda etiketsiz veriye erişim imkânı doğmuştur. Bu tür problemler için sunulan aktif öğrenme, etiketi bilinmeyen veriler içerisinden en çok bilgi verici örnekleri seçip uzmanlar tarafından etiketleyerek eğitim kümesi içine katan bir öğrenme yöntemidir. Aktif öğrenme yapısının kurulması aşamasında etiketsiz verilerin değerlendirilip içlerinden en bilgi verici olanlarının nasıl seçileceği önemli bir sorudur. En kolay yollardan biri, örnekleri sorgulayarak sınıflandırıcı modelin sınıf etiketi konusunda en az emin olduğu sinyallerin seçilmesidir ve bu yöntem belirsizlik örnekleme (uncertainty sampling) olarak bilinir. Belirsizlik örnekleme teknikleri içinde en popüler olanlarından biri düzensizlik hesabını temel alır. Bir dağılımda ne kadar fazla düzensizlik varsa, o veri için sınıf etiketi seçimi de o derecede kararsızlık içerir ve sorgulama da o kadar bilgi verici olur. Bu çalışmanın ilk aşamasında sözlük öğrenme modeli, sınıflandırıcı topluluklarından random subspace feature selection ile öznitelik alt uzayında ve bagging ile örnek alt uzayında birleştirilerek uygulanmış ve bu sınıflandırıcılar Random Subspace Dictionary Learning (RDL) ve Bagging Dictionary Learning (BDL) olarak xxii adlandırılmıştır. Deneysel sonuçlarda önerilen yöntemlerin sınıflandırma başarımları en iyi sınıflandırıcı yöntemlerden biri olan destek vektör makinesi (Support Vector Machines - SVM) ve topluluk öğrenme tabanlı kombinasyonları (Random Subspace Support Vector Machines (RSVM) ve Bagging Support Vector Machines (BSVM)) ile birlikte karşılaştırılmıştır. UCI makine öğrenmesi veri havuzundan ve OpenML' den alınan çeşitli alanlardan on bir farklı veri kümesi üzerinde elde edilen on kat çapraz sağlama deney sonuçlarına göre sözlük öğrenme tabanlı sınıflandırıcı toplulukları, özellikle de BDL algoritması, hem destek vektör makineleri hem de sınıflandırıcı topluluklarıyla birleştirilmiş modellerine göre daha başarılı sonuçlar ortaya koymuştur. Sınıflandırma başarımlarına bakıldığında, en başarılı yöntem olan BDL 11 veri kümesinin 4 tanesinde DL, RDL SVM, BSVM ve RSVM sınıflandırıcılarından üstün gelmekte, 2 tanesinde ise DL ve RDL ile en sonuçları elde etmektedir. Bu noktada örnek altuzaylarının rastgele seçilmesiyle oluşturulan sözlük modellerinin sınıflandırma başarımına olan pozitif etkisi gözlemlenmiştir. İkinci aşamada ise uygulanan yöntemlerin her biri aktif öğrenme yapısı içerisinde kullanılmış, elde bulunan her bir sınıf için bir sözlük öğrenilerek, her iterasyonda en bilgi verici etiketsiz örnekleri etiketleyerek eğitim kümesine ekleme işlemi uygulanmıştır. Test aşamasında her yeni örnek için sınıf etiketi sözlük topluluklarının çoğunluğuna bakılarak atanmıştır. İlk aşamada eldeki eğitim kümesinin %20'si alınarak hem sözlük tabanlı hem de destek vektör makinesi tabanlı sınıflandırıcı toplulukları modellenmiş, sonraki altı iterasyonda geriye kalan etiketsiz veriler içerisindeki en çok bilgi verici %10 örneğin düzensizlik hesabı dikkate alınarak seçilmesiyle eğitim kümesi güncellenmiştir. Böylelikle iterasyon sayısı arttıkça sınıflandırma başarımı da çoğunlukla artışa geçmiş, örneklerin akıllıca seçilmesiyle oluşturulan eğitim kümesi bu sonuçlarda etkili olmuştur. Test sonuçlarında her bir veri kümesi için elde edilen en başarılı sonuçlar dikkate alınırsa, rastgele öznitelik seçimiyle oluşturulan sınıflandırıcı topluluklarına bakıldığında önerilen ARDL yönteminin ARSVM yönteminden daha başarılı olduğu görülmüştür. Örneklerin rastgele seçilmesiyle oluşturulan sınıflandırıcı toplulukları kullanıldığında ise ABSVM yöntemi ABDL yönteminden daha üstün gelmiştir. Deney sonuçlarının elde edilmesinden sonra ilgilenilmesi gereken önemli bir nokta da uygulanan yöntemlerin sınıflandırma başarımları açısından birbirine denkliğini öne süren hipotezlerin anlamlılığının ölçülmesidir. Bu doğrultuda, Friedman test ve Wilcoxon signed rank test sonuçlarına bakılmıştır. Friedman anlamlılık testinden gelen çıktılara göre aktif öğrenme altında iterasyon bazında uygulanan metotlar için en iyi sonuçlar dikkate alındığında görülen odur ki sıfır hipotezi (H0) kabul edilmemelidir, başka bir deyişle uygulanan yöntemler gösterdikleri performans açısından eşdeğer değildirler. Aktif öğrenme algoritmalarının son iterasyonlarında elde edilen başarımlar için de Friedman ve Wilcoxon signed rank testleri uygulanmıştır. Her iki test sonucunda da model çiftlerinin eş sınıflandırma performansları sundukları kanısına