
HAL Id: hal-02058459
https://hal.inria.fr/hal-02058459

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerance of Self Organizing Maps
Bernard Girau, César Torres-Huitzil

To cite this version:
Bernard Girau, César Torres-Huitzil. Fault Tolerance of Self Organizing Maps. Neural Computing
and Applications, Springer Verlag, 2018, �10.1007/s00521-018-3769-6�. �hal-02058459�

https://hal.inria.fr/hal-02058459
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Fault Tolerance of Self Organizing Maps

Bernard Girau · Cesar Torres-Huitzil

Received: date / Accepted: date

Abstract Bio-inspired computing principles are considered as a source of
promising paradigms for fault-tolerant computation. Among bio-inspired ap-
proaches, neural networks are potentially capable of absorbing some degrees of
vulnerability based on their natural properties. This calls for attention, since
beyond energy, the growing number of defects in physical substrates is now a
major constraint that affects the design of computing devices. However, studies
have shown that most neural networks cannot be considered intrinsically fault
tolerant without a proper design. In this paper, the fault tolerance of Self
Organizing Maps (SOMs) is investigated, considering implementations tar-
geted onto field programmable gate arrays (FPGAs), where the bit-flip fault
model is employed to inject faults in registers. Quantization and distortion
measures are used to evaluate performance on synthetic datasets under differ-
ent fault ratios. Three passive techniques intended to enhance fault tolerance
of SOMs during training/learning are also considered in the evaluation. We
also evaluate the influence of technological choices on fault tolerance: sequen-
tial or parallel implementation, weight storage policies. Experimental results
are analyzed through the evolution of neural prototypes during learning and
fault injection. We show that SOMs benefit from an already desirable prop-
erty: graceful degradation. Moreover, depending on some technological choices,
SOMs may become very fault tolerant, and their fault tolerance even improves
when weights are stored in an individualized way in the implementation.

Keywords Fault tolerance · Self organizing maps · Hardware implementa-
tion · FPGA

B. Girau
Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France
E-mail: bernard.girau@loria.fr

C. Torres-Huitzil
Cinvestav-Tamaulipas, Mexico
E-mail: ctorres@tamps.cinvestav.mx



2 Bernard Girau, Cesar Torres-Huitzil

1 Introduction

Artificial neural networks are computational models with a renewed research
interest in artificial intelligence related applications. Additionally to a high
performance in solving several tasks with generalization capabilities, artificial
neural networks are generally assumed to acquire some other desirable features
of their biological counterparts, such as their tolerance against imprecision,
uncertainty and faults, which make them even harder to study or design [2].
The brain has a highly parallel information processing architecture made of
seemingly imperfect and slow, but exceptionally adaptive and power-efficient
components that carry out information processing functions, able to tolerate
a small amount of synapse or neuron faults or even use noise as a source of
computation [15][23]. Moreover, brains are able to relearn by growth of new
neurons and/or neural connections and/or retraining of the existing neural
architecture. Derived from these observations, the majority of neural network
models are assumed to have built-in or intrinsic fault tolerance properties due
to their parallel and distributed structure, and the fact that they contain more
neurons or processing elements than the necessary to solve a given problem,
i.e., some natural redundancy due to overprovisioning. Claiming an equivalent
fault tolerance only on the basis of rough architectural similarities therefore
cannot hold true in general, especially for small size neural networks [31]. As
a matter of fact, studies have shown that most neural networks cannot be
considered intrinsically fault tolerant without a proper design.

Obtaining truly fault tolerant neural networks is a very attractive and
important issue both i) for artificial intelligence based solutions, where, for
instance, pervasive embedded systems will require smart objects fully merged
with the environment in which they are deployed to cope with unforesee-
able conditions [32], and ii) as a source for reliable computing systems built
from unreliable components, as suggested in [16]. Rooted on neural comput-
ing, a new paradigm is needed to take advantage of new emerging devices at
nanoscale dimensions and deal with both manufacturing defects and transient
faults. This trend might lead to even consider faults/errors as an essential/in-
trinsic part of a system design. In this last direction, the robustness and the
potential fault-tolerant properties of neural models call for attention as perma-
nent and transient faults, device variation, thermal issues, and aging will force
designers to abandon current assumptions that transistors, wires, and other
circuit elements will function perfectly over the entire lifetime of a computing
system, relying mainly on digital integrated circuits [20]. Furthermore, this is
particularly important for novel neural hardware accelerators and neuromor-
phic hardware design, which have attracted significant commercial efforts to
produce more brain-inspired chips, such as the IBM TrueNorth chip.

Several experimental and less analytic works have been carried out to study
neural networks fault tolerance, including the analysis of noise on the output
sensitivity [11], the weight error sensitivity [35], and the relationship among
fault tolerance, generalization and model complexity [2] [31] [27]. Most works
have been focused on feedforward neural networks, at different levels of ab-



Fault Tolerance of Self Organizing Maps 3

straction, from low level physical implementations to the high level intrinsic
fault masking capacity of neural paradigms, see [28] for a more comprehen-
sive review. However, few attempts have been made to study fault tolerance
of other models, such as self-organizing maps (SOMs). SOMs are expected to
tolerate some faults thanks to their self-organizing mechanisms, but their fault
tolerance capabilities have not yet been fully explored. Herein, we consider that
the principle of self-organization itself might have an influence onto the fault
tolerance of computing systems and particularly of neural networks hardware
implementations. This is why we chose to study SOMs because they stand as
one of the most well-recognized models of self-organizing computing systems.
Therefore, in this paper, we are not only interested in the way pre-learned
SOMs react to faults, but also in the way fault tolerance evolves during the
self-organization of the neural population.

