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SPARSE CODING BASED ENSEMBLE CLASSIFIERS COMBINED WITH 

ACTIVE LEARNING FRAMEWORK FOR DATA CLASSIFICATION 

SUMMARY 

Nowadays, along with the need for classification algorithms in various areas 

concerning machine learning such as text classification, image categorization, audio 

and music genre classification, new classifier models are developed and works for 

improving the existing ones increasingly go on. In this direction, as dictionary 

learning algorithm which represents signals or each problem instance at hand with 

sparse linear combinations of basis elements of a dictionary is also utilized in data 

classification and clustering, it is used in signal, image, audio and video processing 

applications. 

In the dictionary learning model, which sparse coding and dictionary update steps are 

practiced and this process continues until a predetermined convergence level is 

attained in an iterative fashion. The main purpose is to obtain the framework of a 

dictionary that provides the sparsest representation while decreasing the 

reconstruction error. 

The process where a number of classifiers are modeled and decisions from each one 

produce a single output by a combination rule is known as ensemble learning. In 

literature, ensemble learning algorithms is performed both in feature subspace and 

instance subspace. Random subspace feature selection and bagging are the mostly 

applied ensemble learning methods in feature subspace and in instance subspace 

respectively. 

On the other hand, possibility of access to huge amount of unlabeled data has been 

increased along with getting easy access to data. Active learning, which is proposed 

for this type of problems, is a learning method in which the most informative 

instances from the unlabeled data are chosen, then labeled by an oracle and after then 

added to the training set.  

At the stage of establishing the active learning framework, evaluation of the 

unlabelled data and how to select the most informative ones among them is an 

important question. One of the easiest ways is to select the signals where the 

classifier is least certain about their class labels in the query phase. This method is 

known as uncertainty sampling. One of the most popular maximal uncertainty 

sampling techniques is based on entropy. The more entropy in the distribution, the 

more uncertain the choice of class label for that data value, and the more informative 

that query would be.  

In the first stage of this study, dictionary learning is applied in combination with 

random subspace feature selection and bagging ensemble models. Then, comparisons 

of the experimental results with support vector machine, which is one of the best 

classifier models, and its ensemble combinations are maintained.  

According to ten-fold cross validation experimental results obtained on eleven 

datasets from various area of specialization taken from UCI machine learning 
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repository and OpenML, dictionary learning based ensemble classifiers, especially 

BDL algorithm, present more successful classification performance than both of 

SVM and its classifier ensembles. Considering the experimental results, BDL 

outperforms other applied methods in 4 out of 11 datasets and in 2 datasets it 

performs the best with the other two methods DL and RDL. As a consequence, we 

can infer that randomly selecting instance subspaces while constructing dictionary 

models has a positive effect on the classification accuracy of the established 

methods. 

In the second stage, all the dictionary base proposed methods and support vector 

machine counterparts are combined with active learning framework in which the 

most informative unlabelled training instances are labeled and integrated into the 

labeled training set in each learning iteration. While predicting the class labels of the 

test examples, the decision is made applying majority voting. After examining the 

experimental results, it is evident that classification accuracy mostly increases as the 

number of iterations goes up by the selection of training instances intelligently. 

Regarding to the best results obtained for each dataset by applied models, while 

ARDL outperforms ARSVM's classification performance, ABSVM succeeds better 

results than ABDL. 

After obtaining the experimental results, an important part to handle is to measure 

the significance of the hypotheses which put forward the equivalency of the applied 

methods based on classification accuracies. In this direction, Friedman and Wilcoxon 

signed rank test results were obtained both for the ensemble learning part and 

methods under active learning framework. According to outcomes from the 

Friedman significance tests, ARDL, ARSVM, ABDL and ABSVM do not perform 

equivalently regarding to the best results obtained for each dataset.  

On the other hand, Friedman significance tests and Wilcoxon signed rank tests 

applied to the accuracy results in the last iteration of active learning models are 

resulted in similar classification performance in the predetermined confidence 

interval. In the last part, Friedman test is practiced among DL and SVM classifiers 

and their ensemble models. Because there is an equivalency between classification 

performance differences, Wilcoxon signed rank test is applied to see pairwise model 

differences. As a result, DL/RDL, DL/BDL and SVM/BSVM pairs have significant 

differences while the other model couples performs in the same manner. 
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VERİ SINIFLANDIRMA İÇİN AKTİF ÖĞRENME ÇERÇEVESİ İLE 

BİRLEŞTİRİLMİŞ AYRIK KODLAMA TABANLI SINIFLANDIRICI 

TOPLULUKLARI 

ÖZET 

Günümüzde metin sınıflandırma, görüntü kategorizasyonu, ses ve müzik türü 

sınıflandırması gibi makine öğrenmesi konusunda farklı disiplinlerden pek çok 

alanda sınıflandırma algoritmalarına olan ihtiyaç bir hayli artmıştır. Bu amaçla yeni 

sınıflandırıcı modeller geliştirilmekte ve mevcut algoritmaları da iyileştirme 

çalışmaları çoğalarak devam etmektedir. 

Sinyalleri ya da elimizde bulunan her bir problem örneğini bir sözlüğün temel 

elemanlarının ayrık doğrusal kombinasyonları olarak temsil etmekte olan sözlük 

öğrenme algoritmasından da bu doğrultuda veri sınıflandırma ve kümeleme 

alanlarında çokça faydalanılmakta olup sinyal, görüntü, ses ve video işleme 

uygulamalarında kullanılmaktadır.  

İki aşamada gerçekleştirilen sözlük öğrenmesi modelinde ayrık kodlama ve sözlük 

güncelleme adımları uygulanmakta ve belirli bir yakınsama elde edene kadar bu 

süreç iteratif olarak devam etmektedir. Ana amaç, yeniden yapılandırma hatasını 

azaltarak en çok ayrık gösterimi veren sözlük yapısını elde etmektir. 

Birçok sınıflandırıcının modellendiği ve her birinden gelen kararların birleştirilerek 

tek bir çıktı ürettiği süreç topluluk öğrenme olarak bilinir. Literatürde makine 

öğrenmesi uygulamalarının çoğunda sınıflandırıcı topluluklar tek sınıflandırıcı 

yöntemlerinden daha iyi başarım gösterebilmektedir. Topluluk öğrenme algoritmaları 

hem örnek hem de öznitelik alt uzaylarında uygulanabilmektedir. Random subspace 

algoritması öznitelik uzayında ve bagging algoritması da örnek uzayında en çok 

uygulanan topluluk öğrenme yöntemlerindendir.  

Öte yandan veriye erişimin kolaylaşması ile birlikte çok büyük miktarda etiketsiz 

veriye erişim imkânı doğmuştur. Bu tür problemler için sunulan aktif öğrenme, 

etiketi bilinmeyen veriler içerisinden en çok bilgi verici örnekleri seçip uzmanlar 

tarafından etiketleyerek eğitim kümesi içine katan bir öğrenme yöntemidir.  

Aktif öğrenme yapısının kurulması aşamasında etiketsiz verilerin değerlendirilip 

içlerinden en bilgi verici olanlarının nasıl seçileceği önemli bir sorudur. En kolay 

yollardan biri, örnekleri sorgulayarak sınıflandırıcı modelin sınıf etiketi konusunda 

en az emin olduğu sinyallerin seçilmesidir ve bu yöntem belirsizlik örnekleme 

(uncertainty sampling) olarak bilinir. Belirsizlik örnekleme teknikleri içinde en 

popüler olanlarından biri düzensizlik hesabını temel alır. Bir dağılımda ne kadar 

fazla düzensizlik varsa, o veri için sınıf etiketi seçimi de o derecede kararsızlık içerir 

ve sorgulama da o kadar bilgi verici olur. 

Bu çalışmanın ilk aşamasında sözlük öğrenme modeli, sınıflandırıcı topluluklarından 

random subspace feature selection ile öznitelik alt uzayında ve bagging ile örnek alt 

uzayında birleştirilerek uygulanmış ve bu sınıflandırıcılar Random Subspace 

Dictionary Learning (RDL) ve Bagging Dictionary Learning (BDL) olarak 
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adlandırılmıştır. Deneysel sonuçlarda önerilen yöntemlerin sınıflandırma başarımları 

en iyi sınıflandırıcı yöntemlerden biri olan destek vektör makinesi (Support Vector 

Machines - SVM) ve topluluk öğrenme tabanlı kombinasyonları (Random Subspace 

Support Vector Machines (RSVM) ve Bagging Support Vector Machines (BSVM)) 

ile birlikte karşılaştırılmıştır.  

UCI makine öğrenmesi veri havuzundan ve OpenML' den alınan çeşitli alanlardan on 

bir farklı veri kümesi üzerinde elde edilen on kat çapraz sağlama deney sonuçlarına 

göre sözlük öğrenme tabanlı sınıflandırıcı toplulukları, özellikle de BDL algoritması, 

hem destek vektör makineleri hem de sınıflandırıcı topluluklarıyla birleştirilmiş 

modellerine göre daha başarılı sonuçlar ortaya koymuştur.  

Sınıflandırma başarımlarına bakıldığında, en başarılı yöntem olan BDL 11 veri 

kümesinin 4 tanesinde DL, RDL SVM, BSVM ve RSVM sınıflandırıcılarından üstün 

gelmekte, 2 tanesinde ise DL ve RDL ile en sonuçları elde etmektedir. Bu noktada 

örnek altuzaylarının rastgele seçilmesiyle oluşturulan sözlük modellerinin 

sınıflandırma başarımına olan pozitif etkisi gözlemlenmiştir. 

İkinci aşamada ise uygulanan yöntemlerin her biri aktif öğrenme yapısı içerisinde 

kullanılmış, elde bulunan her bir sınıf için bir sözlük öğrenilerek, her iterasyonda en 

bilgi verici etiketsiz örnekleri etiketleyerek eğitim kümesine ekleme işlemi 

uygulanmıştır. Test aşamasında her yeni örnek için sınıf etiketi sözlük topluluklarının 

çoğunluğuna bakılarak atanmıştır.  

İlk aşamada eldeki eğitim kümesinin %20'si alınarak hem sözlük tabanlı hem de 

destek vektör makinesi tabanlı sınıflandırıcı toplulukları modellenmiş, sonraki altı 

iterasyonda geriye kalan etiketsiz veriler içerisindeki en çok bilgi verici %10 örneğin 

düzensizlik hesabı dikkate alınarak seçilmesiyle eğitim kümesi güncellenmiştir. 

