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SPARSE CODING BASED ENSEMBLE CLASSIFIERS COMBINED WITH
ACTIVE LEARNING FRAMEWORK FOR DATA CLASSIFICATION

SUMMARY

Nowadays, along with the need for classification algorithms in various areas
concerning machine learning such as text classification, image categorization, audio
and music genre classification, new classifier models are developed and works for
improving the existing ones increasingly go on. In this direction, as dictionary
learning algorithm which represents signals or each problem instance at hand with
sparse linear combinations of basis elements of a dictionary is also utilized in data
classification and clustering, it is used in signal, image, audio and video processing
applications.

In the dictionary learning model, which sparse coding and dictionary update steps are
practiced and this process continues until a predetermined convergence level is
attained in an iterative fashion. The main purpose is to obtain the framework of a
dictionary that provides the sparsest representation while decreasing the
reconstruction error.

The process where a number of classifiers are modeled and decisions from each one
produce a single output by a combination rule is known as ensemble learning. In
literature, ensemble learning algorithms is performed both in feature subspace and
instance subspace. Random subspace feature selection and bagging are the mostly
applied ensemble learning methods in feature subspace and in instance subspace
respectively.

On the other hand, possibility of access to huge amount of unlabeled data has been
increased along with getting easy access to data. Active learning, which is proposed
for this type of problems, is a learning method in which the most informative
instances from the unlabeled data are chosen, then labeled by an oracle and after then
added to the training set.

At the stage of establishing the active learning framework, evaluation of the
unlabelled data and how to select the most informative ones among them is an
important question. One of the easiest ways is to select the signals where the
classifier is least certain about their class labels in the query phase. This method is
known as uncertainty sampling. One of the most popular maximal uncertainty
sampling techniques is based on entropy. The more entropy in the distribution, the
more uncertain the choice of class label for that data value, and the more informative
that query would be.

In the first stage of this study, dictionary learning is applied in combination with
random subspace feature selection and bagging ensemble models. Then, comparisons
of the experimental results with support vector machine, which is one of the best
classifier models, and its ensemble combinations are maintained.

According to ten-fold cross validation experimental results obtained on eleven
datasets from various area of specialization taken from UCI machine learning
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repository and OpenML, dictionary learning based ensemble classifiers, especially
BDL algorithm, present more successful classification performance than both of
SVM and its classifier ensembles. Considering the experimental results, BDL
outperforms other applied methods in 4 out of 11 datasets and in 2 datasets it
performs the best with the other two methods DL and RDL. As a consequence, we
can infer that randomly selecting instance subspaces while constructing dictionary
models has a positive effect on the classification accuracy of the established
methods.

In the second stage, all the dictionary base proposed methods and support vector
machine counterparts are combined with active learning framework in which the
most informative unlabelled training instances are labeled and integrated into the
labeled training set in each learning iteration. While predicting the class labels of the
test examples, the decision is made applying majority voting. After examining the
experimental results, it is evident that classification accuracy mostly increases as the
number of iterations goes up by the selection of training instances intelligently.
Regarding to the best results obtained for each dataset by applied models, while
ARDL outperforms ARSVM's classification performance, ABSVM succeeds better
results than ABDL.

After obtaining the experimental results, an important part to handle is to measure
the significance of the hypotheses which put forward the equivalency of the applied
methods based on classification accuracies. In this direction, Friedman and Wilcoxon
signed rank test results were obtained both for the ensemble learning part and
methods under active learning framework. According to outcomes from the
Friedman significance tests, ARDL, ARSVM, ABDL and ABSVM do not perform
equivalently regarding to the best results obtained for each dataset.

On the other hand, Friedman significance tests and Wilcoxon signed rank tests
applied to the accuracy results in the last iteration of active learning models are
resulted in similar classification performance in the predetermined confidence
interval. In the last part, Friedman test is practiced among DL and SVM classifiers
and their ensemble models. Because there is an equivalency between classification
performance differences, Wilcoxon signed rank test is applied to see pairwise model
differences. As a result, DL/RDL, DL/BDL and SVM/BSVM pairs have significant
differences while the other model couples performs in the same manner.

XX



VERI SINIFLANDIRMA iCiN AKTiF OGRENME CERCEVESI ILE
BIRLESTIRILMIS AYRIK KODLAMA TABANLI SINIFLANDIRICI
TOPLULUKLARI

OZET

Glinlimiizde metin siniflandirma, goriintii kategorizasyonu, ses ve miizik tliri
siniflandirmas1 gibi makine 6grenmesi konusunda farkli disiplinlerden pek ¢ok
alanda smiflandirma algoritmalarina olan ihtiyag¢ bir hayli artmistir. Bu amacla yeni
siiflandirict modeller gelistirilmekte ve mevcut algoritmalar1 da iyilestirme
calismalari ¢ogalarak devam etmektedir.

Sinyalleri ya da elimizde bulunan her bir problem ornegini bir sozliigiin temel
elemanlarinin ayrik dogrusal kombinasyonlar1 olarak temsil etmekte olan sozliik
O0grenme algoritmasindan da bu dogrultuda veri smiflandirma ve kiimeleme
alanlarinda c¢okg¢a faydalanilmakta olup sinyal, goriintii, ses ve video isleme
uygulamalarinda kullanilmaktadir.

Iki asamada gergeklestirilen sozliik 6grenmesi modelinde ayrik kodlama ve sozliik
giincelleme adimlar1 uygulanmakta ve belirli bir yakinsama elde edene kadar bu
siire¢ iteratif olarak devam etmektedir. Ana amac, yeniden yapilandirma hatasini
azaltarak en ¢ok ayrik gosterimi veren sozliik yapisini elde etmektir.

Birgok siiflandiricinin modellendigi ve her birinden gelen kararlarin birlestirilerek
tek bir ¢ikti drettigi siire¢ topluluk Ogrenme olarak bilinir. Literatiirde makine
O0grenmesi uygulamalarinin ¢ogunda siniflandirict topluluklar tek siniflandirict
yontemlerinden daha iyi basarim gosterebilmektedir. Topluluk 6grenme algoritmalari
hem 6rnek hem de 6znitelik alt uzaylarinda uygulanabilmektedir. Random subspace
algoritmas1 Oznitelik uzaymnda ve bagging algoritmast da ornek uzayinda en c¢ok
uygulanan topluluk 6grenme yontemlerindendir.

Ote yandan veriye erisimin kolaylasmasi ile birlikte ¢ok biiyiik miktarda etiketsiz
veriye erisim imkani dogmustur. Bu tiir problemler i¢in sunulan aktif 6grenme,
etiketi bilinmeyen veriler igerisinden en ¢ok bilgi verici Ornekleri se¢ip uzmanlar
tarafindan etiketleyerek egitim kiimesi i¢ine katan bir 6grenme yontemidir.

Aktif 6grenme yapisinin kurulmasi asamasinda etiketsiz verilerin degerlendirilip
i¢clerinden en bilgi verici olanlarinin nasil segilecegi onemli bir sorudur. En kolay
yollardan biri, 6rnekleri sorgulayarak siniflandirict modelin siif etiketi konusunda
en az emin oldugu sinyallerin se¢ilmesidir ve bu yontem belirsizlik 6rnekleme
(uncertainty sampling) olarak bilinir. Belirsizlik ornekleme teknikleri iginde en
popiiler olanlarindan biri diizensizlik hesabini1 temel alir. Bir dagilimda ne kadar
fazla diizensizlik varsa, o veri i¢in sinif etiketi se¢imi de o derecede kararsizlik icerir
ve sorgulama da o kadar bilgi verici olur.

Bu caligmanin ilk agamasinda s6zliik 6grenme modeli, siniflandirict topluluklarindan
random subspace feature selection ile 6znitelik alt uzayinda ve bagging ile 6rnek alt
uzayinda birlestirilerek uygulanmig ve bu smiflandiricilar Random Subspace
Dictionary Learning (RDL) ve Bagging Dictionary Learning (BDL) olarak
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adlandirilmistir. Deneysel sonuglarda onerilen yontemlerin siniflandirma basarimlari
en iyi smiflandirict yontemlerden biri olan destek vektdr makinesi (Support Vector
Machines - SVM) ve topluluk 6grenme tabanli kombinasyonlar1 (Random Subspace
Support Vector Machines (RSVM) ve Bagging Support Vector Machines (BSVM))
ile birlikte karsilastiriimistir.

UCI makine 6grenmesi veri havuzundan ve OpenML' den alinan gesitli alanlardan on
bir farkli veri kiimesi lizerinde elde edilen on kat capraz saglama deney sonuglarina
gore sozliik 6grenme tabanli siniflandirict topluluklari, 6zellikle de BDL algoritmast,
hem destek vektdr makineleri hem de simiflandirict topluluklariyla birlestirilmis
modellerine gére daha basarili sonuglar ortaya koymustur.

Smiflandirma basarimlarina bakildiginda, en basarili yontem olan BDL 11 veri
kiimesinin 4 tanesinde DL, RDL SVM, BSVM ve RSVM siniflandiricilarindan iistiin
gelmekte, 2 tanesinde ise DL ve RDL ile en sonuglar1 elde etmektedir. Bu noktada
ormek altuzaylarinin rastgele se¢ilmesiyle olusturulan sozlilk modellerinin
siiflandirma bagarimina olan pozitif etkisi gdzlemlenmistir.

Ikinci asamada ise uygulanan yontemlerin her biri aktif 6grenme yapist icerisinde
kullanilmais, elde bulunan her bir sinif icin bir sézliikk 6grenilerek, her iterasyonda en
bilgi verici etiketsiz Ornekleri etiketleyerek egitim kiimesine ekleme islemi
uygulanmistir. Test agsamasinda her yeni 6rnek i¢in sinif etiketi sozliik topluluklarinin
cogunluguna bakilarak atanmistir.