Previously, in [34] authors studied the fault tolerance capability of SOMs in
the presence of defective neurons undergoing stuck-at faults. It was shown that
defective SOMs, in a linear array, can eventually re-organize themselves, by
relearning, if the defective neuron stuck-output is larger than a critical value.
Defective neurons were concentrated in one place in the array, forming what
they called a defective-neuron cluster. In the experiments, 100 neurons, includ-
ing six defective ones, were tested to show that the SOM can learn in spite of
some faulty neurons. In [25], authors addressed fault tolerance improvement
in SOMs by using a technique called fault immunization of the synaptic con-
nections. Stuck-at-a faults, where a is a real value, were considered. Only one
neuron was faulty at any time, but no restriction on the number of faulty links
of the neuron was assumed. Weights are immunized by adding a constant value
that is increased or decreased as much as possible without creating any mis-
classification. Fault immunization was formulated as an optimization problem
on finding the corresponding constant value for each neuron. The application
of this study was oriented to enhancing the reliability of the lossy image com-
pression by a SOM. Other works are related to modifications of the Kohonen
SOM on-line learning algorithm so as to improve the fault tolerance of the
learned SOM. Section 3.3 describes more precisely these works.

Our present work is grounded on an extensive experimental study of the
intrinsic fault tolerance of SOMs considering digital implementations on field
programmable gate arrays (FPGAs), under bit-flip faults by analyzing their
performance degradation with variable fault rates on synthetic datasets. FP-
GAs are suitable for neural networks hardware implementations because they
combine high computing capability, logic resources and memory capacity in
a single device. We are mostly interested in faults in weights, since when a
SOM is intended to be implemented onto a digital hardware substrate, the
value of each weight vector can be disturbed by various causes such as elec-
tromagnetic field or radiation, which can be modeled by a bit-flip fault model.
This is particularly true for FPGAs devices, as it will be discussed in more
detail later. Following our preliminary works reported in [29][10], this paper
addresses multiple aspects in a combined way:



4 Bernard Girau, Cesar Torres-Huitzil

– We consider the evolution of this fault tolerance using different existing
learning strategies to improve fault tolerance.

– In order to better analyze the effect of self-organization onto fault tolerance,
we provide a behavioral analysis of the evolution of neural prototypes with
faults using diverse datasets and SOM architectures.

– We also compare the fault tolerance of SOMs implemented in a distributed
way to the case of a purely sequential hardware implementation. In this
specific case, bit-flip faults affect multiple registers in addition to the stored
weights.

– We also show how technological choices greatly influence the fault toler-
ance of SOMs, considering various weight storage policies: uniform storage
resources (SWS: standard weight storage), individualized storage resources
where register sizes are tuned to individual arithmetic precisions (IWS: in-
dividual weight storage), and limited individualized weight storage (OWS:
optimal weight storage).

This very wide experimental study shows that SOMs intrinsically satisfy the
very desirable property of graceful degradation. This property may even lead
to a high level of fault tolerance, depending more on technological choices than
algorithmic choices.

The paper is organized as follows. Section 2 introduces some concepts and
briefly describes the general approach for fault tolerance assessment in neural
networks. Section 3 presents the fundamentals of the Kohonen SOM model
and the on-line learning mechanism for self-organization. Additionally, three
techniques that have been used to improve the fault tolerance of SOMs, which
involve a modification of the learning/training mechanism, are presented. Sec-
tion 4 presents the hardware implementation choices for SOMs targeted to a
fully parallel digital hardware implementation and a baseline sequential one,
and the specificities for SOMs fault tolerance assessment. Section 5 describes
the datasets used for testing and the obtained experimental results for different
scenarios and weight storage policies.

2 Fault tolerance in neural models

Fault tolerance is a system attribute that makes it able to preserve its expected
behavior after faults have manifested themselves within the system [4]. More
precisely, a fault-tolerant system might be defined as one that has provisions to
avoid failure after faults have caused errors within the system. When a state-
ment about neural networks fault tolerance is made, it should be implicitly
assumed a failure condition or criterion. That is, the threshold below which it
cannot longer perform its function according to the specification. Thus, fault
tolerance in neural networks depends on the definition of the acceptable degree
of performance and its intended application [19].

At a high level of abstraction, neural networks fault tolerance can be ana-
lyzed by the effects of errors in the main operators, rather independent from
their intended physical implementation. In a more comprehensive approach



Fault Tolerance of Self Organizing Maps 5

[17], after this initial step, physical faults affecting a specific implementation
can be mapped onto such errors to estimate fault tolerance of a given neu-
ral model, and by identifying critical components, complementary and ad-hoc
fault tolerance policies can be further applied to enhance the properties of
the neural model hardware implementation. In order to study fault tolerance,
researchers develop models of them to examine the variety of faults that need
to be tolerated during the operation of a given system.

2.1 Faults and fault models

The following fault models have been widely used as abstractions of physical
defect mechanisms in digital electronics devices/systems [1], and also applied
to neural networks hardware implementations:

– Stuck-at, a data or control line appears to be held exclusively high (stuck-
at-1) or low (stuck-at-0).

– Random bit flips, a data or memory element has some incorrect, but
random value.

The stuck-at fault model is very popular since many defects at the transis-
tor and interconnection structures can be modeled, as permanent faults, at the
logic level with reasonable accuracy. This model is a binary model that does
not capture indeterminate states that faults may induce while occurring in
communication channels and arithmetic-logic operators. The random bit-flips
model transient faults that usually happen at registers or memory elements
due to external perturbations, for instance, a single event upset (SEU), mainly
caused when highly energetic particles strike sensitive regions of a circuit. Un-
der this model, damage/corruption is done only to the data and not to the
physical circuit itself. Conceptually, it consists of a register bit that is switched
randomly, resulting in a memory element that holds a wrong logic value.