Böylelikle iterasyon sayısı arttıkça sınıflandırma başarımı da çoğunlukla artışa 

geçmiş, örneklerin akıllıca seçilmesiyle oluşturulan eğitim kümesi bu sonuçlarda 

etkili olmuştur.  

Test sonuçlarında her bir veri kümesi için elde edilen en başarılı sonuçlar dikkate 

alınırsa, rastgele öznitelik seçimiyle oluşturulan sınıflandırıcı topluluklarına 

bakıldığında önerilen ARDL yönteminin ARSVM yönteminden daha başarılı olduğu 

görülmüştür. Örneklerin rastgele seçilmesiyle oluşturulan sınıflandırıcı toplulukları 

kullanıldığında ise ABSVM yöntemi ABDL yönteminden daha üstün gelmiştir. 

Deney sonuçlarının elde edilmesinden sonra ilgilenilmesi gereken önemli bir nokta 

da uygulanan yöntemlerin sınıflandırma başarımları açısından birbirine denkliğini 

öne süren hipotezlerin anlamlılığının ölçülmesidir. Bu doğrultuda, Friedman test ve 

Wilcoxon signed rank test sonuçlarına bakılmıştır. Friedman anlamlılık testinden 

gelen çıktılara göre aktif öğrenme altında iterasyon bazında uygulanan metotlar için 

en iyi sonuçlar dikkate alındığında görülen odur ki sıfır hipotezi (H0) kabul 

edilmemelidir, başka bir deyişle uygulanan yöntemler gösterdikleri performans 

açısından eşdeğer değildirler.  

Aktif öğrenme algoritmalarının son iterasyonlarında elde edilen başarımlar için de 

Friedman ve Wilcoxon signed rank testleri uygulanmıştır. Her iki test sonucunda da 

model çiftlerinin eş sınıflandırma performansları sundukları kanısına varılmıştır. Öte 

yandan pasif öğrenme kısmında uygulanan yöntemler de Friedman testiyle 

incelendiğinde eşdeğer oldukları görülmüştür. Bunun ardından, hangi metot 

çiftlerinin kendi aralarında denk performans sunup sunmadıkları sorusuna çözüm 

bulmak amacıyla Wilcoxon signed rank test uygulanmıştır. Sonuçlara göre DL/RDL, 
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DL/BDL ve SVM/BSVM metot çiftleri sınıflandırma performansı olarak eşdeğer 

değildirler, diğer yöntemler ise denk sayılabilir. 
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1.  INTRODUCTION 

Nowadays, a plenty of latent information are available in databases to be exploited 

for intelligent decision making. These databases generally contain data that is related 

to a specific category or class. When data samples come with class labels, they are 

called training data which can be used to train a model for predicting the labels of 

new unseen data samples that are called test sets. This process is called classification 

and it is a concept to investigate to which class a new data point should belong under 

favour of using the training data. Han, Kamber and Pei (2011) express the idea as 

"Classification is the process of finding a model (or function) that describes and 

distinguishes data classes or concepts, for the purpose of being able to use the model 

to predict the class of objects whose class label is unknown" (p. 24). The process is 

known as supervised learning, because a model is formed using predefined training 

data, which in fact is used as a supervisor to classify new test examples. 

There are lots of domains where classification takes place such as text categorization, 

optical character recognition, fraud detection, market segmentation, face detection, 

classification of proteins. In order to construct a classifier model, many machine 

learning algorithms have been developed and as new researches are presented, many 

others arise day-to-day. Support vector machines, decision trees, naive bayes, nearest 

neighbor, multilayer perceptron and logistic regression are some examples among the 

most popular classification algorithms. In order to obtain a good classification 

accuracy one also needs to have a good feature representation. In literature there is a 

vast amount of research to represent the features in other dimensional spaces to 

improve the classification performance such as kernels (Lu et al, 2003), wavelet 

transformation (Van de Wouwer et al, 1999), frequency representation of time 

domain signals (Sejdić et al, 2009).  

A number of media types such as imagery, video and acoustic can be sparsely 

represented by applying transform-domain methods (Elad, 2010). A lot of significant 

tasks related to such media can be handled finding sparse solutions to 

underdetermined systems of linear equations. Regarding this issue, sparse coding and 
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dictionary learning have recently aroused much interest by representing each 

problem instance as linear combinations of basis elements. These elements are 

called atoms and they compose a dictionary.  

One of the major application areas for dictionary learning is in data representation 

and classification. It has been applied in many problem areas such as signal 

processing applications (the joint analysis of correlated signals like audio-visual 

signals and stereo images) (Tošić and Frossard, 2011), texture segmentation 

(Sprechmann and Sapiro, 2010), music genre classification (Yeh and Yang, 2012) 

and saliency detection (Zhu, Chen and Zhao, 2014). The basic model for 

classification is created via generating one sub-dictionary for each category to 

represent the instances of the respective class and then combining them to reach a 

unique dictionary. The resulting dictionary base is used as a classifier that assigns a 

class label which has the least reconstruction error and the sparsest representation.  

Let us think of a scenario in which a group of doctors diagnose a certain disease for a 

patient. It is clear that the diagnosis is more reliable when the majority of doctors 

make the same decision on the patient's disease compared to the decision taken by 

the minority. From data classification perspective, in order to classify new test 

examples in a more accurate way, more than one classifier decisions can be 

integrated into the system and an agreement can be made on the final decision. This 

learning strategy is called ensemble learning and it is constituted by the combination 

of predictor/classifier model outputs, which produces a final decision for an unseen 

data point.  

Ensemble learning methods are used for classification problems as well as 

regression. Classifier ensembles can be obtained either in feature space, instance 

space or classifier level. Boosting, bootstrap aggregating (bagging), stacking, random 

subspace feature selection, random forests and adaboost are among the most applied 

ensemble learning methods (Polikar, 2006).  

Bagging is an instance-based ensemble learning method which generates subspaces 

of instances by applying random selection method with replacement. Each ensemble 

classifier produces a decision and the final prediction is their combined output. On 

the other hand, random subspace feature selection is a feature-based counterpart of 

bagging model, where a sub-group of features are randomly selected with 
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replacement to form ensemble classifiers. Taking advantage of the strengths of these 

two ensemble learning methods, classification problems can be solved more 

accurately and the variance of the individual classifiers are reduced. 

Obtaining labeled training examples for classification problems is an expensive task 

while a massive chunk of unlabelled data is available to process. For instance, let us 

think of a case where we want to predict which web pages a person can find 

interesting. In order to do this, we need the data of web pages which were marked as 

favourite by this person. The more we know about the labeling information, we can 

predict better and present more appropriate pages to recommend. On the other side, 

people are generally not willing to hand-label all the pages they like even if there are 

a lot. Active learning is a largely used framework for these kind of situations. It has 

the ability to choose the most informative unlabeled examples automatically for 

human annotation. Liere and Tadepalli (1997) state the concept as "Active learning 

in its most general sense refers to any form of learning wherein the learning 

algorithm has some degree of control over the examples on which it is trained" (p. 

591).  

Up to the present, active learning framework has been applied with many different 

classifiers for text classification, image retrieval, advertisement removal (Sun and 

Hardoon, 2010), visual object detection (Abramson and Freund, 2004), natural 

language processing (Olsson, 2009) etc. To the best of our knowledge, active 

learning has not been applied as a classifier in active learning framework. In this 

study, dictionary learning is used as a base classifier for active learning and active 

learning’s intelligent selection strategy is used to enhance the training set by 

choosing the most informative examples. 

1.1 Purpose of Thesis 

The aim of the thesis is to introduce a number of models for data classification which 

are generated by sparse coding based ensemble classifiers combined with active 

learning framework. The proposed models are examined under three main headings: 

dictionary learning, ensemble learning and active learning framework. 

In order to represent the input data using as few components as possible, dictionary 

learning is proposed as a learning model for an effective representation. Exploring 
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a sparse representation of the input data in the form of a linear combination of basis 

elements and also discovering those basis elements (i.e. atoms of a dictionary) 

themselves is the main purpose of dictionary learning.  

Another remarkable point for this thesis is to show the effect of ensemble learning 

methods on the proposed classifiers. Random subspace feature selection and bagging 

are selected as appropriate ensemble learning methods to boost the prediction ability 

of dictionary learning model. On the other side, comparisons with support vector 

machines, which is one of the state-of-the-art algorithms, and its classifier ensembles 

are also presented. Toward this goal, experiments are conducted on datasets with 

different number of features/instances from various scopes.  

Other point of purpose on the following sections is to introduce active learning 

framework and integrate it into ensemble dictionary learning model. It helps 

performing classification in cases where few number of labeled and huge number of 

unlabeled training instances are available. Entropy is employed as an uncertainty 

sampling technique for pool-based active classifier models. 

As the final contribution of this paper, several significance tests are demonstrated to 

detect differences in treatments across multiple test attempts. For this purpose, non-

parametric Friedman tests are applied to the classification accuracies of the proposed 

methods. 

1.2 Literature Review 

In literature, dictionary learning and sparse coding have been applied in diverse areas 

such as signal, image, audio and video processing applications for dimensionality 

reduction (Schnass and Vandergheynst, 2008; Tošić and Frossard 2011), denoising 

(Elad and Aharon, 2006), image restoration (Mairal et al, 2008), and image 

compression (Bryt and Elad, 2008).  

As dictionary learning doesn’t require estimating class distributions or computing 

margin between classes, it is also used for data classification and clustering 

applications where the feature vectors are computed as linear combinations of basis 

elements of a dictionary. Sapiro and Sprechmann (2010) developed a clustering 

framework in which a set of dictionaries are built for every cluster found in a given 

dataset. According to the proposed approach, dictionaries are formed by choosing the 
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ones which provide the best representation of the signals in a cluster and giving the 

sparsest solution. Besides, three standard datasets, the MNIST and USPS which are 

composed of handwritten digits and ISOLET which includes audio features from 150 

speakers were used to show the discriminative aspect of dictionary learning model. 

The experimental results showed that the proposed dictionary learning model 

provides remarkable classification performance comparable with other sophisticated 

classification algorithms such as SVM and k-NN in terms of reconstruction and 

discrimination power. 

On the subject of music genre classification, Yeh and Yang (2012) developed a 

technique enforced by dictionary learning to summarize short-time features 

(codebook) of recorded music over time, where codebook represents dictionary base. 