[k asamada eldeki egitim kiimesinin %20'si alinarak hem sozliik tabanli hem de
destek vektor makinesi tabanli siniflandirict topluluklart modellenmis, sonraki alti
iterasyonda geriye kalan etiketsiz veriler igerisindeki en ¢ok bilgi verici %10 6rnegin
diizensizlik hesab1 dikkate alinarak secilmesiyle egitim kiimesi gilincellenmistir.
Boylelikle iterasyon sayisi arttikca siniflandirma basarimi da g¢ogunlukla artisa
gecmis, Orneklerin akillica secilmesiyle olusturulan egitim kiimesi bu sonuglarda
etkili olmustur.

Test sonuglarinda her bir veri kiimesi icin elde edilen en basarili sonuglar dikkate
alinirsa, rastgele Oznitelik se¢imiyle olusturulan smiflandirict  topluluklarina
bakildiginda 6nerilen ARDL yonteminin ARSVM yo6nteminden daha basarili oldugu
goriilmiistiir. Orneklerin rastgele segilmesiyle olusturulan siniflandirici topluluklari
kullanildiginda ise ABSVM yontemi ABDL yonteminden daha iistiin gelmistir.

Deney sonuglarmin elde edilmesinden sonra ilgilenilmesi gereken onemli bir nokta
da uygulanan yontemlerin siniflandirma basarimlar1 agisindan birbirine denkligini
One siiren hipotezlerin anlamliliginin dl¢tilmesidir. Bu dogrultuda, Friedman test ve
Wilcoxon signed rank test sonuglarima bakilmistir. Friedman anlamlilik testinden
gelen ciktilara gore aktif 6grenme altinda iterasyon bazinda uygulanan metotlar i¢in
en iyi sonuglar dikkate alindiginda goriilen odur ki sifir hipotezi (Hp) kabul
edilmemelidir, bagka bir deyisle uygulanan yontemler gosterdikleri performans
acisindan esdeger degildirler.

Aktif 6grenme algoritmalarinin son iterasyonlarinda elde edilen basarimlar i¢in de
Friedman ve Wilcoxon signed rank testleri uygulanmistir. Her iki test sonucunda da
model ciftlerinin es siniflandirma performanslar1 sunduklar1 kanisina varilmistir. Ote
yandan pasif Ogrenme kisminda uygulanan yontemler de Friedman testiyle
incelendiginde esdeger olduklari goriilmiistiir. Bunun ardindan, hangi metot
ciftlerinin kendi aralarinda denk performans sunup sunmadiklari sorusuna ¢éziim
bulmak amaciyla Wilcoxon signed rank test uygulanmistir. Sonuglara gére DL/RDL,
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DL/BDL ve SVM/BSVM metot ciftleri siniflandirma performansi olarak esdeger
degildirler, diger yontemler ise denk sayilabilir.
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1. INTRODUCTION

Nowadays, a plenty of latent information are available in databases to be exploited
for intelligent decision making. These databases generally contain data that is related
to a specific category or class. When data samples come with class labels, they are
called training data which can be used to train a model for predicting the labels of
new unseen data samples that are called test sets. This process is called classification
and it is a concept to investigate to which class a new data point should belong under
favour of using the training data. Han, Kamber and Pei (2011) express the idea as
"Classification is the process of finding a model (or function) that describes and
distinguishes data classes or concepts, for the purpose of being able to use the model
to predict the class of objects whose class label is unknown" (p. 24). The process is
known as supervised learning, because a model is formed using predefined training

data, which in fact is used as a supervisor to classify new test examples.

There are lots of domains where classification takes place such as text categorization,
optical character recognition, fraud detection, market segmentation, face detection,
classification of proteins. In order to construct a classifier model, many machine
learning algorithms have been developed and as new researches are presented, many
others arise day-to-day. Support vector machines, decision trees, naive bayes, nearest
neighbor, multilayer perceptron and logistic regression are some examples among the
most popular classification algorithms. In order to obtain a good classification
accuracy one also needs to have a good feature representation. In literature there is a
vast amount of research to represent the features in other dimensional spaces to
improve the classification performance such as kernels (Lu et al, 2003), wavelet
transformation (Van de Wouwer et al, 1999), frequency representation of time
domain signals (Sejdi¢ et al, 2009).

A number of media types such as imagery, video and acoustic can be sparsely
represented by applying transform-domain methods (Elad, 2010). A lot of significant

tasks related to such media can be handled finding sparse solutions to

underdetermined systems of linear equations. Regarding this issue, sparse coding and

1



dictionary learning have recently aroused much interest by representing each
problem instance as linear combinations of basis elements. These elements are

called atoms and they compose a dictionary.

One of the major application areas for dictionary learning is in data representation
and classification. It has been applied in many problem areas such as signal
processing applications (the joint analysis of correlated signals like audio-visual
signals and stereo images) (To$i¢ and Frossard, 2011), texture segmentation
(Sprechmann and Sapiro, 2010), music genre classification (Yeh and Yang, 2012)
and saliency detection (Zhu, Chen and Zhao, 2014). The basic model for
classification is created via generating one sub-dictionary for each category to
represent the instances of the respective class and then combining them to reach a
unique dictionary. The resulting dictionary base is used as a classifier that assigns a

class label which has the least reconstruction error and the sparsest representation.

Let us think of a scenario in which a group of doctors diagnose a certain disease for a
patient. It is clear that the diagnosis is more reliable when the majority of doctors
make the same decision on the patient's disease compared to the decision taken by
the minority. From data classification perspective, in order to classify new test
examples in a more accurate way, more than one classifier decisions can be
integrated into the system and an agreement can be made on the final decision. This
learning strategy is called ensemble learning and it is constituted by the combination
of predictor/classifier model outputs, which produces a final decision for an unseen

data point.

Ensemble learning methods are used for classification problems as well as
regression. Classifier ensembles can be obtained either in feature space, instance
space or classifier level. Boosting, bootstrap aggregating (bagging), stacking, random
subspace feature selection, random forests and adaboost are among the most applied

ensemble learning methods (Polikar, 2006).

Bagging is an instance-based ensemble learning method which generates subspaces
of instances by applying random selection method with replacement. Each ensemble
classifier produces a decision and the final prediction is their combined output. On
the other hand, random subspace feature selection is a feature-based counterpart of

bagging model, where a sub-group of features are randomly selected with



replacement to form ensemble classifiers. Taking advantage of the strengths of these
two ensemble learning methods, classification problems can be solved more

accurately and the variance of the individual classifiers are reduced.

Obtaining labeled training examples for classification problems is an expensive task
while a massive chunk of unlabelled data is available to process. For instance, let us
think of a case where we want to predict which web pages a person can find
interesting. In order to do this, we need the data of web pages which were marked as
favourite by this person. The more we know about the labeling information, we can
predict better and present more appropriate pages to recommend. On the other side,
people are generally not willing to hand-label all the pages they like even if there are
a lot. Active learning is a largely used framework for these kind of situations. It has
the ability to choose the most informative unlabeled examples automatically for
human annotation. Liere and Tadepalli (1997) state the concept as "Active learning
in its most general sense refers to any form of learning wherein the learning
algorithm has some degree of control over the examples on which it is trained" (p.

591).

Up to the present, active learning framework has been applied with many different
classifiers for text classification, image retrieval, advertisement removal (Sun and
Hardoon, 2010), visual object detection (Abramson and Freund, 2004), natural
language processing (Olsson, 2009) etc. To the best of our knowledge, active
learning has not been applied as a classifier in active learning framework. In this
study, dictionary learning is used as a base classifier for active learning and active
learning’s intelligent selection strategy is used to enhance the training set by

choosing the most informative examples.

1.1 Purpose of Thesis

The aim of the thesis is to introduce a number of models for data classification which
are generated by sparse coding based ensemble classifiers combined with active
learning framework. The proposed models are examined under three main headings:

dictionary learning, ensemble learning and active learning framework.

In order to represent the input data using as few components as possible, dictionary

learning is proposed as a learning model for an effective representation. Exploring



a sparse representation of the input data in the form of a linear combination of basis
elements and also discovering those basis elements (i.e. atoms of a dictionary)

themselves is the main purpose of dictionary learning.

Another remarkable point for this thesis is to show the effect of ensemble learning
methods on the proposed classifiers. Random subspace feature selection and bagging
are selected as appropriate ensemble learning methods to boost the prediction ability
of dictionary learning model. On the other side, comparisons with support vector
machines, which is one of the state-of-the-art algorithms, and its classifier ensembles
are also presented. Toward this goal, experiments are conducted on datasets with

different number of features/instances from various scopes.

Other point of purpose on the following sections is to introduce active learning
framework and integrate it into ensemble dictionary learning model. It helps
performing classification in cases where few number of labeled and huge number of
unlabeled training instances are available. Entropy is employed as an uncertainty

sampling technique for pool-based active classifier models.

As the final contribution of this paper, several significance tests are demonstrated to
detect differences in treatments across multiple test attempts. For this purpose, non-
parametric Friedman tests are applied to the classification accuracies of the proposed

methods.

1.2 Literature Review

In literature, dictionary learning and sparse coding have been applied in diverse areas
such as signal, image, audio and video processing applications for dimensionality
reduction (Schnass and Vandergheynst, 2008; Tosi¢ and Frossard 2011), denoising
(Elad and Aharon, 2006), image restoration (Mairal et al, 2008), and image
compression (Bryt and Elad, 2008).

As dictionary learning doesn’t require estimating class distributions or computing
margin between classes, it is also used for data classification and clustering
applications where the feature vectors are computed as linear combinations of basis
elements of a dictionary. Sapiro and Sprechmann (2010) developed a clustering
framework in which a set of dictionaries are built for every cluster found in a given

dataset. According to the proposed approach, dictionaries are formed by choosing the



ones which provide the best representation of the signals in a cluster and giving the
sparsest solution. Besides, three standard datasets, the MNIST and USPS which are
composed of handwritten digits and ISOLET which includes audio features from 150
speakers were used to show the discriminative aspect of dictionary learning model.
The experimental results showed that the proposed dictionary learning model
provides remarkable classification performance comparable with other sophisticated
classification algorithms such as SVM and k-NN in terms of reconstruction and

discrimination power.