In SRAM-based FPGAs, the most common faults/errors are caused by
SEUs that change the configuration and/or the user memory (flip-flops and
block memory). Data associated with routing resources, LUTs, control signals,
and the contents of smaller memory modules (e.g. flip-flops) are stored in
configuration bits (CRAMs), and larger block memory modules are stored in
block memory bits (BRAMs), which can be affected by SEUs. A bit flip, or
SEU, in BRAMs, might bring the system to a transient failure (it is likely to
be overwritten at the next clock cycle), but they may have long term effects
if the flipping is in the CRAM, leading to an error in the logic function that
persists until the configuration is refreshed. A LUT affected by a SEU in its
CRAM will produce an incorrect value only when the input pattern is the one
associated with the faulty configuration bit, while for every other input pattern
the faulty LUT will behave correctly. This behavior cannot be simulated with
the stuck-at model. Studying fault tolerance of neural networks on FPGAs
should thus mostly emphasize error models related to very short-term bit-flips
at the level of weight coding, and to more long-term conditional bit-flips at a
computational level.



6 Bernard Girau, Cesar Torres-Huitzil

2.2 Fault injection

In order to evaluate the fault tolerance of a neural model, faults are prob-
abilistically introduced into this model and the degree of failure, impact on
the performed task, is evaluated according to some measures, which basically
measure the performance distance (closeness) in performing a task by a fault-
free neural network and the derived faulty networks [12]. The measure of fault
tolerance from many experiments is evaluated against the number of faults
injected into the neural model. The limit of the network fault tolerance is
problem-dependent and determined by operating scenarios of multiple faults
leading to a violation of the performance constraints. Exhaustive testing of all
possible single faults is prohibitive, not to mention that multiple faults may
occur concurrently. Hence, the strategy of randomly testing a small fraction of
the total number of possible faults in a network has been adopted for tractabil-
ity. It yields partial fault tolerance estimates that are statistically very close
to those obtained by exhaustive testing.

3 Self Organizing Maps

3.1 Fundamentals

A SOM is a neural network able to perform data quantization while preserv-
ing some predefined topological relations among the set of learned prototypes.
This model is a recognized tool for data visualization that has also been used
for many practical applications such as pattern classification, image process-
ing, and robotics. SOMs, as proposed by Kohonen [13], consist of neighboring
neurons commonly organized on one- or two- dimensional arrays that project
patterns of arbitrary dimensionality onto a lower dimensional array of neu-
rons, where ri denotes the coordinates of neuron i in this array. All neurons
receive the same input pattern and an iterative mechanism updates the neu-
ron’s weights so as to learn to quantize the input space in an unsupervised
way. This mechanism first selects the neuron whose weights best fit the given
input pattern, and then brings the weights of this neuron and of its neighbors
slightly closer to the current input pattern.

More precisely, each neuron in a SOM is represented by a d-dimensional
weight vector, m ∈ Rd, also known as prototype vector, m = [m1, ...,md],
where d is the dimension of the input vectors, x. Neurons are connected to
adjacent ones by a neighborhood relationship, which defines the structure of
the map. The mechanism for selecting the winning neuron requires a central-
ized entity, so that the Kohonen SOM is not a fully distributed model as the
cortex organization [21]. After learning, or self-organization, two vectors that
are close in the input space will be likely to be represented by prototypes of
the same or of neighboring neurons on the neural map. The learned prototypes
become ordered by the structure of the map, since neighboring neurons have
similar weight vectors. In the literature, two main types of SOM can be dis-



Fault Tolerance of Self Organizing Maps 7

tinguished, considering the number of neurons in the map with respect to the
number of expected clusters: SOMs in which the number of neurons is roughly
equal to the number of expected clusters to be found in the input, and SOMs
with a large number of neurons (thousands or tens of thousands), which are
used to allow the emergence of intrinsic structural features of the data space;
these SOMs are referred to as Emergent Self-Organizing Maps (ESOMs) [30].

3.2 On-line mode training

The basic version of SOM learning is an on-line stochastic process, inspired by
neurobiological learning paradigms. Several other extensions of the algorithm
have been proposed [9]. In the SOM on-line mode algorithm, learning starts
with an appropriate (usually random) initialization of the weight vectors, mi.
The input vectors are presented to the SOM in multiple iterations. For each
iteration, i.e. for each input vector x, the distance from x to all the weight
vectors is calculated using some distance measure. The neuron whose weight
vector gives the smallest distance to the input vector x is called the best
matching unit (BMU), denoted by c, and determined according to:

‖x−mc‖ = min
i
‖x−mi‖ (1)

where ‖·‖ is the distance measure, typically the Euclidean distance, x is the
input vector and mi is the weight vector of neuron i. The winner c and its
neighboring neurons i ∈ Nw update their weights according to the SOM rule:

mi(t+ 1) = mi(t) + α(t)hci(t)[x(t)−mi(t)] (2)

where t denotes the time, x(t) is an input vector randomly drawn from the
input data set at time t, α(t) the learning rate at time t, and hci(t) is the
neighborhood kernel around c. The learning rate α(t) defines the strength
of the adaptation, which is application-dependent. Commonly α(t) < 1 is
constant or a decreasing scalar function of t.