Dictionary base is made up of sub-dictionaries, one for each class to represent the 

characteristics of the instances in these classes. Other existing codebook generation 

methods such as conventional VQ-based and exemplar-based methods were 

compared with the proposed dictionary based method.  The proposed method was 

shown superior to others on two benchmark datasets, GTZAN composed of clips 

covering ten genres and ISMIR2004Genre including songs covering six genres using 

just the log-power spectrogram as the local feature descriptor. 

Tošić and Frossard (2011) presented dictionary learning and sparse approximation as 

a dimensionality reduction tool to find a representation adaptive to the proper 

inference of causes of the observed data. In addition, supervised dictionary learning 

was examined in a face recognition application by using the discriminative power of 

the sparse representation. The incoherency between the subspaces which represent 

data in different classes was taken into consideration.   

Recently, ensemble methods have been used to improve the classification accuracy 

of single classifiers. Ensemble classifiers are created using the outputs of multiple 

classifiers that are trained on different training datasets created by various data 

resampling procedures or trained on a single training dataset by selecting different 

classifier parameters or classifiers. 

Polikar (2006) reviewed ensemble based strategies such as bagging and its 

variations, boosting models, stack generalization etc. by emphasizing their 

importance in decision making process while dealing with classification problems. 
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Why we tend to prefer applying ensemble learning methods instead of single 

classifiers is explained from various perspectives such as reducing the risk of 

inaccurate predictions of a single model, ability of handling large volumes of data 

and easily applying divide and conquer technique in problems with complex decision 

boundaries. 

Random subspace is one of the well-known ensemble learning methods. It was firstly 

introduced to construct a decision tree classifier by randomly chosen subspaces of 

the components of the feature vector (Ho, 1998). According to the applied selection 

strategy to form random subspaces, a number of different feature selection 

techniques has been proposed such as Univariate search technique (Chow et al, 

2001), Base-pair selection (Bo and Jonassen, 2002), Forward selection (Bo and 

Jonassen, 2002), Recursive Feature Elimination, and Liknon.   

Lai, Reinders and Wessels (2006) introduced an ensemble strategy in feature space 

by incorporating informativeness of features as a selection strategy in the 

construction of each subspace. Applied multivariate feature selection technique, 

Random Subspace Method, initially selects features randomly from the original 

feature space and then, a multivariate search technique, either Liknon or Recursive 

Feature Elimination, takes place in this reduced feature space by retrieving the 

informative features. This procedure is applied iteratively by covering the large 

portions of the original features. According to the experimental results which were 

carried out in artificial datasets, ensemble based random subspace model provides 

robustness and a powerful classification performance especially in small sample size 

problems. Many other studies have been made by applying random subspace 

ensemble for functional magnetic resonance imaging (fMRI) classification 

(Kuncheva et al, 2010), the bio-molecular diagnosis of malignancies (Bertoni, 2005) 

and bankruptcy prediction and credit scoring (Nanni and Lumini, 2009) etc.  

Bagging is another ensemble learning strategy which uses randomly selected 

instance subspaces. There are various studies applying bagging for solving credit 

scoring and bankruptcy prediction (West, 2005), optical character recognition (Mao, 

1998) and day-ahead electricity price prediction (Tian and Meng, 2010). Recently, 

Zhu et al. (2014) combined ensemble learning with dictionary learning model in 

order to detect visually salient regions of an image. Instead of modeling a universal 

dictionary, the developed bagging based dictionary learning framework (EDL) is 
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constructed by applying random selection of image samples in order to train 

dictionaries independently for each subspace. In this way, more flexible multiple 

sparse representations are obtained for each of the image patches. A reconstruction 

residual based model for atom reduction over the learned dictionary is presented to 

further boost the distinctness of salient patch from the one of background. The 

resulting decision is made upon considering the outputs from each ensemble 

subspace. To the best of our knowledge there isn’t any paper that applies dictionary 

learning as base classifier for random subspace and bagging ensembles.  

The possibility of access to huge amount of data has been increased along with 

getting easy access to data. On the other hand, the majority of the available data is 

mostly unlabeled in other words we do not have enough information about its 

class/category label. Active learning, which is proposed for this type of problems, is 

a learning method in which the most informative instances from the unlabeled data 

are chosen, then labeled by an oracle and after then added to the training set to be 

used in the model construction of classification.  

Active learning can be categorized by its way of synthesizing queries either by stream-

based (Cohn et al, 1994),  pool-based (Lewis and Gale, 1994) or query synthesis 

(Angluin, 1988) methods. In this work, the focus is on pool-based active learning in 

which a large pool of instances are sampled then the base classifier chooses the best 

query to be labeled. There are numerous number of studies applying pool-based 

active learning for different purposes such as in the application of cancer diagnosis 

(Liu, 2004), image classification (Zhang and Chen, 2002) and speech recognition 

(Tur et al, 2005). 

Tong and Koller (2001) performed classification using SVM under the active 

learning framework in a text classification problem to determine which pre-defined 

topic a given text document belongs to. In the active learning part, some number of 

unlabeled instances are selected and added to the training set after learning its class 

label using one type of pool based active learning strategy. Three query strategies 

that split the version space into equal parts was proposed and they were shown to 

outperform standard passive learning counterparts. 

Sun (2010) developed an active learning model which takes the correlation values 

between features of different views under a multi-view setting. He applied canonical 
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correlation analysis to select the most informative instances to integrate them into the 

training phase in the further iterations. According to the proposed approach, it is 

assumed that one example per class is labeled. The experiments were conducted on 

text classification, advertisement removal and content-based image retrieval and it 

was showed that the proposed active learning model has superiority over the general 

random selection approach for labeling.  

Xu et al. (2014) performed active learning for dictionary construction by choosing 

the most informative examples using the reconstruction and classification error as the 

query strategy. The selected instance is only used during the dictionary update step. 

According to the experimental results conducted on a number of datasets from UCI 

Machine Learning Repository and face recognition dataset, active dictionary learning 

with small size dictionary can achieve comparable performance with other machine 

learning methods.  

1.3 Outline of the Thesis 

The rest of the thesis is organized as follows: The next chapter introduces the applied 

methodology. In the first step, sparse signal representation, dictionary learning and 

support vector machines models are explained. The following step of Chapter 2 is 

devoted to the ensemble learning methods in general and provides detailed 

knowledge on random subspace feature selection and bagging ensemble classifiers. 

Furthermore, active learning framework is stated by expanding different sampling 

scenarios used throughout literature. In the next chapter, sparse coding based 

ensemble classifiers combined with active learning framework is proposed. Chapter 

4 discusses datasets which have been used and toolboxes managed to obtain 

dictionary learning model and support vector machines classifiers. In Chapter 5 

experimental results achieved and significance tests applied are explained while 

Chapter 6 concludes the thesis with a summary of key lessons learnt.  
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2.  METHODOLOGY  

2.1 Dictionary Learning and Sparse Signal Approximation 

2.1.1 Sparse signal approximation 

Sparse representations of signals have received a great deal of attentions in recent 

years. Sources of data such as voice signals, images, radar images or heart signals 

etc. carry overwhelming amounts of data in which relevant information is often more 

difficult to find than a needle in a haystack. In this direction, having a sparse 

representation plays a fundamental role in processing signals faster and simpler as 

few coefficients reveal the information we are looking for.  

Let's define an input signal as x ϵ R
n
, D = [d1, d2, …, dk] ϵ R

n×k 
as a dictionary 

composed of a set of normalized (dj
T
dj = 1) “basis vectors”, and α ϵ R

k
  as the 

coefficient vector or the representation of the signal, also known as sparse code, then 

the sparse representation problem can be formulated as:  

                       (2.1)  

where ||α||0 indicates l0 norm of the coefficient vector α and it represents the number 

of non-zero elements in α.  

An input signal x can be represented by a linear combination of the atoms of an 

overcomplete dictionary in which the number of basis vectors is greater than the 

dimensionality of the input. However, finding the sparsest representation for a signal 

in an overcomplete basis is a very difficult computational problem because it needs 

combinatorial search and it is in the category of NP-hard problems. In order to find 

the best approximate solution to this problem, instead of non-convex l0 norm, l1 norm 

can take place by making it convex that ensures the existence of a unique global 

minimum to the above problem. Other lp norms where p is in the range [0,1] are also 

possible by imposing a stronger form of sparsity, but they lead to non-convex 

problems therefore l1 norm is commonly used. Generalized formula of the lp norm 

can be given as:  
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 (2.2)  

where             
  and after replacing the former sparsity formulation with the l1 

norm, sparse representation problem can now be represented as: 

                    (2.3)  

In general, the system under consideration can be exposed to noise, ϵ, where we need 

an alternative solution with some proximity between Dα and x. It can be expressed as 

follows:  

                              (2.4)  

2.1.2 Dictionary Learning 

The concept of dictionary learning is about the construction of dictionary directly 

from a set of existing data samples so that the learned dictionary can be well adapted 

to the purpose of sparse representation.  

Actual dictionaries can be obtained by finding a solution to the following 

minimization problem:  

                         
 

 

   

         (2.5)  

where each of            represents one input signal (data sample/instance) being 

classified, and λ is the penalty parameter that balances the trade-off between the data 

fitting term which defines the reconstruction error and the regularization term which 

determines the sparsity of the decomposition.  

The optimization problem in equation 2.5 is usually not jointly convex concerning 

variables D and α. One solution is to fix one of them, either D or α, so that the 

objective function with respect to the other variable can turn into a convex function. 

In this direction, the optimization algorithm is made up of two convex steps which 

are applied in an iterative approach until a predetermined convergence criterion is 

met:  
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 Sparse Approximation: Dictionary D is considered fixed, then coefficients 

           of signal x with respect to dictionary D are calculated by 

minimizing equation 2.5. 

 Dictionary Update: New dictionaries are computed using the obtained sparse 

coding matrix α in order to reduce the approximation error. 

2.1.3 Supervised Dictionary Learning 

Dictionary learning methods can be organized in a way that it can provide both 

reconstructive and discriminative purposes. Discriminative dictionary learning brings 

about the task of supervised classification of input signals by the inclusion of the 

class labels. Using the labels of training data ensures different data representations 

for each class by making the classification task easier. The aim of the sparse coding 

step is to find the sparsest representation of the data that has least reconstruction 

error. Both sparse representations and reconstruction error are considered for 

classification.     