On the subject of music genre classification, Yeh and Yang (2012) developed a
technique enforced by dictionary learning to summarize short-time features
(codebook) of recorded music over time, where codebook represents dictionary base.
Dictionary base is made up of sub-dictionaries, one for each class to represent the
characteristics of the instances in these classes. Other existing codebook generation
methods such as conventional VQ-based and exemplar-based methods were
compared with the proposed dictionary based method. The proposed method was
shown superior to others on two benchmark datasets, GTZAN composed of clips
covering ten genres and ISMIR2004Genre including songs covering six genres using

just the log-power spectrogram as the local feature descriptor.

Tosi¢ and Frossard (2011) presented dictionary learning and sparse approximation as
a dimensionality reduction tool to find a representation adaptive to the proper
inference of causes of the observed data. In addition, supervised dictionary learning
was examined in a face recognition application by using the discriminative power of
the sparse representation. The incoherency between the subspaces which represent

data in different classes was taken into consideration.

Recently, ensemble methods have been used to improve the classification accuracy
of single classifiers. Ensemble classifiers are created using the outputs of multiple
classifiers that are trained on different training datasets created by various data
resampling procedures or trained on a single training dataset by selecting different

classifier parameters or classifiers.

Polikar (2006) reviewed ensemble based strategies such as bagging and its
variations, boosting models, stack generalization etc. by emphasizing their

importance in decision making process while dealing with classification problems.



Why we tend to prefer applying ensemble learning methods instead of single
classifiers is explained from various perspectives such as reducing the risk of
inaccurate predictions of a single model, ability of handling large volumes of data
and easily applying divide and conquer technique in problems with complex decision

boundaries.

Random subspace is one of the well-known ensemble learning methods. It was firstly
introduced to construct a decision tree classifier by randomly chosen subspaces of
the components of the feature vector (Ho, 1998). According to the applied selection
strategy to form random subspaces, a number of different feature selection
techniques has been proposed such as Univariate search technique (Chow et al,
2001), Base-pair selection (Bo and Jonassen, 2002), Forward selection (Bo and

Jonassen, 2002), Recursive Feature Elimination, and Liknon.

Lai, Reinders and Wessels (2006) introduced an ensemble strategy in feature space
by incorporating informativeness of features as a selection strategy in the
construction of each subspace. Applied multivariate feature selection technique,
Random Subspace Method, initially selects features randomly from the original
feature space and then, a multivariate search technique, either Liknon or Recursive
Feature Elimination, takes place in this reduced feature space by retrieving the
informative features. This procedure is applied iteratively by covering the large
portions of the original features. According to the experimental results which were
carried out in artificial datasets, ensemble based random subspace model provides
robustness and a powerful classification performance especially in small sample size
problems. Many other studies have been made by applying random subspace
ensemble for functional magnetic resonance imaging (fMRI) classification
(Kuncheva et al, 2010), the bio-molecular diagnosis of malignancies (Bertoni, 2005)

and bankruptcy prediction and credit scoring (Nanni and Lumini, 2009) etc.

Bagging is another ensemble learning strategy which uses randomly selected
instance subspaces. There are various studies applying bagging for solving credit
scoring and bankruptcy prediction (West, 2005), optical character recognition (Mao,
1998) and day-ahead electricity price prediction (Tian and Meng, 2010). Recently,
Zhu et al. (2014) combined ensemble learning with dictionary learning model in
order to detect visually salient regions of an image. Instead of modeling a universal

dictionary, the developed bagging based dictionary learning framework (EDL) is
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constructed by applying random selection of image samples in order to train
dictionaries independently for each subspace. In this way, more flexible multiple
sparse representations are obtained for each of the image patches. A reconstruction
residual based model for atom reduction over the learned dictionary is presented to
further boost the distinctness of salient patch from the one of background. The
resulting decision is made upon considering the outputs from each ensemble
subspace. To the best of our knowledge there isn’t any paper that applies dictionary

learning as base classifier for random subspace and bagging ensembles.

The possibility of access to huge amount of data has been increased along with
getting easy access to data. On the other hand, the majority of the available data is
mostly unlabeled in other words we do not have enough information about its
class/category label. Active learning, which is proposed for this type of problems, is
a learning method in which the most informative instances from the unlabeled data
are chosen, then labeled by an oracle and after then added to the training set to be

used in the model construction of classification.

Active learning can be categorized by its way of synthesizing queries either by stream-
based (Cohn et al, 1994), pool-based (Lewis and Gale, 1994) or query synthesis
(Angluin, 1988) methods. In this work, the focus is on pool-based active learning in
which a large pool of instances are sampled then the base classifier chooses the best
query to be labeled. There are numerous number of studies applying pool-based
active learning for different purposes such as in the application of cancer diagnosis
(Liu, 2004), image classification (Zhang and Chen, 2002) and speech recognition
(Tur et al, 2005).

Tong and Koller (2001) performed classification using SVM under the active
learning framework in a text classification problem to determine which pre-defined
topic a given text document belongs to. In the active learning part, some number of
unlabeled instances are selected and added to the training set after learning its class
label using one type of pool based active learning strategy. Three query strategies
that split the version space into equal parts was proposed and they were shown to

outperform standard passive learning counterparts.

Sun (2010) developed an active learning model which takes the correlation values

between features of different views under a multi-view setting. He applied canonical



correlation analysis to select the most informative instances to integrate them into the
training phase in the further iterations. According to the proposed approach, it is
assumed that one example per class is labeled. The experiments were conducted on
text classification, advertisement removal and content-based image retrieval and it
was showed that the proposed active learning model has superiority over the general

random selection approach for labeling.

Xu et al. (2014) performed active learning for dictionary construction by choosing
the most informative examples using the reconstruction and classification error as the
query strategy. The selected instance is only used during the dictionary update step.
According to the experimental results conducted on a number of datasets from UCI
Machine Learning Repository and face recognition dataset, active dictionary learning
with small size dictionary can achieve comparable performance with other machine

learning methods.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows: The next chapter introduces the applied
methodology. In the first step, sparse signal representation, dictionary learning and
support vector machines models are explained. The following step of Chapter 2 is
devoted to the ensemble learning methods in general and provides detailed
knowledge on random subspace feature selection and bagging ensemble classifiers.
Furthermore, active learning framework is stated by expanding different sampling
scenarios used throughout literature. In the next chapter, sparse coding based
ensemble classifiers combined with active learning framework is proposed. Chapter
4 discusses datasets which have been used and toolboxes managed to obtain
dictionary learning model and support vector machines classifiers. In Chapter 5
experimental results achieved and significance tests applied are explained while

Chapter 6 concludes the thesis with a summary of key lessons learnt.



2. METHODOLOGY

2.1 Dictionary Learning and Sparse Signal Approximation

2.1.1 Sparse signal approximation

Sparse representations of signals have received a great deal of attentions in recent
years. Sources of data such as voice signals, images, radar images or heart signals
etc. carry overwhelming amounts of data in which relevant information is often more
difficult to find than a needle in a haystack. In this direction, having a sparse
representation plays a fundamental role in processing signals faster and simpler as

few coefficients reveal the information we are looking for.

Let's define an input signal as x € R%, D = [d, da, ..., di] € R™* as a dictionary
composed of a set of normalized (ddej = 1) “basis vectors”, and a € R* as the
coefficient vector or the representation of the signal, also known as sparse code, then

the sparse representation problem can be formulated as:
ming|lally s.t. x=Da 2.1)

where ||a|o indicates 1o norm of the coefficient vector a and it represents the number

of non-zero elements in o.

An input signal x can be represented by a linear combination of the atoms of an
overcomplete dictionary in which the number of basis vectors is greater than the
dimensionality of the input. However, finding the sparsest representation for a signal
in an overcomplete basis is a very difficult computational problem because it needs
combinatorial search and it is in the category of NP-hard problems. In order to find
the best approximate solution to this problem, instead of non-convex lp norm, 1; norm
can take place by making it convex that ensures the existence of a unique global
minimum to the above problem. Other 1, norms where p is in the range [0,1] are also
possible by imposing a stronger form of sparsity, but they lead to non-convex
problems therefore 1; norm is commonly used. Generalized formula of the I, norm

can be given as:



1/p

k
ledly = { Y lal? 2)
i=1

where a =[a, ..., a;]" and after replacing the former sparsity formulation with the I;

norm, sparse representation problem can now be represented as:
ming||al|; s.t. x=Da (2.3)

In general, the system under consideration can be exposed to noise, €, where we need
an alternative solution with some proximity between Da and x. It can be expressed as

follows:

o = argming|all; s.t.||Da —x||, < € (2.4)

2.1.2 Dictionary Learning

The concept of dictionary learning is about the construction of dictionary directly
from a set of existing data samples so that the learned dictionary can be well adapted

to the purpose of sparse representation.

Actual dictionaries can be obtained by finding a solution to the following

minimization problem:

m
M, oy D 1% = Dasll3 + Allgly 2.5)

i=1

where each of {x;};=, , represents one input signal (data sample/instance) being
classified, and A is the penalty parameter that balances the trade-off between the data
fitting term which defines the reconstruction error and the regularization term which

determines the sparsity of the decomposition.

The optimization problem in equation 2.5 is usually not jointly convex concerning
variables D and a. One solution is to fix one of them, either D or a, so that the
objective function with respect to the other variable can turn into a convex function.
In this direction, the optimization algorithm is made up of two convex steps which
are applied in an iterative approach until a predetermined convergence criterion is

met:
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o  Sparse Approximation: Dictionary D is considered fixed, then coefficients
{oi}i=1_ m of signal x with respect to dictionary D are calculated by

minimizing equation 2.5.

e Dictionary Update: New dictionaries are computed using the obtained sparse

coding matrix o in order to reduce the approximation error.

2.1.3 Supervised Dictionary Learning

Dictionary learning methods can be organized in a way that it can provide both
reconstructive and discriminative purposes. Discriminative dictionary learning brings
about the task of supervised classification of input signals by the inclusion of the
class labels. Using the labels of training data ensures different data representations
for each class by making the classification task easier. The aim of the sparse coding
step is to find the sparsest representation of the data that has least reconstruction
error. Both sparse representations and reconstruction error are considered for

classification.