The neighboring kernel hci(t), which is a function of the distance between
the winner neuron c and neuron i, can be computed using a Gaussian function:

hci(t) = exp(−‖rc − ri‖2

2σ2(t)
) (3)

Where ‖rc − ri‖ is the distance between neuron i and the BMU c. The value
of σ(t) is fairly large in the beginning of the process, for instance in the order
of 20% of the longer side of the SOM array, after which it is gradually reduced
to a small fraction of it, e.g. 5% of the shorter side of the array [13].

An iterative batch version of SOM learning exists. Instead of using a single
input vector at a time, the whole dataset (batch) is presented to the map be-
fore updating any weight [14]. In each training step, the dataset is partitioned
according to the Voronoi regions of the map weight vectors, i.e., each data



8 Bernard Girau, Cesar Torres-Huitzil

vector belongs to the dataset of the closest map unit. This algorithm is deter-
ministic, and one of its advantages is that the limit states of the prototypes
depend only on the initial choices. However, in this paper, we are interested in
the way fault tolerance evolves with SOM learning. The on-line mode training
provides us with a more detailed evolution to observe. Moreover, we not only
consider the standard Kohonen SOM learning algorithm, but also some vari-
ants among which several ones cannot be applied in batch mode. Therefore,
we will only focus on the on-line mode training.

3.3 Fault tolerant training

This section briefly introduces three techniques for SOM that have been pro-
posed to improve its fault tolerance: weight restriction, fault insertion, and
noise injection during training.

3.3.1 Restricting weight values

This technique restricts the weight magnitudes to be low during training to
potentially make the SOM more fault-tolerant [8][7]. For instance, by i) penal-
izing high magnitude weights in the learning rule; mj

i (t+ 1) ∈ [mmin,mmax],
the lower and upper bound of the weight vectors components, respectively,
or ii) balancing weights to distribute the weight values more uniformly, e.g.,
to distribute the absolute weight values around the average absolute value.
Here, we use the thresholding method, in which a weight is updated only if its
absolute value, computed by the learning rule, does not exceed the following
threshold:

θ(t) =
1

nw2

∑
mj

n∑
i=1

∣∣∣mj
i (t)
∣∣∣

3.3.2 Inserting faults

This technique randomly inserts faults during training [24] so as to improve
fault tolerance. In each iteration, a fixed number of weights (neurons) are
randomly chosen, then faults (bit-flips) are injected according to these steps:

1. Randomly choose a predefined number of weights and insert faults in them
2. Apply the learning rule of on-line (resp. batch) training for a pattern (resp.

all patterns) in the training set
3. Restore faulty weights to their non-faulty state and repeat the process until

a stop criterion is reached

In our tests, only one faulty bit is introduced (and then restored) for each
learning iteration.



Fault Tolerance of Self Organizing Maps 9

m

abs

+ - m

abs

+ - m

abs

+ -

m

abs

+ - m

abs

+ - m

abs

+ -

m

abs

+ - m

abs

+ - m

abs

+ -

Adder tree Adder tree Adder tree

Best matching unit (BMU)

x1

x2

xn

Number of neurons

N
u
m

b
e
r 

o
f 
in

p
u

ts

Neuron1 NeuronN

d1 d2 dN

Fig. 1 Generic hardware architecture for a two-dimensional SOM.

<

m
u
x

m
u
x

d1

d2

(x1,y1)

(x2,y2)

< m
u
x

m
u
x

d3

d4

(x3,y3)

(x4,y4)

< m
u
x

m
u
x

dn-1

dn

(xn-1,yn-1)

(xn,yn)

< m
u
x

m
u
x

< m
u
x

m
u
x

Winner

Fig. 2 BMU block diagram for a two-dimensional SOM.

3.3.3 Noise and weight perturbations

During training, in each iteration, a small number of inputs/weights are se-
lected randomly to be perturbed by adding some type of noise [25][3]. The
basic idea is to add noise to the inputs or weights of each neuron. Two main
options exist, multiplicative and additive noise; additive noise being the most
used. We consider such an additive noise in our tests.

4 SOM hardware implementation and fault tolerance assessment

4.1 Parallel implementation

We analyze SOM fault tolerance for a fully parallel digital hardware implemen-
tation of a map, taking only into account the SOM recall phase with a general



10 Bernard Girau, Cesar Torres-Huitzil

+-

m
u
x

xi

mi

R

A

M

<

counter

BMU

coordinates

re
g
d

re
g
B
M
U

Fig. 3 Baseline sequential hardware implementation for a two-dimensional SOM.

architecture as shown in figure 1, since most embedded implementations of
SOMs do not require on-chip learning. A b-bit fixed-point representation for
the internal computations and storage is used, as most SOMs hardware imple-
mentations use this number system so as to optimize hardware resources. A
neuron essentially consists of registers (to store weights), adders and absolute
computation modules that as a whole compute the Manhattan distance. The
original SOM uses the Euclidean distance to measure the distance between
input patterns and weight vectors, but it requires hardware-greedy multipli-
cations and square roots, thus the Manhattan distance is a preferable choice
so that even the distance between the inputs x and the vector prototypes m
can be computed concurrently at every clock cycle.

The BMU can be implemented as a comparator binary tree and a set of
multiplexers, which receive the Manhattan distances and spatial coordinates
from all neurons, as shown in figure 2. The BMU’s outputs are the spatial
coordinates (x, y) of the winner neuron. The neighborhood function plays a
key role in SOM learning, but the direct implementation of the exponential
function is not practical due to its complexity, instead look-up tables to store
precomputed values can be used for resource saving. However, herein we only
consider the on-chip implementation of the recall phase and an off-chip im-
plementation for the learning phase, so that we do not need to compute the
neighborhood function on-chip.