In order to realize the classification phase, actual dictionary is decomposed into sub-

dictionaries each of which is trained independently with the involvement of the 

instances of a particular class. When we consider a training data consisting of c class 

labels, the corresponding dictionary base D is constructed using n sub-dictionaries as 

[D1, D2, ..., Dc] and each of them is to represent one class with the same number of 

instances. In case of classifying a new test input which we have no idea about its 

class label beforehand, actual dictionary that is the combination of class-specific sub-

dictionaries is used to encode the signal. The signal is then assigned to the class for 

which the best reconstruction is obtained and the one leading to the sparsest solution. 

If we express the idea in more detailed way, classification of a signal x given a 

collection of dictionaries [D1, D2, ..., Dc] where each Di ϵ R
n×k

 can be fulfilled by 

performing the following steps iteratively and it is displayed in Figure 2.1. 

 Compute the representation of the signal x in each dictionary Di, which are α1, 

α2, ..., αc, using sparse coding 

 Find the class membership of the signal x by comparing the cost of the 

representations, which are found in the previous step, and assigning it to the 

dictionary Di which delivers the least cost:  
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                              (2.6)  

                           
         (2.7)  
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Figure 2.1 : Iterative dictionary learning framework.                

2.2 Support Vector Machines 

Support Vector Machines (SVM) is one of the state-of-the-art algorithms which is 

applied in solving classification and regression problems, feature selection and other 

machine learning tasks. A lot of real world problems such as bankruptcy prognosis, 

face detection, analysis of DNA microarrays and breast cancer diagnosis and 

prognosis can be dealt with by inclusion of an SVM model.  
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The aim of SVM is to maximize the margin between each class so that a good 

generalization performance on unseen test instances can be obtained. Although the 

subject was introduced in the late seventies (Vapnik, 1979), it has been receiving 

increasing attention, and so the time appears suitable for an introductory review. 

In Figure 2.2, there is a classification problem for two class (+, -) dataset. The aim is 

to find a hyperplane so that "+" data points take place in one side and "-" ones are 

placed in the opposite side of this separator. SVM uses a flexible representation of 

the class boundaries. For each side, the data points which are located on the 

boundaries where the hyperplane is maximally distant from them are called support 

vectors and the gap between hyperplane and a support vector is known as margin. 

Campbell and Ying (2011) states SVM generalization error, i.e. the upper bound as 

"the bound is minimized by maximizing the margin (
 

    
, where w is a normal 

vector to bounding planes) i.e., the minimal distance between the hyperplane 

separating the two classes and the closest data points to the hyperplane" (Chapter 1, 

p. 2).  

 

Figure 2.2 : Two class data points linearly separable by a hyperplane. 

According to the Figure 2.2, a linear support vector machine is illustrated and the 

hyperplane is constructed using a simple formulation w . x + b = 0 where "." denotes 

inner product, b is bias from the origin in the input space, w is weight determining 

the orientation and x are data points taking place in the hyperplane or normal to it. 

"+" data points are placed in terms of the formula w . x + b ≥ 0 while "-" instances 

are placed by applying w . x + b < 0 so that separation makes the classification 

process an easy task. 
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Even though SVM was originally developed for binary classification, it is now 

applied in both binary and multi-class data classification problems providing an 

acceptable prediction ability.  

2.2.1 Non-separable case 

Majority of the problems are not as simple as the given scenario in Figure 2.2 

because data points cannot be convenient to be separated by a linear hyperplane due 

to non-linear clusterings found in data. For those cases, we enhance kernel functions 

to transform the non-linear data into a feature space so that linear classification can 

be applied. The choice of a kernel depends on the problem at hand because it 

depends on what we are trying to model. In the literature, there are many popular 

kinds of kernels defined to apply in complex machine learning problems such as 

polynomial kernel for modeling feature conjunctions up to the order of the 

polynomial and radial basis function kernel where  circles (or hyperspheres) are 

picked out. 

Lee, Yeh and Pao (2012) introduce SVMs for this kind of problems by making use of 

support vectors in discriminating between complex data patterns by generating a 

highly nonlinear separating hyperplane, that is implicitly defined by a nonlinear 

kernel map.  

For training data xi ϵ R
n
 , i = {1, ..., m} with class labels y ϵ R

l
 such that yi = {-1, 1} 

C-SVC can be formulated as an optimization problem given in equation 2.8. 

        
 

 
        

 

   

 

s.t.     
                           

(2.8)  

where w is the normal vector to the bounding planes (x
T
w + b = -1 for class "-" and 

x
T
w + b = 1 for class "+" according to Figure 2.3), b shows their position relative to 

the origin.   is a slack variable for soft margins which is defined for linearly non-

separable cases ( w
T
xi + b +    ≥ +1 for class "+" and w

T
xi + b +    ≤ -1 for class "+") 

and 1-norm of  ,    
 
    is called the penalty term. Due to the higher complexity of 

the separating hyperplane overfitting situation can occur by leading to poor 

generalization. In this direction, C>0 is used as a regularization parameter balancing 

the weights of the penalty term    
 
    versus the margin maximization term 

 

 
    

 . 
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Figure 2.3 : An example of linearly separable (left) and non-separable (right) 

SVM 

LibSVM (Chang and Chih-Jen, 2011) is a C/C++ based package for easily 

implementing support vector machines in other languages/softwares such as Matlab, 

Python, Java and Octave. In order to deal with binary class and multi class problems, 

the library provides SVC type of SVM. Except from SVC, SVR (Support vector 

regression) is available for regression problems and one-class SVM is also present in 

the package. In this study, one of the SVM types, C-SVC is used to classify both 

binary and multi-class datasets. 

For binary classification in C-Support Vector  Classification, a solution is found to 

the following primal optimization problem: 

        
 

 
        

 

   

 

s.t.     
                              

(2.9)  

where       is a function which maps data point xi into a higher dimensional space, 

and C, b, w and   parameters are same as the previous ones. Because of the probable 

high dimensionality of the vector w, it can be formulized by a dual problem: 

    
 

 
         

s.t.             , i = 1, ..., m 

(2.10)  
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where e is a vector which is full of ones, Q represents a m by m positive semidefinite 

matrix, and Qij ≡ yiyjK(xi,xj) where K(xi,xj) is the kernel function as K(xi,xj) ≡ 

     
        Once the problem is solved, then the optimal w satisfies 

        

 

   

      (2.11)  

and the decision function is 

                        

 

   

           (2.12)  

In this study, radial basis function is selected as the kernel function         for two 

samples x and x'. It is defined as in equation 2.13: 

             
       

   
  (2.13)  

where we can define a parameter    
 

 α 
 and result in                         

2.3 Ensemble Learning 

Ensemble learning is a paradigm where multiple learners are trained to solve a 

machine learning problem and a final decision is made after combining each output 

of single learners according to some criteria. As No Free Lunch theorem states that 

there is no single model that works best for every problem the aim of the ensemble 

learning is to boost the accuracy of the single classifiers. Besides due to the possible 

noise in the data, overlapping data distributions and outliers generally single 

classifiers cannot achieve a certain classification accuracy. These have grown the 

needs to create ensemble techniques.  

Establishing an ensemble model is made up of two stages. In the first part, a couple 

of base classifiers are generated in a parallel or sequential manner. Generally, in the 

sequential manner the construction of a base classifier may affect the construction of 

the subsequent classifiers. In the latter part, the resulting classifier outputs are 

combined to take a decision about the final classification of a new test instance. At 

this stage some type of combination schemes are applied such as majority voting for 

a classification problem. In the majority voting the class label is selected from the 
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majority of the individual classifiers’ class labels. In regression weighted averaging 

of the base regressors’ outputs gives the final prediction result. The basic framework 

of the ensemble modeling is depicted in Figure 2.4. 

Training Data

Test Data

Ensemble model construction

Apply a 

Combination 

Scheme 

(Majority Voting, 

Weighted 

Averaging etc.)

The Final 

Prediction

Apply Different 
Machine Learning 

Methods
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Outputs from Different 
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Models to 

Incoming 

Examples
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Figure 2.4 : Ensemble learning framework. 

Model ensembles are among the highly effective techniques in machine learning and 

pattern recognition applications that generally outperforms other methods. Ensemble 

learning has already been applied in a variety of domains related to machine learning 

problems such as text categorization (Dong and Han, 2004), optical character 

recognition (Chellapilla et al, 2006), face recognition (Lu et al, 2006) and gene 

expression analysis (Tan and Gilbert, 2006) etc for searching a hypothesis space to 

reach the most accurate hypothesis by reducing the total error.  

It is mostly preferred to classical single learning models because of three significant 

reasons. The first one is that there may be insufficient information in order to decide 

on which classifier performs better on the training data. A solution to this problem is 

therefore combining the ones which results in sufficiently well and it is a reasonable 

choice to apply. Another rationale is that the applied learning algorithm might 

practise imperfect search processes which ends up with sub-optimal hypotheses even 

if there exists a unique best hypothesis. The last reason is the case where ensemble 

strategy leads to a good approximation as one learner cannot reach a true target 
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function in the searching phase. On the other hand, choosing ensemble models comes 

at the cost of raised algorithmic and model complexity. Ensemble strategies can be 

obtained on either feature space, instance space or classifiers’ parameter space. Next 

we will detail one of the most successful ensemble learning on feature space namely 

random subspace methods.  

2.3.1 Random subspace ensemble learning 

Searching for a feature base that leads to a considerable classification performance is 

another challenging task to cope with. Even if there is a single input representation, 

by selecting random subsets from it we can train different classifiers on selected 

subspace of features, which is called the random subspace method (Ho, 1998). 

Random Subspace Ensemble Learning "RS", also known as Attribute Bagging, is 

one of the most commonly used ensemble learning methods which plays an 

important role in finding the subset of informative features to correctly classify given 

signals. It is a wrapper method that can be used with any learning algorithm. The 

method is applied by classifying test instances with a chosen classifier along with 

randomly selected subsets of all possible features iteratively and with replacement. 

The feature base is changed in each iteration with the same number of randomly 

permuted features. If we name the whole constructed feature subspace as Xrs, and the 

selected feature subspace at i
th 

iteration as Xrs_i, K number of subspaces are created at 

the end of the process in K iterative ensemble learning steps where Xrs = {Xrs_1, ..., 

Xrs_K}. Table 2.1 shows the pseudo code of the random subspace ensemble learning 

method. 