In order to realize the classification phase, actual dictionary is decomposed into sub-
dictionaries each of which is trained independently with the involvement of the
instances of a particular class. When we consider a training data consisting of ¢ class
labels, the corresponding dictionary base D is constructed using n sub-dictionaries as
[Dy, Dy, ..., D] and each of them is to represent one class with the same number of
instances. In case of classifying a new test input which we have no idea about its
class label beforehand, actual dictionary that is the combination of class-specific sub-
dictionaries is used to encode the signal. The signal is then assigned to the class for

which the best reconstruction is obtained and the one leading to the sparsest solution.

If we express the idea in more detailed way, classification of a signal x given a
collection of dictionaries [Dy, Dy, ..., D] where each D; € R™ can be fulfilled by

performing the following steps iteratively and it is displayed in Figure 2.1.

e Compute the representation of the signal x in each dictionary D;, which are a,,

ay, ..., O using sparse coding

e Find the class membership of the signal x by comparing the cost of the
representations, which are found in the previous step, and assigning it to the

dictionary D; which delivers the least cost:

11



classi* = argmineg; . o3 §;(x) (2.6)

where §;(x) = ming px|lx — DiallZ + Allall; (2.7)
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Figure 2.1 : Iterative dictionary learning framework.

2.2 Support Vector Machines

Support Vector Machines (SVM) is one of the state-of-the-art algorithms which is
applied in solving classification and regression problems, feature selection and other
machine learning tasks. A lot of real world problems such as bankruptcy prognosis,
face detection, analysis of DNA microarrays and breast cancer diagnosis and

prognosis can be dealt with by inclusion of an SVM model.
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The aim of SVM is to maximize the margin between each class so that a good
generalization performance on unseen test instances can be obtained. Although the
subject was introduced in the late seventies (Vapnik, 1979), it has been receiving

increasing attention, and so the time appears suitable for an introductory review.

In Figure 2.2, there is a classification problem for two class (+, -) dataset. The aim is
to find a hyperplane so that "+" data points take place in one side and "-" ones are
placed in the opposite side of this separator. SVM uses a flexible representation of
the class boundaries. For each side, the data points which are located on the
boundaries where the hyperplane is maximally distant from them are called support
vectors and the gap between hyperplane and a support vector is known as margin.

Campbell and Ying (2011) states SVM generalization error, i.e. the upper bound as

"the bound is minimized by maximizing the margin (—|| ™ where w is a normal
wii2

vector to bounding planes) i.e., the minimal distance between the hyperplane

separating the two classes and the closest data points to the hyperplane" (Chapter 1,
p. 2).

Figure 2.2 : Two class data points linearly separable by a hyperplane.

According to the Figure 2.2, a linear support vector machine is illustrated and the
hyperplane is constructed using a simple formulation w . x + b = 0 where "." denotes
inner product, b is bias from the origin in the input space, w is weight determining
the orientation and x are data points taking place in the hyperplane or normal to it.
"+" data points are placed in terms of the formula w . x + b > 0 while "-" instances
are placed by applying w . x + b < 0 so that separation makes the classification

process an easy task.
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Even though SVM was originally developed for binary classification, it is now
applied in both binary and multi-class data classification problems providing an

acceptable prediction ability.

2.2.1 Non-separable case

Majority of the problems are not as simple as the given scenario in Figure 2.2
because data points cannot be convenient to be separated by a linear hyperplane due
to non-linear clusterings found in data. For those cases, we enhance kernel functions
to transform the non-linear data into a feature space so that linear classification can
be applied. The choice of a kernel depends on the problem at hand because it
depends on what we are trying to model. In the literature, there are many popular
kinds of kernels defined to apply in complex machine learning problems such as
polynomial kernel for modeling feature conjunctions up to the order of the
polynomial and radial basis function kernel where circles (or hyperspheres) are

picked out.

Lee, Yeh and Pao (2012) introduce SVMs for this kind of problems by making use of
support vectors in discriminating between complex data patterns by generating a
highly nonlinear separating hyperplane, that is implicitly defined by a nonlinear

kernel map.

For training data x; ¢ R" , i = {1, ..., m} with class labels y € R’ such that yi={-1, 1}

C-SVC can be formulated as an optimization problem given in equation 2.8.

1 m
miny p, ¢ EWTW +C Z &
i=1 (2.8)

styi(wlxi+b)>1-§,§>0,i=1,..,m

where w is the normal vector to the bounding planes (x'w + b = -1 for class "-" and
x'w +b =1 for class "+" according to Figure 2.3), b shows their position relative to
the origin. € is a slack variable for soft margins which is defined for linearly non-
separable cases (w'x; + b + § >+1 for class "+" and w'x; + b + & < -1 for class "+")
and 1-norm of & Y'!_, & is called the penalty term. Due to the higher complexity of
the separating hyperplane overfitting situation can occur by leading to poor

generalization. In this direction, C>0 is used as a regularization parameter balancing

the weights of the penalty term ),i2 &; versus the margin maximization term % [lwll3.
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Xw+hb=1

Figure 2.3 : An example of linearly separable (left) and non-separable (right)
SVM

LibSVM (Chang and Chih-Jen, 2011) is a C/C++ based package for easily
implementing support vector machines in other languages/softwares such as Matlab,
Python, Java and Octave. In order to deal with binary class and multi class problems,
the library provides SVC type of SVM. Except from SVC, SVR (Support vector
regression) is available for regression problems and one-class SVM is also present in
the package. In this study, one of the SVM types, C-SVC is used to classify both

binary and multi-class datasets.

For binary classification in C-Support Vector Classification, a solution is found to

the following primal optimization problem:

1 m
miny, ¢ > wlw + C Z &i
i=1 (2.9)

styiwTp(x)+b)>1—-§,§=>0,i=1,..,m

where ¢(x;) is a function which maps data point x; into a higher dimensional space,
and C, b, w and § parameters are same as the previous ones. Because of the probable

high dimensionality of the vector w, it can be formulized by a dual problem:

1
ming = aTQa — eTa

2 (2.10)
st.yla=0,0<o; <C,i=1,..,m
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where e is a vector which is full of ones, Q represents a m by m positive semidefinite
matrix, and Q; = y;y;K(xi,xj) where K(x;,xj) is the kernel function as K(x;Xj) =

d(x;)TPp(x;). Once the problem is solved, then the optimal w satisfies

m
w = ZYiai $(xi) @2.11)
i=1
and the decision function is
m
sgn(wTp(x) +b) = sgn(z yio; K(xi,x) +b) (2.12)
i=1

In this study, radial basis function is selected as the kernel function K(x,x") for two

samples x and x'. It is defined as in equation 2.13:

, lIx —x'||?
K(x,x) = exp T (2.13)

1 .
where we can define a parameter y = w3 and result in K(x,x") = exp(—y||x — x||?).

2.3 Ensemble Learning

Ensemble learning is a paradigm where multiple learners are trained to solve a
machine learning problem and a final decision is made after combining each output
of single learners according to some criteria. As No Free Lunch theorem states that
there is no single model that works best for every problem the aim of the ensemble
learning is to boost the accuracy of the single classifiers. Besides due to the possible
noise in the data, overlapping data distributions and outliers generally single
classifiers cannot achieve a certain classification accuracy. These have grown the

needs to create ensemble techniques.

Establishing an ensemble model is made up of two stages. In the first part, a couple
of base classifiers are generated in a parallel or sequential manner. Generally, in the
sequential manner the construction of a base classifier may affect the construction of
the subsequent classifiers. In the latter part, the resulting classifier outputs are
combined to take a decision about the final classification of a new test instance. At
this stage some type of combination schemes are applied such as majority voting for

a classification problem. In the majority voting the class label is selected from the
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majority of the individual classifiers’ class labels. In regression weighted averaging
of the base regressors’ outputs gives the final prediction result. The basic framework

of the ensemble modeling is depicted in Figure 2.4.

Ensemble model construction
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Figure 2.4 : Ensemble learning framework.

Model ensembles are among the highly effective techniques in machine learning and
pattern recognition applications that generally outperforms other methods. Ensemble
learning has already been applied in a variety of domains related to machine learning
problems such as text categorization (Dong and Han, 2004), optical character
recognition (Chellapilla et al, 2006), face recognition (Lu et al, 2006) and gene
expression analysis (Tan and Gilbert, 2006) etc for searching a hypothesis space to

reach the most accurate hypothesis by reducing the total error.

It is mostly preferred to classical single learning models because of three significant
reasons. The first one is that there may be insufficient information in order to decide
on which classifier performs better on the training data. A solution to this problem is
therefore combining the ones which results in sufficiently well and it is a reasonable
choice to apply. Another rationale is that the applied learning algorithm might
practise imperfect search processes which ends up with sub-optimal hypotheses even
if there exists a unique best hypothesis. The last reason is the case where ensemble

strategy leads to a good approximation as one learner cannot reach a true target
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function in the searching phase. On the other hand, choosing ensemble models comes
at the cost of raised algorithmic and model complexity. Ensemble strategies can be
obtained on either feature space, instance space or classifiers’ parameter space. Next
we will detail one of the most successful ensemble learning on feature space namely

random subspace methods.

2.3.1 Random subspace ensemble learning

Searching for a feature base that leads to a considerable classification performance is
another challenging task to cope with. Even if there is a single input representation,
by selecting random subsets from it we can train different classifiers on selected

subspace of features, which is called the random subspace method (Ho, 1998).

Random Subspace Ensemble Learning "RS", also known as Attribute Bagging, is
one of the most commonly used ensemble learning methods which plays an
important role in finding the subset of informative features to correctly classify given
signals. It is a wrapper method that can be used with any learning algorithm. The
method is applied by classifying test instances with a chosen classifier along with
randomly selected subsets of all possible features iteratively and with replacement.
The feature base is changed in each iteration with the same number of randomly
permuted features. If we name the whole constructed feature subspace as X, and the
selected feature subspace at i iteration as X5 i, K number of subspaces are created at
the end of the process in K iterative ensemble learning steps where X5 = {Xis 1, ...,
Xis k}. Table 2.1 shows the pseudo code of the random subspace ensemble learning

method.