4.2 Sequential implementation

In the sequential version, the SOM is implemented as shown in figure 3, where
a single neuron is time-multiplexed. We assume that enough memories (Block-
RAMs in FPGAs) are available and organized into banks to read weights of
a neuron in a single clock cycle. A counter generates the addresses to this
memory bank to retrieve the weights for different neurons. Once weights are
retrieved, the distance is computed from a given input and temporally stored
in regd. On each clock, the content of this register is compared with the con-
tent of register regBMU so as to sequentially determine the minimum, which is



Fault Tolerance of Self Organizing Maps 11

stored once again in regBMU . This process is repeated until all neurons in the
SOM are processed. The control logic is not shown in figure 3 for simplicity.

4.3 SOM fault tolerance assessment

We consider that faults occur only in weight registers in the parallel hardware
architecture shown in figure 1. This choice considers plausible hardware faults
and not only the unprecise notion of faulty neuron, yet all possible hardware
faults are not considered this way (see 2.1). More precisely, we assume that
each bit in defective neuron weights, which are stored in b-bit registers, is
flipped with some probability and remains the same during the SOM process-
ing. The fault rate u is defined as the percentage of flipped bits (bflips such
bits) in neuron weights with respect to the total number of bits in the SOM
map. It is used so as to evaluate fault tolerance in SOMs. Considering a w×w
SOM map, with N inputs and b-bit wordlength for weights, yields:

u =
bflips

w2 ×N × b
(4)

It must be pointed out that the number of faulty bits and the rate of faulty
neurons increase very rapidly with the above-defined fault rate: to give an
example, if b = 16, N = 4, and u = 0.05, 5120 faulty bits appear (out of
102 400) in a 40×40 SOM (more precisely, for this case, an ESOM), and 96 % of
all neurons contain at least one faulty weight. For space consideration, we have
focused on such fault rates as they represent a more devastating effect on the
SOM behavior than single, double or triple faults, which can be well masked
in SOMs as it has been reported in related works [34][25], and confirmed by
our experiments. Moreover, this fault model takes into account the fact that
all the introduced faults are not equivalent: faults on least significant bits do
not have the same effect as faults on most significant bits.

In the case of the sequential implementation, weights are stored in Block-
RAMS. We assume that such data, as well as configuration bits, may be pro-
tected by means of specific techniques such as memory scrubbing [26], com-
plementarily to the fault tolerance of the neural model, thus avoiding an ac-
cumulation of faults after several clock cycles. Therefore, we take into account
only bit-flip faults that can occur during each clock cycle in the weights of
the currently handled neuron, or in the counter of neurons, or in regd, or in
regBMU , or in registers that store the coordinates (position) of the BMU.

4.4 SOM Performance measure

The severity of faults in the SOM can be characterized with respect to the fault
rate u: it consists in considering the artificially introduced faults at a given
fault rate as the independent variable, and a selected performance measure of
the SOM as the dependent variable. The average quantization error (AQE) and



12 Bernard Girau, Cesar Torres-Huitzil

distortion measure are used as SOM performance criteria for fault tolerance,
which provides a combined way to evaluate the result of the SOM convergence
on a given dataset [6][18][5].

The AQE measures the representation fidelity of the training data, and it is
computed as the average distance between each data vector and the prototype
of its BMU that should be very close:

AQE =
1

n

n∑
1

∥∥∥xi −mc(xi)
∥∥∥2 (5)

where n is the number of input vectors, xi is an input, mc(xi) is the weight of
the BMU in the map for xi. The less the AQE, the better the fidelity of the
representation of input data.

The distortion measure considers both vector quantization and structure
preservation of the SOM [22] and it is suitable for comparing maps of the same
size [18]. Let’s consider a SOM represented by prototypes mj , the distortion
measure is defined as the average over all input patterns (a set of n input data
vectors xi) of the weighted sums of the squared distances between the pattern
and all neuron prototypes, with weights that depend on the neighborhood
function between each neuron and the winner neuron (BMU) for the given
pattern. According to [33], the original distortion measure would be biased
towards the 2D SOM. If the input’s distortion is redefined to be the average
distortion over its BMU’s neighborhood, the results will not be affected by the
different topologies of the grid and the distortion measure becomes:

ξ =
1

n

n∑
i=1

∑m
j=1 hc(xi)j

∥∥xi −mj
∥∥2∑m

j=1 hc(xi)j
(6)

where c(xi) is the BMU of xi, and hc(xi)j is the neighborhood function of
neurons c(xi) and j.

5 Experimental results

We have developed a software environment for fault tolerance evaluation,
which handles computations using fixed-point representations (even during
learning) for the different SOM hardware implementations. Experiments are
performed with 4 × 4 up to 40 × 40 2D SOMs, whose weights are initialized
to random values, evenly distributed between [0, 1] and then scaled to a fixed-
point representation Q6.10. Hereafter, we call this arithmetic representation
standard weight storage (SWS). Artificial 2D and 3D datasets are used, with
new points generated at each learning iteration according to the chosen dis-
tributions, instead of pre-generating fixed-size datasets, so as to get rid of any
cross validation requirement. Studied distributions are: uniform distribution,
mixtures of gaussians, or mixtures of uniform distributions within compact
”boxes”. All SOMs use the same learning rate, update radius and Gaussian



Fault Tolerance of Self Organizing Maps 13

Epochs
0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g
e

 d
is

to
rt

io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
learn-distortion-average-algorithms

Standard
Threshold
Noise injection

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u

a
n

ti
z
a
ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
learn-quantization-average-algorithms