Table 2.1 : The pseudo code of random subspace ensemble learning. 

Algorithm: Random subspace ensemble learning method 

Input: training set X, number of features in the subspace s, number 

of ensemble predictors K, predictor h 

Output: ensemble model h = {h1, ..., hK} combination of whose 

outputs is used to predict new test instances' class labels/regression 

results  

For i = 1:K 

      Create a subspace sample data Xrs_i with s features selected at 

random with replacement from X 

      Apply the predictor hi to Xrs_i  

End For 

Return h = {h1, ..., hK} ensemble model 
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Note that by applying random feature subspaces, different predictors will deal with 

the same problem from different standpoints by resulting in more robust 

representation and diminishing the curse of dimensionality arising from high 

dimensional inputs. 

2.3.2 Bagging 

Bagging short for "bootstrap aggregating" is an ensemble learning approach which 

generates multiple exemplars of a predictor to lead to an aggregated learner by taking 

the combination of their outputs using a fixed rule. It provides a way to present 

variability between the different models within a committee. Creation of the multiple 

exemplars is done via making bootstrap replicates of the learning set.  

Logic behind the bootstrap creation is treated as follows. Assume that we have a 

dataset X = {x1, ..., xm} with m data points. If we generate a new dataset XBagged 

whose instances are randomly drawn from the original dataset as the same number of 

instances with replacement, it is the case where some number of data points are 

repeated containing duplicates in XBagged and some others in the original dataset are 

not included now. A particular instance which is chosen for a bootstrap sample of 

size m can be calculated as follows: 

                                    (2.14)  

which is about two-third and has limit 1-1/e = 0.632 for m→∞ (Flach, 2012, Chapter 

11). This means that each bootstrap sample is likely to leave out about a third of the 

data points. This difference between bootstrap models is exactly what we want to 

give rise to diversity among the models in the ensemble. An iterative process is 

performed by repeating this procedure K times and resulting in K randomly 

generated datasets. Table 2.2 displays the pseudo code of the general framework of 

bagging algorithm.  

2.4 Active Learning  

In passive learning, a bunch of training examples and their class labels are provided 

to the learning algorithm. In many machine learning problems, we need to cope with 

significant number of unlabelled examples whose labeling is mostly time-consuming 

and expensive to obtain. Active learning is a framework where abundant unlabeled 

data and few labeled samples are available.  
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Table 2.2 : The pseudo code of bagging. 

Algorithm: Bagging 

Input: training set X, number of instances m, number of ensemble 

predictors K, predictor h 

Output: ensemble models h = {h1, ..., hK} combination of whose 

outputs is used to predict new test instances' class labels/regression 

results  

For i = 1:K 

      Create a bootstrap sample data Xbagging_i with selecting n data 

points randomly with replacement from X 

      Apply the predictor hi to Xbagging_i  

End For 

Return h = {h1, ..., hK} ensemble model 

The framework resolves the labeling problem by asking the labels of some 

intelligently selected examples to a trained expert or an oracle. The selected data 

points are usually the optimal ones which boost the number of correctly classified 

instances upon they are labeled and incorporated into the training phase. 

Active learning scenario has been applied in various machine learning real-world 

applications such as image classification and retrieval (Zhang and Chen, 2002), text 

classification (Tong and Koller, 2001), email filtering, web searching, video 

classification and retrieval, information extraction and speech recognition etc.  

The fundamental purpose of active learning is to improve the accuracy of the initial 

classifier by adding new training examples from unlabelled dataset which are 

selected using a selection criterion i.e. informativeness measure. The learner may 

start the classification task with few number of labelled training data, then in each 

iteration one or more unlabeled instances are carefully chosen to be added to the 

training examples after its class label is determined by an oracle. This process is 

implemented iteratively by the selection of the most informative unlabeled data 

points which will help improve the prediction ability. Figure 2.5 points out the 

generalized active learning framework. 

In the matter of applying active learner, sources of unlabelled instances play an 

important role. In literature, there are three main categories of sources of unlabelled 

data (Roederer, 2012; Settles, 2010):  
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Figure 2.5 : Active learning framework. 

 query synthesis in which the learner asks the labels of unlabelled data points 

from some underlying distribution also including the queries that the learner 

produces de novo without the need for a distribution. 

 stream-based sampling where unlabelled instances are handled one by one 

through sampling from an actual distribution to decide whether they should 

be integrated into the set of labelled instances or not. It is suitable for special 

situation where the memory and storage capacity is limited.  

 pool-based sampling which is the mostly applied sampling scenario that the 

learner chooses instances from a pool of unlabelled data to query by using a 

greedy approach through examining informativeness of each. 

In pool-based sampling, a significant question arises in the case of how to select and 

assess the most informative data point among the unlabeled examples. Perhaps the 

simplest way is to query instances where the learner is least certain and this process 

is known as uncertainty sampling. One of the most popular uncertainty sampling 

techniques is based on entropy. We want to choose the examples which leads to the 

greatest reduction in entropy upon its class label is known. Calculating the entropy 

over the distribution of possible class labels results in a value that represents the 

amount of information needed. "The more entropy in the distribution, the more 

uncertain the choice of class label for that data value, and the more informative that 
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query would be" (Roederer, 2012). A generalized entropy-based query sampling 

strategy can be defined as in equation 2.15:  

  
                    

 

   

             

where i = {1, ..., c} 

(2.15)  

where x refers to any instance, y is the class of the instance x, c is the number of 

classes and θ is the parameters in the classifier model h.  

According to Holub et al. (2008), "Active learning adaptively prioritizes the order in 

which the training examples are acquired which can significantly reduce the overall 

number of training examples required to reach near-optimal performance" (p. 1). 
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3.  THE PROPOSED METHOD 

In this study, one of the supervised classification algorithms, dictionary learning, is 

applied in combination with active learning framework using the strength of 

ensemble classifier strategies. In the first step, Bagging and Random Subspace 

ensemble methods are performed by using dictionary learning as the base classifier 

and in the latter part, Active Learning is applied by showing the effect of using the 

most informative unlabeled instances while modeling dictionary base.  

3.1 Dictionary Ensembles Using Random Subspaces and Bagging 

Bagging and Random Subspace methods are the most commonly used ensemble 

learning methods which play an important role in finding the subset of instances and 

features to obtain diverse classifiers given data samples. Following the idea behind 

dictionary learning, ensemble learning methods can be merged into the process to 

boost the correctly classified number of instances. Accordingly, in this study 

dictionary learning is used as a base classifier with Random Subspace and Bagging 

methods. Random Subspace Dictionary Learning (RDL) and Bagging Dictionary 

Learning (BDL) algorithms creates K dictionaries for each class in the training set 

using randomly selected features for RDL and instances for BDL. Class label for a 

test instance is determined by picking up the majority class label among the results of 

all K dictionaries. The pseudo-code of the algorithms is given in Table 3.1. 

The framework of the proposed dictionary learning algorithms is shown in Figure 3.1. 

Initially, according to the choice of ensemble learning strategies, either BDL or RDL, 

s instance/feature subspaces are generated. In the dictionary construction phase, each 

subspace produces a dictionary base. Test data are classified using the ensemble 

dictionary learning classifiers after dictionary construction phase. As a result, 

ensemble strategy produces a final prediction by applying majority voting on class 

labels obtained in each instance/feature subspace.  
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Table 3.1 : The pseudocode of the proposed ensemble methods. 

Algorithm: Ensemble dictionary learning 

Input: training set X ϵ R
mxn

, training class labels Y ϵ R
m

, number of features n, 

number of selected feature/instances s, number of ensemble dictionaries K, 

number of classes c, test set X' ϵ R
wxn

, number of training instances m, number 

of test instances w 

Output: predicted class labels Y' for test instances 

Training: 

      For i = 1:K 

            switch(ensemble_algorithm) 

            case RDL: 

                  Select s random features from X 

                  Create Xr ϵ R
mxs

 using selected features 

            case BDL: 

                   Select s random instances from X 

                   Create Xr ϵ R
sxn

 using selected instances 

            For each class in the training set Xr: 

                          Train dictionaries {D1, D2, ..., Dc} 

                    D
i 
= {D1, D2, ..., Dc} 

      End For 

Testing: Input a test instance vector x' from test set X' 

             For i = 1:K 

                    Calculate        using (2.7) and D
i 

             End For 

             Classify x' using majority voting on       's 

3.2 Active Learning Based Data Classification Using Dictionary Ensembles 

The proposed active learning scenario is applied in combination with Random 

Subspace Dictionary Learning and Bagging Dictionary Learning methods as the base 

classifiers. Initially, 20% of the whole dataset is used as training data to construct a 

supervised dictionary model.  

To form each random subspace ensemble, feature subspace is iteratively reduced by 

randomly chosen attributes with replacement. Using the dictionary model, unlabeled 

instances are classified into appropriate classes. At each iteration in order to select 

the instances to be queried, entropy query strategy is employed by computing the 

class label entropies using equation 2.15. Unlabeled instances are sorted in a 

descending order based on their entropies. At each iteration, the data samples that 

have the highest entropy values are asked to the oracle and 10% of the unlabelled 

instances are added to the training data. Figure 3.2 displays the scenario 

schematically.  
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Performing active learning ensures choosing the most informative instances to 

training set, by doing so, atoms can be updated or new atoms can be added to the 

dictionaries which may improve the sparse representations of the instances. 
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Figure 3.1 : Framework of the proposed ensemble dictionary learning models. 
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Figure 3.2 : Active learning framework using dictionary ensembles. 
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4.  MATERIALS AND EXPERIMENTAL SETUP 

In order to measure the classification performance of the proposed method, a number 

of datasets retrieved from UCI Machine Learning Repository (Lichman, 2013) and 

OpenML (Vanschoren et al, 2013) are used. Table 4.1 indicates these datasets by 

noting the respective number of instances, feature size including the class attribute 

and how many classes they cover. 

Table 4.1 : Properties of the datasets used in the experimental results. 

Dataset The number 

of instances 

The number 

of attributes 

The number of 

classes 

cmc 1473 10 3 

fri_c4_100_10 100 11 2 

ionosphere 351 35 2 

pollution 60 16 2 

sonar 208 61 2 

spectf_train 80 45 2 

statlog-german 1000 25 2 

vehicle 846 19 4 

waveform-5000 5000 40 3 

mfeat-karhunen 2000 65 10 

optdigits 5620 64 10 

Datasets have been gathered from various areas. Contraceptive Method Choice, cmc, 

dataset holds the information of demographic and socio-economic characteristics 

(age, education, religion, etc.) of Indonesian married women who were not pregnant 

during the survey. The dataset was a part of 1987 National Indonesia Contraceptive 

Prevalence Survey that was to predict which contraceptive method (no-use, long-

term, short-term) was chosen.  