Table 2.1 : The pseudo code of random subspace ensemble learning.

Algorithm: Random subspace ensemble learning method

Input: training set X, number of features in the subspace s, number
of ensemble predictors K, predictor h

Output: ensemble model h = {h; ..., hx} combination of whose
outputs is used to predict new test instances' class labels/regression
results

Fori=1K

Create a subspace sample data X, ; with s features selected at
random with replacement from X

Apply the predictor h; to X ;
End For
Return h = {h; ..., hx} ensemble model
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Note that by applying random feature subspaces, different predictors will deal with
the same problem from different standpoints by resulting in more robust
representation and diminishing the curse of dimensionality arising from high

dimensional inputs.

2.3.2 Bagging

Bagging short for "bootstrap aggregating" is an ensemble learning approach which
generates multiple exemplars of a predictor to lead to an aggregated learner by taking
the combination of their outputs using a fixed rule. It provides a way to present
variability between the different models within a committee. Creation of the multiple

exemplars is done via making bootstrap replicates of the learning set.

Logic behind the bootstrap creation is treated as follows. Assume that we have a
dataset X = {xXy, ..., Xm} with m data points. If we generate a new dataset Xgagocd
whose instances are randomly drawn from the original dataset as the same number of
instances with replacement, it is the case where some number of data points are
repeated containing duplicates in Xpageeqa and some others in the original dataset are
not included now. A particular instance which is chosen for a bootstrap sample of

size m can be calculated as follows:

probability of selection =1 — (1 —1/m)™ (2.14)
which is about two-third and has limit 1-1/e = 0.632 for m—o (Flach, 2012, Chapter
11). This means that each bootstrap sample is likely to leave out about a third of the
data points. This difference between bootstrap models is exactly what we want to
give rise to diversity among the models in the ensemble. An iterative process is
performed by repeating this procedure K times and resulting in K randomly
generated datasets. Table 2.2 displays the pseudo code of the general framework of

bagging algorithm.

2.4 Active Learning

In passive learning, a bunch of training examples and their class labels are provided
to the learning algorithm. In many machine learning problems, we need to cope with
significant number of unlabelled examples whose labeling is mostly time-consuming
and expensive to obtain. Active learning is a framework where abundant unlabeled

data and few labeled samples are available.
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Table 2.2 : The pseudo code of bagging.

Algorithm: Bagging
Input: training set X, number of instances m, number of ensemble
predictors K, predictor h

Output: ensemble models h = {h; ..., hg} combination of whose
outputs is used to predict new test instances' class labels/regression
results

Fori=1:K

Create a bootstrap sample data Xpaeeing i With selecting n data
points randomly with replacement from X

Apply the predictor h; to Xpagging i
End For
Return h = {h; ..., hx} ensemble model

The framework resolves the labeling problem by asking the labels of some
intelligently selected examples to a trained expert or an oracle. The selected data
points are usually the optimal ones which boost the number of correctly classified

instances upon they are labeled and incorporated into the training phase.

Active learning scenario has been applied in various machine learning real-world
applications such as image classification and retrieval (Zhang and Chen, 2002), text
classification (Tong and Koller, 2001), email filtering, web searching, video

classification and retrieval, information extraction and speech recognition etc.

The fundamental purpose of active learning is to improve the accuracy of the initial
classifier by adding new training examples from unlabelled dataset which are
selected using a selection criterion i.e. informativeness measure. The learner may
start the classification task with few number of labelled training data, then in each
iteration one or more unlabeled instances are carefully chosen to be added to the
training examples after its class label is determined by an oracle. This process is
implemented iteratively by the selection of the most informative unlabeled data
points which will help improve the prediction ability. Figure 2.5 points out the

generalized active learning framework.

In the matter of applying active learner, sources of unlabelled instances play an
important role. In literature, there are three main categories of sources of unlabelled

data (Roederer, 2012; Settles, 2010):
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Figure 2.5 : Active learning framework.

e query synthesis in which the learner asks the labels of unlabelled data points
from some underlying distribution also including the queries that the learner

produces de novo without the need for a distribution.

e stream-based sampling where unlabelled instances are handled one by one
through sampling from an actual distribution to decide whether they should
be integrated into the set of labelled instances or not. It is suitable for special

situation where the memory and storage capacity is limited.

e pool-based sampling which is the mostly applied sampling scenario that the
learner chooses instances from a pool of unlabelled data to query by using a

greedy approach through examining informativeness of each.

In pool-based sampling, a significant question arises in the case of how to select and
assess the most informative data point among the unlabeled examples. Perhaps the
simplest way is to query instances where the learner is least certain and this process
is known as uncertainty sampling. One of the most popular uncertainty sampling
techniques is based on entropy. We want to choose the examples which leads to the
greatest reduction in entropy upon its class label is known. Calculating the entropy
over the distribution of possible class labels results in a value that represents the
amount of information needed. "The more entropy in the distribution, the more

uncertain the choice of class label for that data value, and the more informative that
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query would be" (Roederer, 2012). A generalized entropy-based query sampling

strategy can be defined as in equation 2.15:

C
Xikl = argmaxy — Z PG (y = IIX) lnge(y = 1|X) (215)
i=1
wherei= {1, ..., ¢}
where x refers to any instance, y is the class of the instance x, ¢ is the number of

classes and 0 is the parameters in the classifier model h.

According to Holub et al. (2008), "Active learning adaptively prioritizes the order in
which the training examples are acquired which can significantly reduce the overall

number of training examples required to reach near-optimal performance" (p. 1).
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3. THE PROPOSED METHOD

In this study, one of the supervised classification algorithms, dictionary learning, is
applied in combination with active learning framework using the strength of
ensemble classifier strategies. In the first step, Bagging and Random Subspace
ensemble methods are performed by using dictionary learning as the base classifier
and in the latter part, Active Learning is applied by showing the effect of using the

most informative unlabeled instances while modeling dictionary base.

3.1 Dictionary Ensembles Using Random Subspaces and Bagging

Bagging and Random Subspace methods are the most commonly used ensemble
learning methods which play an important role in finding the subset of instances and
features to obtain diverse classifiers given data samples. Following the idea behind
dictionary learning, ensemble learning methods can be merged into the process to
boost the correctly classified number of instances. Accordingly, in this study
dictionary learning is used as a base classifier with Random Subspace and Bagging
methods. Random Subspace Dictionary Learning (RDL) and Bagging Dictionary
Learning (BDL) algorithms creates K dictionaries for each class in the training set
using randomly selected features for RDL and instances for BDL. Class label for a
test instance is determined by picking up the majority class label among the results of

all K dictionaries. The pseudo-code of the algorithms is given in Table 3.1.

The framework of the proposed dictionary learning algorithms is shown in Figure 3.1.
Initially, according to the choice of ensemble learning strategies, either BDL or RDL,
s instance/feature subspaces are generated. In the dictionary construction phase, each
subspace produces a dictionary base. Test data are classified using the ensemble
dictionary learning classifiers after dictionary construction phase. As a result,
ensemble strategy produces a final prediction by applying majority voting on class

labels obtained in each instance/feature subspace.
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Table 3.1 : The pseudocode of the proposed ensemble methods.

Algorithm: Ensemble dictionary learning

Input: training set X € R™", training class labels Y € R™, number of features n,
number of selected feature/instances s, number of ensemble dictionaries K,
number of classes c, test set X' €¢ R™", number of training instances m, number
of test instances w
Output: predicted class labels Y' for test instances
Training:
Fori=1:K
switch(ensemble algorithm)
case RDL:
Select s random features from X
Create X, ¢ R™ using selected features
case BDL:
Select s random instances from X
Create X, € R™" using selected instances
For each class in the training set X,:
Train dictionaries {Di, Dy, ..., D¢}
DIZ {Dl, Dz, ceny DC}
End For
Testing: Input a test instance vector x' from test set X'
Fori=1:K .
Calculate &;(x") using (2.7) and D'
End For
Classify x' using majority voting on §;(x')'s

3.2 Active Learning Based Data Classification Using Dictionary Ensembles

The proposed active learning scenario is applied in combination with Random
Subspace Dictionary Learning and Bagging Dictionary Learning methods as the base
classifiers. Initially, 20% of the whole dataset is used as training data to construct a

supervised dictionary model.

To form each random subspace ensemble, feature subspace is iteratively reduced by
randomly chosen attributes with replacement. Using the dictionary model, unlabeled
instances are classified into appropriate classes. At each iteration in order to select
the instances to be queried, entropy query strategy is employed by computing the
class label entropies using equation 2.15. Unlabeled instances are sorted in a
descending order based on their entropies. At each iteration, the data samples that
have the highest entropy values are asked to the oracle and 10% of the unlabelled
instances are added to the training data. Figure 3.2 displays the scenario

schematically.

24



Performing active learning ensures choosing the most informative instances to
training set, by doing so, atoms can be updated or new atoms can be added to the

dictionaries which may improve the sparse representations of the instances.
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4. MATERIALS AND EXPERIMENTAL SETUP

In order to measure the classification performance of the proposed method, a number
of datasets retrieved from UCI Machine Learning Repository (Lichman, 2013) and
OpenML (Vanschoren et al, 2013) are used. Table 4.1 indicates these datasets by
noting the respective number of instances, feature size including the class attribute

and how many classes they cover.

Table 4.1 : Properties of the datasets used in the experimental results.

Dataset The number The number The number of
of instances  of attributes classes

cme 1473 10 3
fri_ c4 100 10 100 11 2
ionosphere 351 35 2
pollution 60 16 2
sonar 208 61 2
spectf _train 80 45 2
statlog-german 1000 25 2
vehicle 846 19 4
waveform-5000 5000 40 3
mfeat-karhunen 2000 65 10
optdigits 5620 64 10

Datasets have been gathered from various areas. Contraceptive Method Choice, cmc,
dataset holds the information of demographic and socio-economic characteristics
(age, education, religion, etc.) of Indonesian married women who were not pregnant
during the survey. The dataset was a part of 1987 National Indonesia Contraceptive
Prevalence Survey that was to predict which contraceptive method (no-use, long-

term, short-term) was chosen.