varılmıştır. Öte yandan pasif öğrenme kısmında uygulanan yöntemler de Friedman testiyle incelendiğinde eşdeğer oldukları görülmüştür. Bunun ardından, hangi metot çiftlerinin kendi aralarında denk performans sunup sunmadıkları sorusuna çözüm bulmak amacıyla Wilcoxon signed rank test uygulanmıştır. Sonuçlara göre DL/RDL, xxiii DL/BDL ve SVM/BSVM metot çiftleri sınıflandırma performansı olarak eşdeğer değildirler, diğer yöntemler ise denk sayılabilir.Nowadays, along with the need for classification algorithms in various areas concerning machine learning such as text classification, image categorization, audio and music genre classification, new classifier models are developed and works for improving the existing ones increasingly go on. In this direction, as dictionary learning algorithm which represents signals or each problem instance at hand with sparse linear combinations of basis elements of a dictionary is also utilized in data classification and clustering, it is used in signal, image, audio and video processing applications. In the dictionary learning model, which sparse coding and dictionary update steps are practiced and this process continues until a predetermined convergence level is attained in an iterative fashion. The main purpose is to obtain the framework of a dictionary that provides the sparsest representation while decreasing the reconstruction error. The process where a number of classifiers are modeled and decisions from each one produce a single output by a combination rule is known as ensemble learning. In literature, ensemble learning algorithms is performed both in feature subspace and instance subspace. Random subspace feature selection and bagging are the mostly applied ensemble learning methods in feature subspace and in instance subspace respectively. On the other hand, possibility of access to huge amount of unlabeled data has been increased along with getting easy access to data. Active learning, which is proposed for this type of problems, is a learning method in which the most informative instances from the unlabeled data are chosen, then labeled by an oracle and after then added to the training set. At the stage of establishing the active learning framework, evaluation of the unlabelled data and how to select the most informative ones among them is an important question. One of the easiest ways is to select the signals where the classifier is least certain about their class labels in the query phase. This method is known as uncertainty sampling. One of the most popular maximal uncertainty sampling techniques is based on entropy. The more entropy in the distribution, the more uncertain the choice of class label for that data value, and the more informative that query would be. In the first stage of this study, dictionary learning is applied in combination with random subspace feature selection and bagging ensemble models. Then, comparisons of the experimental results with support vector machine, which is one of the best classifier models, and its ensemble combinations are maintained. According to ten-fold cross validation experimental results obtained on eleven datasets from various area of specialization taken from UCI machine learning xx repository and OpenML, dictionary learning based ensemble classifiers, especially BDL algorithm, present more successful classification performance than both of SVM and its classifier ensembles. Considering the experimental results, BDL outperforms other applied methods in 4 out of 11 datasets and in 2 datasets it performs the best with the other two methods DL and RDL. As a consequence, we can infer that randomly selecting instance subspaces while constructing dictionary models has a positive effect on the classification accuracy of the established methods. In the second stage, all the dictionary base proposed methods and support vector machine counterparts are combined with active learning framework in which the most informative unlabelled training instances are labeled and integrated into the labeled training set in each learning iteration. While predicting the class labels of the test examples, the decision is made applying majority voting. After examining the experimental results, it is evident that classification accuracy mostly increases as the number of iterations goes up by the selection of training instances intelligently. Regarding to the best results obtained for each dataset