13,285 research outputs found

    Ontogenetic Development and Fault Tolerance in the POEtic Tissue

    Get PDF
    In this article, we introduce the approach to the realization of ontogenetic development and fault tolerance that will be implemented in the POEtic tissue, a novel reconfigurable digital circuit dedicated to the realization of bio-inspired systems. The modelization in electronic hardware of the developmental process of multi-cellular biological organisms is an approach that could become extremely useful in the implementation of highly complex systems, where concepts such as self-organization and fault tolerance are key issues. The concepts presented in this article represent an attempt at finding a useful set of mechanisms to allow the implementation in digital hardware of a bio-inspired developmental process with a reasonable overhead

    Fault Tolerance of Self Organizing Maps

    Get PDF
    International audienceBio-inspired computing principles are considered as a source of promising paradigms for fault-tolerant computation. Among bio-inspired approaches , neural networks are potentially capable of absorbing some degrees of vulnerability based on their natural properties. This calls for attention, since beyond energy, the growing number of defects in physical substrates is now a major constraint that affects the design of computing devices. However, studies have shown that most neural networks cannot be considered intrinsically fault tolerant without a proper design. In this paper, the fault tolerance of Self Organizing Maps (SOMs) is investigated, considering implementations targeted onto field programmable gate arrays (FPGAs), where the bit-flip fault model is employed to inject faults in registers. Quantization and distortion measures are used to evaluate performance on synthetic datasets under different fault ratios. Three passive techniques intended to enhance fault tolerance of SOMs during training/learning are also considered in the evaluation. We also evaluate the influence of technological choices on fault tolerance: sequential or parallel implementation, weight storage policies. Experimental results are analyzed through the evolution of neural prototypes during learning and fault injection. We show that SOMs benefit from an already desirable property: graceful degradation. Moreover, depending on some technological choices, SOMs may become very fault tolerant, and their fault tolerance even improves when weights are stored in an individualized way in the implementation

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Case study: Bio-inspired self-adaptive strategy for spike-based PID controller

    Get PDF
    A key requirement for modern large scale neuromorphic systems is the ability to detect and diagnose faults and to explore self-correction strategies. In particular, to perform this under area-constraints which meet scalability requirements of large neuromorphic systems. A bio-inspired online fault detection and self-correction mechanism for neuro-inspired PID controllers is presented in this paper. This strategy employs a fault detection unit for online testing of the PID controller; uses a fault detection manager to perform the detection procedure across multiple controllers, and a controller selection mechanism to select an available fault-free controller to provide a corrective step in restoring system functionality. The novelty of the proposed work is that the fault detection method, using synapse models with excitatory and inhibitory responses, is applied to a robotic spike-based PID controller. The results are presented for robotic motor controllers and show that the proposed bioinspired self-detection and self-correction strategy can detect faults and re-allocate resources to restore the controller’s functionality. In particular, the case study demonstrates the compactness (~1.4% area overhead) of the fault detection mechanism for large scale robotic controllers.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd

    Research issues in biological inspired sensors for flying robots

    Get PDF
    Biological inspired robotics is an area experiencing an increasing research and development. In spite of all the recent engineering advances, robots still lack capabilities with respect to agility, adaptability, intelligent sensing, fault-tolerance, stealth, and utilization of in-situ resources for power when compared to biological organisms. The general premise of bio-inspired engineering is to distill the principles incorporated in successful, nature-tested mechanisms of selected features and functional behaviors that can be captured through biomechatronic designs and minimalist operation principles from nature success strategies. Based on these concepts, robotics researchers are interested in gaining an understanding of the sensory aspects that would be required to mimic nature design with engineering solutions. In this paper are analysed developments in this area and the research aspects that have to be further studied are discussed.N/

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin
    corecore