Mfeat-karhunen is among the other six subgroups of multiple features dataset which
includes features of handwritten numerals 0 to 9 from a collection of Dutch utility
maps which have been digitized in binary images. This subgroup is the combination

of 64 Karhunen-love coefficients.

Optdigits is a dataset comprised of extracted 32x32 normalized bitmap images of
printed handwritten digits, 0 to 9, from 43 people. Preprocessing step was done by

NIST preprocessing tools to extract features.

Ionosphere dataset deals with the radar returns from ionosphere layer by grouping

them as good, which says there is some type of structure in the ionosphere or bad

29



returns in which the signals just pass through the ionosphere without witnessing any

structure.

Sonar dataset developed by R. Paul Gorman and Terry Sejnowski is the combination
of patterns gathered from metal cylinder and rock. The objective is to classify each

record into one of two classes, mine (metal cylinder) or a rock.

Spectf dataset is made up of extracted image features which are used to decide
whether a patient has the signs of "normal" or "abnormal" diagnose by looking at

his/her cardiac Single Proton Emission Computed Tomography (SPECT) images.

Statlog-german is one of the datasets under the database hold for European Statlog
project. German credit dataset contains the attributes such as salary information,
credit history, present employment etc. in order to decide whether a person has the

risk of good or bad credit.

Vehicle dataset is used to distinguish between car models and characterize a given
vehicle silhouette as one of four types: a double decker bus, Cheverolet van, Saab
9000 and an Opel Manta 400. Dataset features were extracted from various vehicle

silhouettes which were viewed from different angles.

Waveform-5000 dataset is for the classification of three different wave classes each
of which is formed using the combination of two of three base waves. Each instance

is generated with added noise (mean 0, variance 1) in each attribute.

Fri_c4 100 10 is one of the datasets in the collection of 80 datasets, donated by M.

Fatih Amasyali, which were artificially produced by the Friedman function.

In order to make the experiments with SVM and SVM ensembles, Matlab platform is
integrated with LibSVM library. For dictionary learning part, SPAMS (SPArse
Modeling Software) toolbox is utilized (Mairal et al, 2009, 2010).
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5. EXPERIMENTAL RESULTS

5.1 Performance Analysis Based on Classification Accuracies

Experimental results are obtained using tenfold cross validation for DL, RDL, BDL,
SVM, RSVM and BSVM. The number of ensemble classifiers, K, is selected as 15
for all ensemble methods. 70% of the features are randomly selected to construct
each subspace for RDL and RSVM. Similarly, for BDL and BSVM 75% of the
instances are selected randomly. 10% of the instance sizes are selected as the number
of atoms for initial dictionaries. The penalty parameter, A, to constitute dictionary
models is tuned to 0.05. For SVM, RSVM and BSVM models, the applied type of
SVM is C-SVC in which the kernel function is radial basis function. Table 5.1 shows
the optimal values for C and y parameters determined by grid search with respect to

each dataset.

Table 5.1 : SVM parameters for each dataset.

Dataset C Y
cmce 3 0.01
fri_ c4 100 10 18 0.02
ionosphere 19 0.04
sonar 4 0.09
spectf train 1 0.01
statlog-german 1 0.01
vehicle 1 0.01
waveform-5000 1 0.01
mfeat-karhunen 1 0.01
optdigits 1 0.01
pollution 1 0.07

Classification accuracies of the DL, SVM, RDL, BDL, RSVM and BSVM methods
are given in Table 5.2. The best classification accuracy for each dataset is indicated
by bold typing. In the experiments, BDL outperforms other methods in 6 out of 11
datasets. Note that selecting instance subspaces for dictionary learning model
increases the number of correctly classified instances. On the other side, SVM
follows BDL's classification performance by resulting in the best performance in 3
datasets. Each of RDL and DL algorithms produces good results in 2 datasets. Here,

DL shows similar performance with RDL i.e. selecting feature subspaces does not
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contribute much to the performance of default model. According to the results,
BSVM cannot manage pretty good results compared to other algorithms and RSVM
is the best classifier at only one dataset. It means for the given datasets applying both

feature/instance subspaces of SVM do not lead improved predictions.

Table 5.2 : Classification accuracies of the classifiers DL and SVM along with their

ensembles.

Dataset DL RDL BDL SVM RSVM  BSVM
cme 50.40 52.65 51.83 55.40 54.72 54.72
fri c4 100 10 59.00 60.00 64.00 60.42 58.51 60.42
ionosphere 92.85 93.42 92.00 95.16 94.58 94.58
sonar 85.71 87.61 87.61 83.64 82.21 83.66
spectf train 71.25 71.25 71.25 58.75 61.25 50.00
statlog-german 70.30 72.10 76.20 73.20 71.10 72.70
vehicle 74.11 76.58 77.52 50.24 60.68 47.42

waveform-5000 76.18 80.84 78.54 86.84 86.50 86.73
mfeat-karhunen 97.30 97.35 97.05 97.75 97.85 97.60
optdigits 99.07 99.00 99.05 86.29 95.96 86.03
pollution 71.66 73.33 78.33 51.71 51.71 51.71

In the second part, active learning has been performed on ensembles of both
dictionary = learning  (ARDL/ABDL) and  support vector  machines
(ARSVM/ABSVM). The number of ensemble classifiers is selected as 5 for ARDL,
ABDL, ARSVM and ABSVM. Ten-fold cross validation results for ARDL and
ARSVM are shown in Table 5.3 and Table 5.4 respectively. Table 5.5 and Table 5.6
correspond to the experimental results for ABDL and ABSVM. The "default" results
are obtained without using active learning via taking the 20% percentage of the
whole training data as the new training instances to construct the classification
model. Others show the results using active learning in which the training data size
(initially 20% of the whole training data) is increased with the addition of the

mentioned percentage (10%) of the unlabeled data in each iteration.

70% of the features are randomly selected to construct each subspace in the
generation of ARDL and ARSVM classifiers. The number of atoms for initial
dictionaries for ARDL and ABDL are defined as 10% of the instance sizes. ARSVM
applies radial basis function of C-SVC as the kernel type in which gamma and cost
parameters are the same as the ones in Table 5.1 for each dataset. Established results
show that ARDL outperforms ARSVM in 7 out of 11 of the datasets and, in majority,
accuracy is improved with small fluctuations if the training size is increased using an

active learner.
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Table 5.3 : Active learning classification results based on dictionary learning using
random subspace ensemble.

Dataset Default  Iterl Iter2 Iter3 Iter4 Iter5 Iter6
cme 48.43 4931 51.02 5040 51.15 4993 5047
fri c4 100 10 56.00 57.00 57.00 60.00 69.00 56.00 59.00
ionosphere 91.14 9142 9228 91.71 91.14 92.85 92.85
sonar 72.85 79.04 8095 82.85 84.28 86.19 87.14
spectf train 60.00 57.50 63.75 60.00 63.75 65.00 66.25
statlog-german 74.00 7480 76.80 7570 7630 7640 75.30
vehicle 68.58 72.00 70.58 7341 73.88 7470 76.00
waveform-5000 74.74 7220 7746 77.16 79.52 80.88 80.74
pollution 63.33 70.00 7333 71.66 76.66 7500 73.33
mfeat-karhunen 15.30 39095 77.60 9230 8940 9290 95.00
optdigits 10.30 9.92 14.19 43.23 83.07 96.65 97.97

Table 5.4 : Active learning classification results based on support vector machine using
random subspace ensemble.

Dataset Default  Iterl Iter2 Iter3 Iterd Iter5 Iter6
cme 52.04 52.10 5346 5394 54.28 54.08 53.87
fri_c4 100 10 51.00 50.00 56.00 58.00 60.00 58.00 59.00
ionosphere 90.00 93.14 9457 9457 9457 95.14 9542
sonar 69.52 7571 78.09 7571 74776 77.14 77.61
spectf train 47.50 55.00 52.50 55.00 55.00 55.00 55.00
statlog-german 72.00 72.60 73.00 73.40 7420 74.10 74.30
vehicle 42.23 40.58 4035 43.88 44.00 46.47 47.64
waveform-5000 85.46 8548 85.56 86.06 8622 86.10 86.58
pollution 50.00 50.00 50.00 50.00 46.66 46.66 46.66
mfeat-karhunen 94.05 93.10 96.20 9595 96.00 96.00 95.90
optdigits 85.71 89.83 9193 93.11 9373 93.62 93.98

Table 5.5 : Active learning classification results based on dictionary learning using
bagging ensemble.

Dataset Default  Iterl Iter2 Iter3 Iter4 Iter5 Iter6
cme 45.71 4741 4775 4986 50.00 50.54 50.74
fri_c4 100 10 47.00 49.00 5500 5500 5500 61.00 57.00
ionosphere 83.14 9228 9342 9228 9228 92.00 92.00
sonar 71.90 79.04 76.66 8047 8428 86.66 86.19
spectf train 66.25 57.50 57.50 60.00 6375 60.00 63.75
statlog-german 73.40 76.00 77.00 77.20 77.00 76.10 75.80
vehicle 29.17 64.70 73.64 74.47 73.05 7247 73.88
waveform-5000 72.24 68.86 6440 6930 7692 7896 79.18
pollution 56.66 61.66 6833 71.66 71.66 73.33 78.33
mfeat-karhunen 9.35 9.35 19.30 2445 2995 3395 41.20
optdigits 10.30 10.30 1030 10.19 1197 26.21 58.16
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Table 5.6 : Active learning classification results based on support vector machine using
bagging ensemble.