Standard
Threshold
Fault injection
Noise injection

(a) 2D uniform distribution (Distortion, Quantization)

Epochs
0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
learn-distortion-average-algorithms

Standard
Threshold
Noise injection

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u

a
n

ti
z
a
ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
learn-quantization-average-algorithms

Standard
Threshold
Fault injection
Noise injection

(b) 2D Gaussian distribution (Distortion, Quantization)

Epochs
0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
learn-distortion-average-algorithms

Standard
Threshold
Noise injection

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u

a
n

ti
z
a
ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
learn-quantization-average-algorithms

Standard
Threshold
Fault injection
Noise injection

(c) 2D boxes distribution (Distortion, Quantization)

Epochs
0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
learn-distortion-average-algorithms

Standard
Threshold
Noise injection

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u

a
n

ti
z
a
ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
learn-quantization-average-algorithms

Standard
Threshold
Fault injection
Noise injection

(d) 3D Gaussian distribution (Distortion, Quantization)

Epochs
0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
learn-distortion-average-algorithms

Standard
Threshold
Noise injection

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
learn-quantization-average-algorithms

Standard
Threshold
Fault injection
Noise injection

(e) 3D boxes distribution (Distortion, Quantization)

Fig. 4 Distortion and quantization for an 8× 8 SOM during learning for different distribu-
tions and learning algorithms.



14 Bernard Girau, Cesar Torres-Huitzil

neighborhood function, during 100 epochs with 50 iterations each. Different
map sizes and initializations are tested. For each iteration, various learning
patterns are randomly chosen, and all learning techniques, map sizes and map
initializations concurrently train with respect to each of these input patterns.
Then their fault tolerance is estimated by generating several randomly faulty
versions of each map at each epoch of each of the learning techniques that
are tested, for each weight storage policy (see 5.2). These nested tests have
resulted in a total of 108 simulations of faulty SOMs. For space considera-
tions, most results are presented for 8 × 8 SOMs on 2D boxes distributions,
with some exceptions when appropriated, clearly indicated. Several results for
other distributions and map sizes were presented in our previous works [29]
and [10]. Our observations are similar for all distributions and map sizes.

5.1 Fault tolerance evolution during learning

The quantization and distortion measure profiles during learning are shown
in figure 4 for different 2D and 3D distributions, using different learning tech-
niques. The presented results are averaged over several randomly initialized
maps, but all learning techniques and maps use the same series of randomly
generated input patterns. It explains why the different curves have similar
irregular profiles. Both measures decrease during training with the standard
online algorithm for all SOMs, but with different convergence rates for dif-
ferent distributions. This can be explained by the usual problems known for
Kohonen SOMs that unfold themselves in a uniform distribution-like input
space: some maps spread well while some others remain partially twisted.

Figure 4 shows that results for the standard algorithm mostly overlap with
those produced by noise injection and are the best among the other techniques.
Training with thresholding (to restrict weight values) yields larger quantiza-
tion and distortion values, and a slower convergence rate. These results tend
to show that this technique does not well extend to the kind of fault model we
study here. Note that for thresholding, quantization starts to increase rapidly
around epoch 60 during learning. This is even more noticeable for the fault
injection based technique: its results are not even included in figure 4, for read-
ability, since this method performs worst among the implemented algorithms.
This is directly linked to the number representation system that we use herein,
where faulty bits can be injected in the 6-bit integer part and induce exces-
sively large weights even after bit restoration (e.g. 000000 becomes 100000
with a faulty bit, then 011111 with learning, and recovering the initial value of
the faulty bit is useless here). Using different integer part sizes induces more
or less bad results for this method. A similar problem appears when we inject
faults in the SOMs to evaluate their fault tolerance. We address this issue in
the next section by considering two different policies or variants for arithmetic
representation.



Fault Tolerance of Self Organizing Maps 15

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

50

100

150

200

250

Learning-standard-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(a) D-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

0.25
Learning-standard-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(b) D-FR-OWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

0.25
Learning-standard-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(c) D-FR-IWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(d) Q-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(e) Q-FR-OWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(f) Q-FR-IWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

500

1000

1500

2000

2500

Learning-standard-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(g) DR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Learning-standard-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(h) DR-OWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Learning-standard-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(i) DR-IWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(j) QR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(k) QR-OWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(l) QR-IWS

Fig. 5 Distortion/Quantization for different implementation choices (weight storage) on a
2D boxes distribution (8x8 map). (a-c): distortion vs fault rate for different epochs, (d-f):
quantization vs fault rate for different epochs, (g-i): distortion ratio vs epochs for different
fault rates, (j-l): quantization ratio vs epochs for different fault rates.

5.2 Optimal and individual weight storage

Herein, we consider the same general parallel hardware architecture as shown
in figure 1, but with two different arithmetic precision choices, which can be



16 Bernard Girau, Cesar Torres-Huitzil

(a) Fault rate 0 % (b) Fault rate 1 % (c) Fault rate 2 % (d) Fault rate 9 %

Fig. 6 Evolution of prototypes during learning (epochs 0, 1, 20, 60 from top to bottom)
with different fault rates for an 8 × 8 SOM with 2D uniform distribution using an OWS
policy.

considered as complementary ad-hoc policies that can be further applied to
enhance the fault tolerance properties of a specific neural model hardware
implementation, i.e., SOMs for this study.

First, we consider an optimal weight storage (OWS) policy, where the only
difference with respect to SWS is that the weights (coordinates of neural pro-
totypes) are stored in a heterogeneous way: instead of using an homogeneous
Q6.10 representation, register sizes are tuned individually to the minimal size
that fits the significant bits of the integer part, thus resulting in a variable
Q0.10 to Q6.10 representation of weights. Faults are introduced both to the
significant integer part and the fractional part.