by applied models, while ARDL outperforms ARSVM's classification performance, ABSVM succeeds better results than ABDL. After obtaining the experimental results, an important part to handle is to measure the significance of the hypotheses which put forward the equivalency of the applied methods based on classification accuracies. In this direction, Friedman and Wilcoxon signed rank test results were obtained both for the ensemble learning part and methods under active learning framework. According to outcomes from the Friedman significance tests, ARDL, ARSVM, ABDL and ABSVM do not perform equivalently regarding to the best results obtained for each dataset. On the other hand, Friedman significance tests and Wilcoxon signed rank tests applied to the accuracy results in the last iteration of active learning models are resulted in similar classification performance in the predetermined confidence interval. In the last part, Friedman test is practiced among DL and SVM classifiers and their ensemble models. Because there is an equivalency between classification performance differences, Wilcoxon signed rank test is applied to see pairwise model differences. As a result, DL/RDL, DL/BDL and SVM/BSVM pairs have significant differences while the other model couples performs in the same manner.Yüksek LisansM.Sc

    Asymmetric bagging and feature selection for activities prediction of drug molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activities of drug molecules can be predicted by QSAR (quantitative structure activity relationship) models, which overcomes the disadvantages of high cost and long cycle by employing the traditional experimental method. With the fact that the number of drug molecules with positive activity is rather fewer than that of negatives, it is important to predict molecular activities considering such an unbalanced situation.</p> <p>Results</p> <p>Here, asymmetric bagging and feature selection are introduced into the problem and asymmetric bagging of support vector machines (asBagging) is proposed on predicting drug activities to treat the unbalanced problem. At the same time, the features extracted from the structures of drug molecules affect prediction accuracy of QSAR models. Therefore, a novel algorithm named PRIFEAB is proposed, which applies an embedded feature selection method to remove redundant and irrelevant features for asBagging. Numerical experimental results on a data set of molecular activities show that asBagging improve the AUC and sensitivity values of molecular activities and PRIFEAB with feature selection further helps to improve the prediction ability.</p> <p>Conclusion</p> <p>Asymmetric bagging can help to improve prediction accuracy of activities of drug molecules, which can be furthermore improved by performing feature selection to select relevant features from the drug molecules data sets.</p

    Model order selection for bio-molecular data clustering

    Get PDF
    Background: Cluster analysis has been widely applied for investigating structure in bio-molecular data. A drawback of most clustering algorithms is that they cannot automatically detect the ”natural ” number of clusters underlying the data, and in many cases we have no enough ”a priori ” biological knowledge to evaluate both the number of clusters as well as their validity. Recently several methods based on the concept of stability have been proposed to estimate the ”optimal ” number of clusters, but despite their successful application to the analysis of complex bio-molecular data, the assessment of the statistical significance of the discovered clustering solutions and the detection of multiple structures simultaneously present in high-dimensional bio-molecular data are still major problems. Results: We propose a stability method based on randomized maps that exploits the high-dimensionality and relatively low cardinality that characterize bio-molecular data, by selecting subsets of randomized linear combinations of the input variables, and by using stability indices based on the overall distribution of similarity measures between multiple pairs of clusterings performed on the randomly projected data. A χ 2-based statistical test is proposed to assess the significance of the clustering solutions and to detect significant and if possible multi-level structures simultaneously present in the data (e.g. hierarchical structures)
    corecore