Dataset Default  Iterl Iter2 Iter3 Iter4 Iter5 Iter6
cme 52.58 52.51 51.76 53.06 52.78 53.26 52.72
fri c4 100 10 54.00 59.00 62.00 60.00 61.00 61.00 62.00
ionosphere 89.14 93.14 9542 9542 96.00 9485 95.71
sonar 69.52 7047 7523 79.04 79.04 80.00 82.38
spectf train 52.50 50.00 55.00 55.00 55.00 55.00 55.00
statlog-german 71.50 7240 7230 7220 7330 73.40 73.60
vehicle 33.17 33.64 3941 4023 4023 4317 45.05
waveform-5000 84.82 85.60 85.82 86.44 86.64 86.60 86.32
pollution 50.00 55.00 50.00 50.00 46.66 46.66 55.00
mfeat-karhunen 90.20 77.70 8990 94.85 93.25 93.50 93.60
optdigits 59.00 71.03 76.88 81.28 81.79 83.46 84.34

In order to learn the effect of applying bagging ensemble to the dictionary learning
and support vector machines models under active learning framework, new
experiments have also been carried out. In the same way as its random subspace
counterpart, the classification accuracies for both of ABDL and ABSVM are
enhanced by the selection of informative examples to training set in each iteration.
According to the best results obtained for each dataset, ABDL is better in 5 out of 11
of the given datasets as a consequence. For dictionary learning model, selecting
feature subspaces instead of instance subspaces is more rational under active learning

framework as a result of experiments.

Considering the final iteration accuracies in Table 5.7, ARDL is the best classifier in
4 out of 11 datasets while ARSVM is good at 3 of them. Each of ABDL and
ABSVM models performs the optimal accuracies with 2 datasets. In terms of the
accuracies obtained by random subspace ensembles under active learning, ARDL
and ARSVM give the best results in 6 and 4 out of 11 datasets respectively and for
one dataset they lead to the same performance. For bagging ensembles of the applied
models, ABSVM provides the best accuracy in 6 out of 11 datasets and it
outperforms ABDL model.

5.2 Friedman Test

Each model used for a machine learning problem produces a new solution and the
main purpose is to find the successful one. To determine the quality of each

predictor, classification accuracy is generally used as a measurement technique. In
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addition to accuracy results, we should statistically verify the performance

improvement produced by the models using a hypothesis test.

Table 5.7 : The last iteration accuracies of active learning methods.

Dataset ARDL ARSVM ABDL ABSVM

cme 5047 53.87 50.74 52.72
fri ¢4 100 10  59.00 59.00 57.00  62.00
ionosphere 92.85 9542 92.00 95.71
sonar 87.14 77.61 86.19  82.38
spectf train 66.25 55.00 63.75 55.00
statlog-german 7530 7430  75.80  73.60
vehicle 76.00 47.64 73.88  45.05
waveform-5000 80.74  86.58  79.18  86.32
pollution 7333  46.66 7833  55.00
mfeat-karhunen 95.00 9590 41.20  93.60
optdigits 97.97 9398 58.16 84.34

In the matter of comparison of ¢ different classifier models on r different datasets,
when so many pairwise tests are made, a certain proportion of the null hypotheses
can be rejected due to random chance. In order to detect differences in treatments
across multiple classifier models, one of the non-parametric statistical tests,
Friedman test which is based on ranked rather than absolute performance has been
conducted (Demsar, 2006). A null hypothesis, Hy, is provided in which all of the
applied classifiers are equivalent otherwise the alternative hypothesis, H; is present

that not all classifiers are equivalent.
Hpy: Classifier models are equivalent.
H;: Not all classifiers are equal.

Initially, each classifier model is rated according to their classification accuracies in
each dataset. For each dataset, classifiers are put in order by assigning rank 1 to the
classifier with the best classification accuracy and increasing the rank number by one
until assigning rank c to the worst one for ¢ applied classifiers (Flach, 2012, Chapter
12). If there is a case of tie, the rank value is assigned as the average rank. In the
following step, rank totals per classifiers are calculated. Table 5.8 shows the
Friedman test ratings obtained through classification accuracies found for each

dataset by the respective classifiers.
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The Friedman test statistic is calculated by equation 5.1 where r is the number of
datasets, c is the number of classifiers and R;is the total of the ranks for the classifier

j among all datasets.

F —-———Ei———c Rf -3 1
R_r*c*(c+1)Z jo3xre(ctl (5.1)
]=

Friedman test statistic Fg approaches chi-square distribution y* with c-1 degrees of
freedom when the number of datasets r gets large enough (i.e. r > 10 and ¢ > 5). In
order to reach a conclusion about the proposed hypotheses, for a predetermined
confidence level of a, the null hypothesis is rejected on condition that the computed
value of Fy is greater than the table value of %* in the corresponding significance a

and c-1 degrees of freedom.
Reject Hyif Fr > x2

Otherwise, do not reject Hy

Degrees of freedom, d, for 6 classifiers is calculated as d = c-1 = 6-1 = 5. For %95
confidence level (a = 0.05) and d = 5, the table value for y* statistic is 11.07.
According to the found rank totals, R1 =45, R2 =34.5, R3 =31.5,R4=345R5 =
43 and R6 = 42.5. In order to check the rankings, we can use the formulation in
equation 5.2.

C

rxcx(c+1)
I (52)

i=1
If we apply equation 5.2 to our scenario,

11%6% (6+1)

45+ 345+ 31.5+ 345+ 43 +425 = >

231 =231.
Using equation 5.1 we calculate Friedman test statistic,

12
116+ (6+1)

*(6+1)

Fr = x (452 + 34.5% + 31.5% + 34.52 + 432 + 42.52) — 3% 11

Fr =4.1429 < x(z)_os = 11.07. We cannot reject Hy, i.e. applied models perform

equivalently on the datasets. In the next part, Wilcoxon signed rank test is applied to

36



see pairwise performance differences for detailed comparisons.

Let's apply Friedman test to the accuracy results of active learning scenario for
ensembles of dictionary learning and SVM models. Hypotheses are initially
determined same as the previous one to prove their equality in terms of their
classification performance. Degrees of freedom, d, for 7 classifiers is computed as d
=c-1=7-1= 6. For %95 confidence level (a0 = 0.05) and d = 6, the table value for y*
statistic is 12.59.

If we look at the test results for ARDL model, according to the found rank totals in
Table 5.9, R1 =72.5, R2 = 65.5, R3 =42.5, R4 =44.5, R5 =32, R6 =28 and R7 =
23. Now we can use the formulation in equation 5.2 to check the rankings,

11«7 (74 1)

725+ 65.5+425+445+32+28+23 = >

308 = 308.

Using equation 5.1 we compute Friedman test statistic,

B 12

T 11x7x (74 1)
* 11+ (7+1)

Fr * (72.52 + 65.5% + 42.52 + 44.5% + 322 + 282 + 23%) — 3

Fr = 41.2597 > X(Z).os = 12.59, so reject Hp in other words all classifiers constructed

with additional unlabelled training data in each iteration of active learning

framework do not perform equally on the datasets.

Table 5.10 is prepared for Friedman test of ARSVM model's different iterations and
after applying the same steps it is found that Fg = 27.6039 > x(z).os = 12.59.
Therefore, we can conclude in the inequivalency of the applied iterations on the
classification performance. The same procedure is also true for ABDL and ABSVM

models.

Table 5.11 shows the Friedman test applied to the accuracy values of the last
iteration of the active learning models which are displayed in Table 5.7. According to
the findings from 4 models, Fg = 2.2636 < X(Z)_OS = 7.81, thus we cannot reject that
the algorithms perform equivalently. Wilcoxon signed rank test is applied for this
case in the next part to query for the equivalency of the methods in a pairwise

comparison.
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5.3 Wilcoxon Signed Rank Test

According to the Friedman test results, there is no acceptable significance among the
classification performances of the applied DL, SVM, RDL, RSVM, BDL and BSVM
methods. Instead of comparing whole algorithm space, Wilcoxon Signed Rank Test

provides pairwise comparison between selected two methods over multiple datasets.
Ho: The performance difference between two methods is not significant.
H;: The performance difference between two methods is significant.

The procedure follows the following steps to check the validity of the hypotheses. 1)
calculate accuracy differences between two algorithms for each dataset, 2) transform
differences into their absolute values, 3) order them in their absolute values by
starting numbering with the smallest difference, 4) sum positive and negative ranks
separately, 5) find Wilcoxon value, W, from table for the number of datasets at a
predefined o, 6) compare W with the smallest among the sums of positive and
negative ranks, 7) If W is equal or higher than the calculated value then reject the
null hypothesis. In case of zero differences, the comparison is ignored and it is
excluded in this way table value for Wilcoxon rank is found according to the reduced
dataset size. Besides, if there is a tie among performance differences, the ranks are

assigned by taking their average.

In Table 5.12, an example to show how Wilcoxon signed rank test is applied is given
among the pairs of DL/RDL and DL/SVM methods. For DL/RDL, total number of
positives is 2 and total number of negatives is 53. We choose the smallest sum
between positives and negatives so it is 2 for this case. Table value of W is found for
a=0.05and 11-1=10 datasets because we ignore zero difference. As a result, 2 <
Wo=00s, 10 = 8, therefore we can reject null hypothesis in other words performance

differences of DL and RDL is significant.

In the same manner, DL/SVM pairs are also tested. Total number of positives and
total number of negatives are 41 and 25 respectively, we select the smallest one, 25
to continue our test. Because there is no zero difference, we look at the table value of
Wo=00s,11 = 10. 25 > W05, 11 = 10, therefore we cannot reject Hy, it means there is

no significant performance difference between DL and SVM algorithms.
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Table 5.8 : Friedman test rankings of DL and SVM along with their respective ensembles.