Fault Tolerance of Self Organizing Maps 17

Second, an individual weight storage (IWS) policy is used, where once
again, a heterogeneous fixed point representation similar to OWS is considered,
but for this policy faults are limited only to the significant bits of each weight.
For example, in a weight equal to 0.0001011001, bit flips will occur only in the
7 least significant bits of the fractional part. For this experiment quantization
and distortion measures are evaluated under the same conditions as SWS and
OWS.

Figures 5(a-f) show the distortion and quantization measures versus the
bit-flip percentage introduced into SOMs for different weight storage policies.
Recall that a 1% fault rate already corresponds to 5120 faulty bits in the
largest SOMs we consider herein. As the same results are not expected for
different faulty SOMs, even on the same dataset, for each fault rate several
faulty versions of the trained SOMs were randomly generated and averaged in
the presented results.

Distortion increases with the fault rate for all the cases (see figures 5(a)-
(c)): however, for OWS and IWS distortion only slightly increases with injected
faults but it rapidly increases even with a small percentage of faults for the
SWS policy. OWS and IWS distortion results are much better (approximately
three orders of magnitude: for example, 0.14 with OWS/IWS compared to
250 for SWS for an 8% fault rate and an 8 × 8 map). These results show
that the structure perturbations have been reduced by the OWS/IWS policies
that keep the faulty prototypes not too far from their initial position. When
looking at the evolution of the neural prototypes across the map (see figure
6 for an 8x8 map on a 2D uniform distribution using the OWS policy when
injecting faults), we understand that the initial distortion value corresponds
to random prototypes, then it falls down during the first iterations of learn-
ing since the map ’gathers’ its prototypes before unfolding in the input space,
thus increasing again its distortion. Nevertheless figure 6 shows that signifi-
cant fault percentages quite highly perturb the SOM structure that emerges
from learning. The distortion measure appears as unable to highlight this fact,
knowing that random prototypes provide a distortion that is not much higher
than for a perfect grid.

Quantization also increases with the fault percentage below 10% for all
weight storage policies (see figures 5(d)-(f)). However, when an error measure
that considers the local behavior of the map is used, results clearly show that
the structure preservation is affected even at small fault rate percentages,
as the distortion measure indicates, especially for SWS policy. This suggests
that faults in weights can be better masked in the SOM for OWS and IWS,
the global internal representation being distributed enough to cover the input
space even with faults. Nevertheless, all these results confirm that SOMs may
stand as quite fault-tolerant models, since any abrupt degradation of their
behavior with faults is observed.

Figures 5(g)-(l) illustrate in more detail how fault tolerance measures
evolve through learning for different fault rates for stochastic online learn-
ing and for the different storage policies SWS, OWS and IWS. Herein, the
level of fault tolerance is estimated as the ratio between the average (over all



18 Bernard Girau, Cesar Torres-Huitzil

8

Learning-standard-algorithm-epochs-average-quantization

Fault Percentage

6
4

2
0100

80
Epochs

60
40

20
0

0.03

0.04

0.05

0.06

0.07

0.01

0.02

Q
u
a
n
ti
z
a
ti
o
n

OWS
IWS

(a) Q-FR-OWS-IWS

100

80

Epochs

60

Learning-standard-algorithm-epochs-quantization-ratio

40

20

0012

Fault Percentage

345678

0.9

1

1.6

1.1

1.2

1.3

1.4

1.5

1.7

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

OWS
IWS

(b) QR–FR-OWS-IWS

Fig. 7 Comparing quantization for OWS and IWS on a 2D boxes distribution (8x8 map)
for different fault rates.

tested faulty versions of each map) performance obtained for the given fault
rate and the performance without faults for the corresponding epoch. Thus
the ’optimal’ or ’reference’ value for this ratio is 1 (fault rate 0), and a ratio
increase means a degradation of the SOM fault tolerance. With OWS and
IWS, after an slight decrease of this ratio from the initialization to epoch 1,
we see that it increases quite slowly for the quantization measure, and even
stabilizes during the last epochs at a value that depends on the fault rate. For
the distortion measure, there is an abrupt increase of the fault tolerance ratio
up to very large values with SWS. Such increase is a direct consequence of
the introduction of faulty bits in the integer parts of the weights. The order
of magnitude of the ratio goes up to 103 with such faults in SWS, since the
distortion measure takes into account the weights of all neurons, whereas the
quantization measure only considers the winner neuron. Again, it is tightly
linked to the size of the integer part, e.g. a Q4.12 instead of Q6.10 fixed point
representation would induce approximately 16 times lower values for the maxi-
mum distortions with SWS. This negative effect on distortion is observed even
when introducing only a few faulty bits in our other experiments, whereas
the quantization-based fault tolerance remains optimal for such scarce faults.
OWS and IWS greatly improve the distortion ratio, that even decreases during
learning after the initial increase from epoch 0 to 1. IWS performs best, ex-
cept for the quantization of uniform distributions, where OWS spreads weights
more interestingly in the input space.