Mfeat-karhunen is among the other six subgroups of multiple features dataset which 

includes features of handwritten numerals 0 to 9 from a collection of Dutch utility 

maps which have been digitized in binary images. This subgroup is the combination 

of 64 Karhunen-love coefficients.  

Optdigits is a dataset comprised of extracted 32x32 normalized bitmap images of 

printed handwritten digits, 0 to 9, from 43 people. Preprocessing step was done by 

NIST preprocessing tools to extract features. 

Ionosphere dataset deals with the radar returns from ionosphere layer by grouping 

them as good, which says there is some type of structure in the ionosphere or bad 
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returns in which the signals just pass through the ionosphere without witnessing any 

structure.  

Sonar dataset developed by R. Paul Gorman and Terry Sejnowski is the combination 

of patterns gathered from metal cylinder and rock. The objective is to classify each 

record into one of two classes, mine (metal cylinder) or a rock. 

Spectf dataset is made up of extracted image features which are used to decide 

whether a patient has the signs of "normal" or "abnormal" diagnose by looking at 

his/her cardiac Single Proton Emission Computed Tomography (SPECT) images.  

Statlog-german is one of the datasets under the database hold for European Statlog 

project. German credit dataset contains the attributes such as salary information, 

credit history, present employment etc. in order to decide whether a person has the 

risk of good or bad credit.  

Vehicle dataset is used to distinguish between car models and characterize a given 

vehicle silhouette as one of four types: a double decker bus, Cheverolet van, Saab 

9000 and an Opel Manta 400. Dataset features were extracted from various vehicle 

silhouettes which were viewed from different angles.  

Waveform-5000 dataset is for the classification of three different wave classes each 

of which is formed using the combination of two of three base waves. Each instance 

is generated with added noise (mean 0, variance 1) in each attribute. 

Fri_c4_100_10 is one of the datasets in the collection of 80 datasets, donated by M. 

Fatih Amasyalı, which were artificially produced by the Friedman function. 

In order to make the experiments with SVM and SVM ensembles, Matlab platform is 

integrated with LibSVM library. For dictionary learning part, SPAMS (SPArse 

Modeling Software) toolbox is utilized (Mairal et al, 2009, 2010). 
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5.  EXPERIMENTAL RESULTS 

5.1 Performance Analysis Based on Classification Accuracies 

Experimental results are obtained using tenfold cross validation for DL, RDL, BDL, 

SVM, RSVM and BSVM. The number of ensemble classifiers, K, is selected as 15 

for all ensemble methods. 70% of the features are randomly selected to construct 

each subspace for RDL and RSVM. Similarly, for BDL and BSVM 75% of the 

instances are selected randomly. 10% of the instance sizes are selected as the number 

of atoms for initial dictionaries. The penalty parameter, λ, to constitute dictionary 

models is tuned to 0.05. For SVM, RSVM and BSVM models, the applied type of 

SVM is C-SVC in which the kernel function is radial basis function. Table 5.1 shows 

the optimal values for C and    parameters determined by grid search with respect to 

each dataset.  

Table 5.1 : SVM parameters for each dataset. 

Dataset C   

cmc 3 0.01 

fri_c4_100_10 18 0.02 

ionosphere 19 0.04 

sonar 4 0.09 

spectf_train 1 0.01 

statlog-german 1 0.01 

vehicle 1 0.01 

waveform-5000 1 0.01 

mfeat-karhunen 1 0.01 

optdigits 1 0.01 

pollution 1 0.07 

Classification accuracies of the DL, SVM, RDL, BDL, RSVM and BSVM methods 

are given in Table 5.2. The best classification accuracy for each dataset is indicated 

by bold typing. In the experiments, BDL outperforms other methods in 6 out of 11 

datasets. Note that selecting instance subspaces for dictionary learning model 

increases the number of correctly classified instances. On the other side, SVM 

follows BDL's classification performance by resulting in the best performance in 3 

datasets. Each of RDL and DL algorithms produces good results in 2 datasets. Here, 

DL shows similar performance with RDL i.e. selecting feature subspaces does not 
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contribute much to the performance of default model. According to the results, 

BSVM cannot manage pretty good results compared to other algorithms and RSVM 

is the best classifier at only one dataset. It means for the given datasets applying both 

feature/instance subspaces of SVM do not lead improved predictions.   

Table 5.2 : Classification accuracies of the classifiers DL and SVM along with their 

ensembles. 

Dataset DL RDL BDL SVM RSVM BSVM 

cmc 50.40 52.65 51.83 55.40 54.72 54.72 

fri_c4_100_10 59.00 60.00 64.00 60.42 58.51 60.42 

ionosphere 92.85 93.42 92.00 95.16 94.58 94.58 

sonar 85.71 87.61 87.61 83.64 82.21 83.66 

spectf_train 71.25 71.25 71.25 58.75 61.25 50.00 

statlog-german 70.30 72.10 76.20 73.20 71.10 72.70 

vehicle 74.11 76.58 77.52 50.24 60.68 47.42 

waveform-5000 76.18 80.84 78.54 86.84 86.50 86.73 

mfeat-karhunen 97.30 97.35 97.05 97.75 97.85 97.60 

optdigits 99.07 99.00 99.05 86.29 95.96 86.03 

pollution 71.66 73.33 78.33 51.71 51.71 51.71 

In the second part, active learning has been performed on ensembles of both 

dictionary learning (ARDL/ABDL) and support vector machines 

(ARSVM/ABSVM). The number of ensemble classifiers is selected as 5 for ARDL, 

ABDL, ARSVM and ABSVM. Ten-fold cross validation results for ARDL and 

ARSVM are shown in Table 5.3 and Table 5.4 respectively. Table 5.5 and Table 5.6 

correspond to the experimental results for ABDL and ABSVM. The "default" results 

are obtained without using active learning via taking the 20% percentage of the 

whole training data as the new training instances to construct the classification 

model. Others show the results using active learning in which the training data size 

(initially 20% of the whole training data) is increased with the addition of the 

mentioned percentage (10%) of the unlabeled data in each iteration.  

70% of the features are randomly selected to construct each subspace in the 

generation of ARDL and ARSVM classifiers. The number of atoms for initial 

dictionaries for ARDL and ABDL are defined as 10% of the instance sizes. ARSVM 

applies radial basis function of C-SVC as the kernel type in which gamma and cost 

parameters are the same as the ones in Table 5.1 for each dataset. Established results 

show that ARDL outperforms ARSVM in 7 out of 11 of the datasets and, in majority, 

accuracy is improved with small fluctuations if the training size is increased using an 

active learner. 
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Table 5.3 : Active learning classification results based on dictionary learning using 

random subspace ensemble. 

Dataset Default Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 

cmc 48.43 49.31 51.02 50.40 51.15 49.93 50.47 

fri_c4_100_10 56.00 57.00 57.00 60.00 69.00 56.00 59.00 

ionosphere 91.14 91.42 92.28 91.71 91.14 92.85 92.85 

sonar 72.85 79.04 80.95 82.85 84.28 86.19 87.14 

spectf_train 60.00 57.50 63.75 60.00 63.75 65.00 66.25 

statlog-german 74.00 74.80 76.80 75.70 76.30 76.40 75.30 

vehicle 68.58 72.00 70.58 73.41 73.88 74.70 76.00 

waveform-5000 74.74 72.20 77.46 77.16 79.52 80.88 80.74 

pollution 63.33 70.00 73.33 71.66 76.66 75.00 73.33 

mfeat-karhunen 15.30 39.95 77.60 92.30 89.40 92.90 95.00 

optdigits 10.30 9.92 14.19 43.23 83.07 96.65 97.97 

Table 5.4 : Active learning classification results based on support vector machine using 

random subspace ensemble. 

Dataset Default Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 

cmc 52.04 52.10 53.46 53.94 54.28 54.08 53.87 

fri_c4_100_10 51.00 50.00 56.00 58.00 60.00 58.00 59.00 

ionosphere 90.00 93.14 94.57 94.57 94.57 95.14 95.42 

sonar 69.52 75.71 78.09 75.71 74.76 77.14 77.61 

spectf_train 47.50 55.00 52.50 55.00 55.00 55.00 55.00 

statlog-german 72.00 72.60 73.00 73.40 74.20 74.10 74.30 

vehicle 42.23 40.58 40.35 43.88 44.00 46.47 47.64 

waveform-5000 85.46 85.48 85.56 86.06 86.22 86.10 86.58 

pollution 50.00 50.00 50.00 50.00 46.66 46.66 46.66 

mfeat-karhunen 94.05 93.10 96.20 95.95 96.00 96.00 95.90 

optdigits 85.71 89.83 91.93 93.11 93.73 93.62 93.98 

Table 5.5 : Active learning classification results based on dictionary learning using 

bagging ensemble. 

Dataset Default Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 

cmc 45.71 47.41 47.75 49.86 50.00 50.54 50.74 

fri_c4_100_10 47.00 49.00 55.00 55.00 55.00 61.00 57.00 

ionosphere 83.14 92.28 93.42 92.28 92.28 92.00 92.00 

sonar 71.90 79.04 76.66 80.47 84.28 86.66 86.19 

spectf_train 66.25 57.50 57.50 60.00 63.75 60.00 63.75 

statlog-german 73.40 76.00 77.00 77.20 77.00 76.10 75.80 

vehicle 29.17 64.70 73.64 74.47 73.05 72.47 73.88 

waveform-5000 72.24 68.86 64.40 69.30 76.92 78.96 79.18 

pollution 56.66 61.66 68.33 71.66 71.66 73.33 78.33 

mfeat-karhunen 9.35 9.35 19.30 24.45 29.95 33.95 41.20 

optdigits 10.30 10.30 10.30 10.19 11.97 26.21 58.16 
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Table 5.6 : Active learning classification results based on support vector machine using 

bagging ensemble. 