Dataset DL Rank RDL Rank BDL Rank SVM  Rank R-SVM  Rank B-SVM  Rank
cme 50.40 6 52.65 4 51.83 5 55.40 1 54.72 2.5 54.72 2.5
fri_c4 100 10 59.00 5 60.00 4 64.00 1 60.42 2.5 58.51 6 60.42 2.5
ionosphere 92.85 5 93.42 4 92.00 6 95.16 1 94.58 2.5 94.58 2.5
sonar 85.71 3 87.61 1.5 87.61 1.5 83.64 5 82.21 6 83.66 4
spectf train 71.25 2 71.25 2 71.25 2 58.75 5 61.25 4 50.00 6
statlog-german 70.30 6 72.10 4 76.20 1 73.20 2 71.10 5 72.70 3
vehicle 74.11 3 76.58 2 77.52 1 50.24 5 60.68 4 47.42 6
waveform-5000 76.18 6 80.84 4 78.54 5 86.84 1 86.50 3 86.73 2
mfeat-karhunen 97.30 5 97.35 4 97.05 6 97.75 2 97.85 1 97.60 3
optdigits 99.07 1 99.00 3 99.05 2 86.29 5 95.96 4 86.03 6
pollution 71.66 3 73.33 2 78.33 1 51.71 5 51.71 5 51.71 5
Rank Total 45 34.5 31.5 34.5 43 42.5
Table 5.9 : Friedman test rankings of different active learning iterations for random subspace dictionary learning model.
Dataset Default Rank  Iterl Rank Iter2 Rank Iter3 Rank Iter4 Rank Iter5 Rank Iter6 Rank
cme 48.43 7 49.31 6 51.02 2 50.40 4 51.15 1 49.93 5 50.47 3
fri_c4 100_10 56.00 6.5 57.00 4.5 57.00 4.5 60.00 2 69.00 1 56.00 6.5 59.00 3
ionosphere 91.14 6.5 91.42 5 92.28 3 91.71 4 91.14 6.5 92.85 L.5 92.85 L.5
sonar 72.85 7 79.04 6 80.95 5 82.85 4 84.28 3 86.19 2 87.14 1
spectf train 60.00 5.5 57.50 7 63.75 3.5 60.00 5.5 63.75 3.5 65.00 2 66.25 1
statlog-german 74.00 7 74.80 6 76.80 1 75.70 4 76.30 3 76.40 2 75.30 5
vehicle 68.58 7 72.00 5 70.58 6 73.41 4 73.88 3 74.70 2 76.00 1
waveform-5000 74.74 6 72.20 7 77.46 4 77.16 5 79.52 3 80.88 1 80.74 2
pollution 63.33 7 70.00 6 73.33 3.5 71.66 5 76.66 1 75.00 2 73.33 3.5
mfeat-karhunen 15.30 7 39.95 6 77.60 5 92.30 3 89.40 4 92.90 2 95.00 1
optdigits 10.30 6 9.92 7 14.19 5 43.23 4 83.07 3 96.65 2 97.97 1
Rank Total 72.5 65. 42.5 44.5 32 28 23




Table 5.10 : Friedman test rankings of different active learning iterations for random subspace support vector machines model.

Dataset Default Rank Iterl Rank Iter2 Rank Iter3 Rank Iter4 Rank Iter5 Rank Iter6 Rank

cme 52.04 7 52.10 6 53.46 5 53.94 3 54.28 1 54.08 2 53.87 4
fri_c4 100 10 51.00 6 50.00 7 56.00 5 58.00 3.5 60.00 1 58.00 3.5 59.00 2
ionosphere 90.00 7 93.14 6 94.57 4 94.57 4 94.57 4 95.14 2 95.42 1
sonar 69.52 7 75.71 4.5 78.09 1 75.71 4.5 74.76 6 77.14 3 77.61 2
spectf train 47.50 7 55.00 3 52.50 6 55.00 3 55.00 3 55.00 3 55.00 3
statlog-german 72.00 7 72.60 6 73.00 5 73.40 4 74.20 2 74.10 3 74.30 1
vehicle 42.23 5 40.58 6 40.35 7 43,88 4 44.00 3 46.47 2 47.64 1
waveform-5000 85.46 7 85.48 6 85.56 5 86.06 4 86.22 2 86.10 3 86.58 1
pollution 50.00 2.5 50.00 2.5 50.00 2.5 50.00 2.5 46.66 6 46.66 6 46.66 6
mfeat-karhunen 94.05 6 93.10 7 96.20 1 95.95 4 96.00 2.5 96.00 2.5 95.90 5
optdigits 85.71 7 89.83 6 91.93 5 93.11 4 93.73 2 93.62 3 93.98 1

Rank Total 68.5 60 46.5 40.5 32.5 33 27

Table 5.11 : Friedman test rankings applied on the last iteration of active learning methods.

Dataset ARDL Rank ARSVM Rank ABDL Rank ABSVM Rank

cme 50.47 4 53.87 1 50.74 3 52.72 2
fri_c4 100 10 59.00 2.5 59.00 2.5 57.00 4 62.00 1
ionosphere 92.85 3 95.42 2 92.00 4 95.71 1
sonar 87.14 1 77.61 4 86.19 2 82.38 3
spectf train 66.25 1 55.00 3.5 63.75 2 55.00 3.5
statlog-german 75.30 2 74.30 3 75.80 1 73.60 4
vehicle 76.00 1 47.64 3 73.88 2 45.05 4
waveform-5000 80.74 3 86.58 1 79.18 4 86.32 2
pollution 73.33 2 46.66 4 78.33 1 55.00 3
mfeat-karhunen 95.00 2 95.90 1 41.20 4 93.60 3
optdigits 97.97 1 93.98 2 58.16 4 84.34 3

Rank Total 22.5 27 31 29.5
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Table 5.12 : Application of Wilcoxon signed rank test on the pairs of DL/RDL and

DL/SVM algoritms.

Dataset DL-RDL |DL-RDL| Rank | DL-SVM |DL-SVM| Rank
cmce -2.25 2.25 8 -5 5 6
fri ¢4 100 10 -1 1 4 -1.42 1.42 2
ionosphere -0.57 0.57 3 -2.31 2.31 4
sonar -1.9 1.9 7 2.07 2.07 3
spectf train 0 0 X 12.5 12.5 8
statlog-german -1.8 1.8 6 -2.9 2.9 5
vehicle -2.47 2.47 9 23.87 23.87 11
waveform-5000 -4.66 4.66 10 -10.66 10.66 7
pollution -0.05 0.05 1 -0.45 0.45 1
mfeat-karhunen 0.07 0.07 2 12.78 12.78 9
optdigits -1.67 1.67 5 19.95 19.95 10

Wilcoxon signed rank test has been also obtained for other pairs of algorithms.
According to their outcomes, while the couples of DL/BDL and SVM/BSVM
algorithms have statistically significant evidence at 0=0.05 in terms of their

classification performances, it is not the case for the other pairs.

In the previous part, we applied Friedman test to the accuracy results of the last
iteration of the active learning methods. According to the results, classification
performance of the applied methods was resulted as equivalent. In order to learn
which pairs of methods have a significant performance difference, Table 5.13 is
prepared for showing Wilcoxon signed rank test. The table displays the absolute
differences between each couple for each dataset and their rank values. As a
consequence, Friedman test and Wilcoxon signed rank test strongly agree that no
pairs of models have significant performance difference, i.e. they provide

approximate classification performance.
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Table 5.13 : Application of Wilcoxon signed rank test on the pairs of the last iteration accuracies of the active learning models.

ARDL- ARDL- ARDL- ARSVM- ARSVM- ABDL-
Dataset 1LRSVM| Rank | ABDL| Rank ABSVM| Rank | ABDL| Rank | ABSVM| Rank ABSVM| Rank
cmc 34 4 0.27 1 2.25 3 3.13 3 1.15 4 2 1
fri_c4 100 10 0 X 2 6 3 5 2 2 3 7 5 5
ionosphere 2.57 3 0.85 3 2.86 4 3.42 4 0.29 1 3.7 3
sonar 9.53 7 0.95 4 4.76 6 8.58 6 4.77 8 3.8 4
spectf train 11.25 8 2.5 8 11.3 8 8.75 7 0 X 8.8 7
statlog-german 1 2 0.5 2 1.7 2 1.5 1 0.7 3 2.2 2
vehicle 28.36 10 2.12 7 31 11 26.24 8 2.59 6 29 10
waveform-5000 5.84 6 1.56 5 5.58 7 7.4 5 0.26 2 7.1 6
pollution 26.67 9 5 9 18.3 10 31.67 9 8.34 9 23 8
mfeat-karhunen 0.9 1 53.8 11 1.4 1 54.7 11 2.3 5 52 11
optdigits 3.99 5 39.81 10 13.6 9 35.82 10 9.64 10 26 9

42



6. CONCLUSIONS AND RECOMMENDATIONS

In this study, ensemble dictionary learning methods are proposed for passive and
active learning frameworks. For data classification the aim is to minimize the error
which is the combination of reconstruction error and sparsity level. Dictionary base
is formed by iteratively updating instance representations (alphas) in each class and
sub-dictionaries. RDL and BDL are proposed as the applied ensemble methods using
randomly selected features/instances. Taking the properties of ensemble learning into
consideration, the performance of dictionary learning can be significantly increased.
By the use of randomly selected attributes/instances we get a smaller feature/instance
space and construct effective and diverse dictionaries for classifier ensembles.
Experimental results show that the combination of randomly selected
features/instances provides better results than using single dictionary learning, SVM

and SVM ensembles.

In the second stage of the thesis, the proposed RDL and BDL methods are considered
in active learning framework and compared with SVM. Firstly, a predefined training
set, which is 20% of the whole dataset is used with randomly selected
attributes/features to construct the supervised dictionary learning model for the initial
classification. Unlabeled data instances are classified using the established model, in
this way appropriate class labels are assigned to these instances in each classifier
ensemble. Using these class label information, entropy for each instance is
calculated. The ones having the highest entropy results are chosen to be queried and
added to the training set in the next iteration to construct the new classification
model. This process is applied in an iterative manner. The same procedure is

repeated for Support Vector Machine classifier as well.

According to the achieved empirical results for eleven datasets, proposed Active
Random Subspace Dictionary Learning method has superiority over Active Random
Subspace Support Vector Machines method. On the other hand, it is quite the
opposite for its bagging ensemble classifier counterparts for DL and SVM. We can
conclude that under active learning framework generating feature subspaces when

modeling dictionary learning classifier provides better classification accuracy while
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instance subspaces result in more accurate consequences for support vector machines
model. Furthermore, using an active learner generally increases the chance of

improved classification performance as the number of iterations is increased.

As a future work it is intended to select diverse and random features by using mutual
information between features and class labels. It is also planned to expand the use

dictionary learning with other ensemble methods such as Adaboost.

The author hopes that this research will pave the way of raising the use of active

learning and sparse coding in other data classification tasks.
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