Dataset Default Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 

cmc 52.58 52.51 51.76 53.06 52.78 53.26 52.72 

fri_c4_100_10 54.00 59.00 62.00 60.00 61.00 61.00 62.00 

ionosphere 89.14 93.14 95.42 95.42 96.00 94.85 95.71 

sonar 69.52 70.47 75.23 79.04 79.04 80.00 82.38 

spectf_train 52.50 50.00 55.00 55.00 55.00 55.00 55.00 

statlog-german 71.50 72.40 72.30 72.20 73.30 73.40 73.60 

vehicle 33.17 33.64 39.41 40.23 40.23 43.17 45.05 

waveform-5000 84.82 85.60  85.82 86.44 86.64 86.60 86.32 

pollution 50.00 55.00 50.00 50.00 46.66 46.66 55.00 

mfeat-karhunen 90.20 77.70 89.90 94.85 93.25 93.50 93.60 

optdigits 59.00 71.03 76.88 81.28 81.79 83.46 84.34 

In order to learn the effect of applying bagging ensemble to the dictionary learning 

and support vector machines models under active learning framework, new 

experiments have also been carried out. In the same way as its random subspace 

counterpart, the classification accuracies for both of ABDL and ABSVM are 

enhanced by the selection of informative examples to training set in each iteration. 

According to the best results obtained for each dataset, ABDL is better in 5 out of 11 

of the given datasets as a consequence. For dictionary learning model, selecting 

feature subspaces instead of instance subspaces is more rational under active learning 

framework as a result of experiments.  

Considering the final iteration accuracies in Table 5.7, ARDL is the best classifier in 

4 out of 11 datasets while ARSVM is good at 3 of them. Each of ABDL and 

ABSVM models performs the optimal accuracies with 2 datasets. In terms of the 

accuracies obtained by random subspace ensembles under active learning, ARDL 

and ARSVM give the best results in 6 and 4 out of 11 datasets respectively and for 

one dataset they lead to the same performance. For bagging ensembles of the applied 

models, ABSVM provides the best accuracy in 6 out of 11 datasets and it 

outperforms ABDL model. 

5.2 Friedman Test 

Each model used for a machine learning problem produces a new solution and the 

main purpose is to find the successful one. To determine the quality of each 

predictor, classification accuracy is generally used as a measurement technique. In 
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addition to accuracy results, we should statistically verify the performance 

improvement produced by the models using a hypothesis test.  

Table 5.7 : The last iteration accuracies of active learning methods. 

Dataset ARDL ARSVM ABDL ABSVM 

cmc 50.47 53.87 50.74 52.72 

fri_c4_100_10 59.00 59.00 57.00 62.00 

ionosphere 92.85 95.42 92.00 95.71 

sonar 87.14 77.61 86.19 82.38 

spectf_train 66.25 55.00 63.75 55.00 

statlog-german 75.30 74.30 75.80 73.60 

vehicle 76.00 47.64 73.88 45.05 

waveform-5000 80.74 86.58 79.18 86.32 

pollution 73.33 46.66 78.33 55.00 

mfeat-karhunen 95.00 95.90 41.20 93.60 

optdigits 97.97 93.98 58.16 84.34 

In the matter of comparison of c different classifier models on r different datasets, 

when so many pairwise tests are made, a certain proportion of the null hypotheses 

can be rejected due to random chance. In order to detect differences in treatments 

across multiple classifier models, one of the non-parametric statistical tests, 

Friedman test which is based on ranked rather than absolute performance has been 

conducted (Demšar, 2006). A null hypothesis, H0, is provided in which all of the 

applied classifiers are equivalent otherwise the alternative hypothesis, H1, is present 

that not all classifiers are equivalent. 

       H0: Classifier models are equivalent. 

H1: Not all classifiers are equal. 

Initially, each classifier model is rated according to their classification accuracies in 

each dataset. For each dataset, classifiers are put in order by assigning rank 1 to the 

classifier with the best classification accuracy and increasing the rank number by one 

until assigning rank c to the worst one for c applied classifiers (Flach, 2012, Chapter 

12). If there is a case of tie, the rank value is assigned as the average rank. In the 

following step, rank totals per classifiers are calculated. Table 5.8 shows the 

Friedman test ratings obtained through classification accuracies found for each 

dataset by the respective classifiers.  
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The Friedman test statistic is calculated by equation 5.1 where r is the number of 

datasets, c is the number of classifiers and Rj is the total of the ranks for the classifier 

j among all datasets. 

    
  

         
   

           

 

   

 (5.1)  

Friedman test statistic FR approaches chi-square distribution χ
2
 with c-1 degrees of 

freedom when the number of datasets r gets large enough (i.e. r > 10 and c > 5). In 

order to reach a conclusion about the proposed hypotheses, for a predetermined 

confidence level of α, the null hypothesis is rejected on condition that the computed 

value of FR is greater than the table value of χ
2
 in the corresponding significance α 

and c-1 degrees of freedom.  

Reject H0 if FR >   
  

                                                    Otherwise, do not reject H0 

Degrees of freedom, d, for 6 classifiers is calculated as d = c-1 = 6-1 = 5. For %95 

confidence level (α = 0.05) and d = 5, the table value for χ
2 

statistic is 11.07. 

According to the found rank totals, R1 = 45, R2 = 34.5, R3 = 31.5, R4 = 34.5, R5 = 

43 and R6 = 42.5. In order to check the rankings, we can use the formulation in 

equation 5.2. 

     
         

 

 

   

 (5.2)  

If we apply equation 5.2 to our scenario, 

                            
           

 
 

231 = 231. 

Using equation 5.1 we calculate Friedman test statistic, 

    
  

          
                                        

       

           < χ
    
         We cannot reject H0, i.e. applied models perform 

equivalently on the datasets. In the next part, Wilcoxon signed rank test is applied to 



37 

 

see pairwise performance differences for detailed comparisons. 

Let's apply Friedman test to the accuracy results of active learning scenario for 

ensembles of dictionary learning and SVM models. Hypotheses are initially 

determined same as the previous one to prove their equality in terms of their 

classification performance. Degrees of freedom, d, for 7 classifiers is computed as d 

= c-1 = 7-1 = 6. For %95 confidence level (α = 0.05) and d = 6, the table value for χ
2 

statistic is 12.59.  

If we look at the test results for ARDL model, according to the found rank totals in 

Table 5.9, R1 = 72.5, R2 = 65.5, R3 = 42.5, R4 = 44.5, R5 = 32, R6 = 28 and R7 = 

23. Now we can use the formulation in equation 5.2 to check the rankings, 

                               
           

 
 

308 = 308. 

Using equation 5.1 we compute Friedman test statistic, 

    
  

          
                                         

          

           > χ
    
       , so reject H0 in other words all classifiers constructed 

with additional unlabelled training data in each iteration of active learning 

framework do not perform equally on the datasets. 

Table 5.10 is prepared for Friedman test of ARSVM model's different iterations and 

after applying the same steps it is found that            > χ
    
       . 

Therefore, we can conclude in the inequivalency of the applied iterations on the 

classification performance. The same procedure is also true for ABDL and ABSVM 

models. 

Table 5.11 shows the Friedman test applied to the accuracy values of the last 

iteration of the active learning models which are displayed in Table 5.7. According to 

the findings from 4 models,           < χ
    
      , thus we cannot reject that 

the algorithms perform equivalently. Wilcoxon signed rank test is applied for this 

case in the next part to query for the equivalency of the methods in a pairwise 

comparison.   
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5.3 Wilcoxon Signed Rank Test 

According to the Friedman test results, there is no acceptable significance among the 

classification performances of the applied DL, SVM, RDL, RSVM, BDL and BSVM 

methods. Instead of comparing whole algorithm space, Wilcoxon Signed Rank Test 

provides pairwise comparison between selected two methods over multiple datasets. 

              H0: The performance difference between two methods is not significant. 

 H1: The performance difference between two methods is significant. 

The procedure follows the following steps to check the validity of the hypotheses. 1) 

calculate accuracy differences between two algorithms for each dataset, 2) transform 

differences into their absolute values, 3) order them in their absolute values by 

starting numbering with the smallest difference, 4) sum positive and negative ranks 

separately, 5) find Wilcoxon value, W, from table for the number of datasets at a 

predefined α, 6) compare W with the smallest among the sums of positive and 

negative ranks, 7) If W is equal or higher than the calculated value then reject the 

null hypothesis. In case of zero differences, the comparison is ignored and it is 

excluded in this way table value for Wilcoxon rank is found according to the reduced 

dataset size. Besides, if there is a tie among performance differences, the ranks are 

assigned by taking their average. 

In Table 5.12, an example to show how Wilcoxon signed rank test is applied is given 

among the pairs of DL/RDL and DL/SVM methods. For DL/RDL, total number of 

positives is 2 and total number of negatives is 53. We choose the smallest sum 

between positives and negatives so it is 2 for this case. Table value of W is found for 

α=0.05and 11-1=10 datasets because we ignore zero difference. As a result, 2 < 

Wα=0.05, 10 = 8, therefore we can reject null hypothesis in other words performance 

differences of DL and RDL is significant. 

In the same manner, DL/SVM pairs are also tested. Total number of positives and 

total number of negatives are 41 and 25 respectively, we select the smallest one, 25 

to continue our test. Because there is no zero difference, we look at the table value of  

Wα=0.05, 11 = 10. 25 > Wα=0.05, 11 = 10, therefore we cannot reject H0, it means there is 

no significant performance difference between DL and SVM algorithms. 
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Table 5.8 : Friedman test rankings of DL and SVM along with their respective ensembles. 

Dataset DL Rank RDL Rank BDL Rank SVM Rank R-SVM Rank B-SVM Rank 

cmc 50.40 6 52.65 4 51.83 5 55.40 1 54.72 2.5 54.72 2.5 

fri_c4_100_10 59.00 5 60.00 4 64.00 1 60.42 2.5 58.51 6 60.42 2.5 

ionosphere 92.85 5 93.42 4 92.00 6 95.16 1 94.58 2.5 94.58 2.5 

sonar 85.71 3 87.61 1.5 87.61 1.5 83.64 5 82.21 6 83.66 4 

spectf_train 71.25 2 71.25 2 71.25 2 58.75 5 61.25 4 50.00 6 

statlog-german 70.30 6 72.10 4 76.20 1 73.20 2 71.10 5 72.70 3 

vehicle 74.11 3 76.58 2 77.52 1 50.24 5 60.68 4 47.42 6 

waveform-5000 76.18 6 80.84 4 78.54 5 86.84 1 86.50 3 86.73 2 

mfeat-karhunen 97.30 5 97.35 4 97.05 6 97.75 2 97.85 1 97.60 3 

optdigits 99.07 1 99.00 3 99.05 2 86.29 5 95.96 4 86.03 6 

pollution 71.66 3 73.33 2 78.33 1 51.71 5 51.71 5 51.71 5 

Rank Total  45  34.5  31.5  34.5  43  42.5 

Table 5.9 : Friedman test rankings of different active learning iterations for random subspace dictionary learning model. 

Dataset Default Rank Iter1 Rank Iter2 Rank Iter3 Rank Iter4 Rank Iter5 Rank Iter6 Rank 

cmc 48.43 7 49.31 6 51.02 2 50.40 4 51.15 1 49.93 5 50.47 3 

fri_c4_100_10 56.00 6.5 57.00 4.5 57.00 4.5 60.00 2 69.00 1 56.00 6.5 59.00 3 

ionosphere 91.14 6.5 91.42 5 92.28 3 91.71 4 91.14 6.5 92.85 1.5 92.85 1.5 

sonar 72.85 7 79.04 6 80.95 5 82.85 4 84.28 3 86.19 2 87.14 1 

spectf_train 60.00 5.5 57.50 7 63.75 3.5 60.00 5.5 63.75 3.5 65.00 2 66.25 1 

statlog-german 74.00 7 74.80 6 76.80 1 75.70 4 76.30 3 76.40 2 75.30 5 

vehicle 68.58 7 72.00 5 70.58 6 73.41 4 73.88 3 74.70 2 76.00 1 

waveform-5000 74.74 6 72.20 7 77.46 4 77.16 5 79.52 3 80.88 1 80.74 2 

pollution 63.33 7 70.00 6 73.33 3.5 71.66 5 76.66 1 75.00 2 73.33 3.5 

mfeat-karhunen 15.30 7 39.95 6 77.60 5 92.30 3 89.40 4 92.90 2 95.00 1 

optdigits 10.30 6 9.92 7 14.19 5 43.23 4 83.07 3 96.65 2 97.97 1 

Rank Total  72.5  65.5  42.5  44.5  32  28  23 
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Table 5.10 : Friedman test rankings of different active learning iterations for random subspace support vector machines model. 

Dataset Default Rank Iter1 Rank Iter2 Rank Iter3 Rank Iter4 Rank Iter5 Rank Iter6 Rank 

cmc 52.04 7 52.10 6 53.46 5 53.94 3 54.28 1 54.08 2 53.87 4 

fri_c4_100_10 51.00 6 50.00 7 56.00 5 58.00 3.5 60.00 1 58.00 3.5 59.00 2 

ionosphere 90.00 7 93.14 6 94.57 4 94.57 4 94.57 4 95.14 2 95.42 1 

sonar 69.52 7 75.71 4.5 78.09 1 75.71 4.5 74.76 6 77.14 3 77.61 2 

spectf_train 47.50 7 55.00 3 52.50 6 55.00 3 55.00 3 55.00 3 55.00 3 

statlog-german 72.00 7 72.60 6 73.00 5 73.40 4 74.20 2 74.10 3 74.30 1 

vehicle 42.23 5 40.58 6 40.35 7 43.88 4 44.00 3 46.47 2 47.64 1 

waveform-5000 85.46 7 85.48 6 85.56 5 86.06 4 86.22 2 86.10 3 86.58 1 

pollution 50.00 2.5 50.00 2.5 50.00 2.5 50.00 2.5 46.66 6 46.66 6 46.66 6 

mfeat-karhunen 94.05 6 93.10 7 96.20 1 95.95 4 96.00 2.5 96.00 2.5 95.90 5 

optdigits 85.71 7 89.83 6 91.93 5 93.11 4 93.73 2 93.62 3 93.98 1 

Rank Total  68.5  60  46.5  40.5  32.5  33  27 

Table 5.11 : Friedman test rankings applied on the last iteration of active learning methods. 

Dataset ARDL Rank ARSVM Rank ABDL  Rank ABSVM Rank 

cmc 50.47 4 53.87 1 50.74 3 52.72 2 

fri_c4_100_10 59.00 2.5 59.00 2.5 57.00 4 62.00 1 

ionosphere 92.85 3 95.42 2 92.00 4 95.71 1 

sonar 87.14 1 77.61 4 86.19 2 82.38 3 

spectf_train 66.25 1 55.00 3.5 63.75 2 55.00 3.5 

statlog-german 75.30 2 74.30 3 75.80 1 73.60 4 

vehicle 76.00 1 47.64 3 73.88 2 45.05 4 

waveform-5000 80.74 3 86.58 1 79.18 4 86.32 2 

pollution 73.33 2 46.66 4 78.33 1 55.00 3 

mfeat-karhunen 95.00 2 95.90 1 41.20 4 93.60 3 

optdigits 97.97 1 93.98 2 58.16 4 84.34 3 

Rank Total  22.5  27  31  29.5 
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Table 5.12 : Application of Wilcoxon signed rank test on the pairs of DL/RDL and 

DL/SVM algoritms. 

Dataset DL-RDL |DL-RDL| Rank DL-SVM | DL-SVM | Rank 

cmc -2.25 2.25 8 -5 5 6 

fri_c4_100_10 -1 1 4 -1.42 1.42 2 

ionosphere -0.57 0.57 3 -2.31 2.31 4 

sonar -1.9 1.9 7 2.07 2.07 3 

spectf_train 0 0 X 12.5 12.5 8 

statlog-german -1.8 1.8 6 -2.9 2.9 5 

vehicle -2.47 2.47 9 23.87 23.87 11 

waveform-5000 -4.66 4.66 10 -10.66 10.66 7 

pollution -0.05 0.05 1 -0.45 0.45 1 

mfeat-karhunen 0.07 0.07 2 12.78 12.78 9 

optdigits -1.67 1.67 5 19.95 19.95 10 

Wilcoxon signed rank test has been also obtained for other pairs of algorithms. 

According to their outcomes, while the couples of DL/BDL and SVM/BSVM 

algorithms have statistically significant evidence at α=0.05 in terms of their 

classification performances, it is not the case for the other pairs. 

In the previous part, we applied Friedman test to the accuracy results of the last 

iteration of the active learning methods. According to the results, classification 

performance of the applied methods was resulted as equivalent. In order to learn 

which pairs of methods have a significant performance difference, Table 5.13 is 

prepared for showing Wilcoxon signed rank test.  The table displays the absolute 

differences between each couple for each dataset and their rank values. As a 

consequence, Friedman test and Wilcoxon signed rank test strongly agree that no 

pairs of models have significant performance difference, i.e. they provide 

approximate classification performance. 
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Table 5.13 : Application of Wilcoxon signed rank test on the pairs of the last iteration accuracies of the active learning models. 

Dataset 
|ARDL-

ARSVM| 
Rank 

|ARDL-

ABDL| 
Rank 

|ARDL-

ABSVM| 
Rank 

|ARSVM-

ABDL| 
Rank 

|ARSVM-

ABSVM| 
Rank 

|ABDL-

ABSVM| 
Rank 

cmc 3.4 4 0.27 1 2.25 3 3.13 3 1.15 4 2 1 

fri_c4_100_10 0 X 2 6 3 5 2 2 3 7 5 5 

ionosphere 2.57 3 0.85 3 2.86 4 3.42 4 0.29 1 3.7 3 

sonar 9.53 7 0.95 4 4.76 6 8.58 6 4.77 8 3.8 4 

spectf_train 11.25 8 2.5 8 11.3 8 8.75 7 0 X 8.8 7 

statlog-german 1 2 0.5 2 1.7 2 1.5 1 0.7 3 2.2 2 

vehicle 28.36 10 2.12 7 31 11 26.24 8 2.59 6 29 10 

waveform-5000 5.84 6 1.56 5 5.58 7 7.4 5 0.26 2 7.1 6 

pollution 26.67 9 5 9 18.3 10 31.67 9 8.34 9 23 8 

mfeat-karhunen 0.9 1 53.8 11 1.4 1 54.7 11 2.3 5 52 11 

optdigits 3.99 5 39.81 10 13.6 9 35.82 10 9.64 10 26 9 
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6.  CONCLUSIONS AND RECOMMENDATIONS  

In this study, ensemble dictionary learning methods are proposed for passive and 

active learning frameworks. For data classification the aim is to minimize the error 

which is the combination of reconstruction error and sparsity level. Dictionary base 

is formed by iteratively updating instance representations (alphas) in each class and 

sub-dictionaries. RDL and BDL are proposed as the applied ensemble methods using 

randomly selected features/instances. Taking the properties of ensemble learning into 

consideration, the performance of dictionary learning can be significantly increased. 

By the use of randomly selected attributes/instances we get a smaller feature/instance 

space and construct effective and diverse dictionaries for classifier ensembles. 

Experimental results show that the combination of randomly selected 

features/instances provides better results than using single dictionary learning, SVM 

and SVM ensembles.  

In the second stage of the thesis, the proposed RDL and BDL methods are considered 

in active learning framework and compared with SVM. Firstly, a predefined training 

set, which is 20% of the whole dataset is used with randomly selected 

attributes/features to construct the supervised dictionary learning model for the initial 

classification. Unlabeled data instances are classified using the established model, in 

this way appropriate class labels are assigned to these instances in each classifier 

ensemble. Using these class label information, entropy for each instance is 

calculated. The ones having the highest entropy results are chosen to be queried and 

added to the training set in the next iteration to construct the new classification 

model. This process is applied in an iterative manner. The same procedure is 

repeated for Support Vector Machine classifier as well. 

According to the achieved empirical results for eleven datasets, proposed Active 

Random Subspace Dictionary Learning method has superiority over Active Random 

Subspace Support Vector Machines method. On the other hand, it is quite the 

opposite for its bagging ensemble classifier counterparts for DL and SVM. We can 

conclude that under active learning framework generating feature subspaces when 

modeling dictionary learning classifier provides better classification accuracy while 
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instance subspaces result in more accurate consequences for support vector machines 

model. Furthermore, using an active learner generally increases the chance of 

improved classification performance as the number of iterations is increased. 

As a future work it is intended to select diverse and random features by using mutual 

information between features and class labels. It is also planned to expand the use 

dictionary learning with other ensemble methods such as Adaboost.  

The author hopes that this research will pave the way of raising the use of active 

learning and sparse coding in other data classification tasks. 
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