5.3 OWS vs IWS results

Figure 7 shows a closer view of how quantization and quantization ratio evolve
during learning for OWS and IWS policies. Note that IWS is similar to OWS
mostly for epoch 0 where prototypes are completely random and OWS faults
are equivalent to noise. IWS policy is more fault tolerant than OWS not only



Fault Tolerance of Self Organizing Maps 19

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

50

100

150

200

250

300

350

400

450

500

Learning-threshold-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(a) D-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

50

100

150

200

250

300

350

400

450

500

Learning-noise-injection-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(b) D-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

50

100

150

200

250

300

350

400

450

500

Learning-fault-injection-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(c) D-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25
Learning-threshold-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(d) Q-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25
Learning-noise-injection-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(e) Q-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25
Learning-fault-injection-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(f) Q-FR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

500

1000

1500

2000

2500

Learning-threshold-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(g) DR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

500

1000

1500

2000

2500

Learning-noise-injection-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(h) DR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

500

1000

1500

2000

2500

Learning-fault-injection-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(i) DR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

3.5
Learning-threshold-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(j) QR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

3.5
Learning-noise-injection-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(k) QR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

3.5
Learning-fault-injection-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(l) QR-SWS

Fig. 8 Distortion/Quantization vs fault rate for different learning techniques
((a,d,g,j):thresholding, (b,e,h,k): noise injection, (c,f,i,l): fault injection) on a 2D boxes dis-
tribution (8x8 map threshold).

for quantization measure for higher fault rates, but also for distortion as it
was already shown in figures 5(a)-(c).

Plots in figure 8 show that similar results for quantization and distortion
are obtained for the other learning techniques, thresholding and noise injection.
This is also the case when considering IWS or OWS. However, fault injection



20 Bernard Girau, Cesar Torres-Huitzil

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

50

100

150

200

250

Learning-standard-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(a) D-FR-SWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

Learning-standard-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(b) D-FR-OWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 d

is
to

rt
io

n

0

0.05

0.1

0.15

0.2

Learning-standard-algorithm-fault-rate-average-distortion

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(c) D-FR-IWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

Q
u
a
n
ti
z
a
ti
o
n

0

1

2

3

4

5

6

7

Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(d) Q-FR-SWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

Q
u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(e) Q-FR-OWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

Q
u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(f) Q-FR-IWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

500

1000

1500

2000

2500

Learning-standard-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(g) DR-SWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Learning-standard-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(h) DR-OWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

D
is

to
rt

io
n
 r

a
ti
o

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Learning-standard-algorithm-epochs-distortion-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(i) DR-IWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

50

100

150

200

250

300

350

400

450

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(j) QR-SWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

2

4

6

8

10

12

14

16

18

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(k) QR-OWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

2

4

6

8

10

12

14

16

18

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(l) QR-IWS-S

Fig. 9 Distortion/Quantization vs fault rate for different implementation choices (weight
storage) on a 2D boxes distribution (8x8 map sequential).

performs worst among the learning techniques, despite what can be observed in
figure 8(i): the distortion ratio only decreases because the performance without
faults is already bad.



Fault Tolerance of Self Organizing Maps 21

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.02

0.04

0.06

0.08

0.1

0.12
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(a) Q-FR-SWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(b) Q-FR-OWS

Fault percentage
0 1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 q

u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(c) Q-FR-IWS

Fault percentage
0 1 2 3 4 5 6 7 8

Q
u
a
n
ti
z
a
ti
o
n

0

1

2

3

4

5

6

7

Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(d) Q-FR-SWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

Q
u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(e) Q-FR-OWS-S

Fault percentage
0 1 2 3 4 5 6 7 8

Q
u
a
n
ti
z
a
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Learning-standard-algorithm-fault-rate-average-quantization

Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50
Epoch 60
Epoch 70
Epoch 80
Epoch 90
Epoch 100

(f) Q-FR-IWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(g) QR-SWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

2

4

6

8

10

12

14

16

18

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(h) QR-OWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

0

2

4

6

8

10

12

14

16

18

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(i) QR-IWS

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

50

100

150

200

250

300

350

400

450

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(j) QR-SWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

2

4

6

8

10

12

14

16

18

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(k) QR-OWS-S

Epochs
0 10 20 30 40 50 60 70 80 90 100

Q
u
a
n
ti
z
a
ti
o
n
 r

a
ti
o

2

4

6

8

10

12

14

16

18

Learning-standard-algorithm-epochs-quantization-ratio

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8

(l) QR-IWS-S

Fig. 10 Quantization vs fault rate for different implementation choices (weight storage) on
a 2D boxes distribution (8x8 map). (a-c) and (g-i): parallel, (d-f) and (j-l): sequential.

5.4 Sequential implementation results

Figure 9 shows the distortion/quantization for different arithmetic precision
choices of the sequential implementation evaluated on a 2D boxes distribution.
The effect on distortion is negligible, even if in average the BMU is changed
by sequential faults very often (half of the time for only 2% fault rate), but



22 Bernard Girau, Cesar Torres-Huitzil

the effect on quantization is much higher. To illustrate this, figure 10 com-
pares quantization for the parallel and sequential architectures for different
arithmetic choices. It clearly shows that quantization in the sequential imple-
mentation is more affected than in the parallel one.

6 Conclusions

This paper presents a study of fault tolerance of SOMs, particularly how fault
tolerance evolves during learning, assuming a hardware-plausible fault model
that particularly fits FPGA implementations. We compare the performances
of SOMs obtained with three variants of the on-line training algorithm: weight
restriction, fault injection and noise injection. The obtained results show that
training by inserting noise injection provides slightly better results than the
other techniques but its results are close to the standard SOM learning al-
gorithm. Nevertheless, SOM fault tolerance is globally confirmed since the
quantization quality degrades gradually with increasing fault rates. SOM fault
tolerance with respect to structure preservation has been studied using the dis-
tortion measure, and results show that this particular property of SOMs is not
necessarily capable of supporting a large number of faults. An individualized
weight storage policy for the FPGA implementation greatly improves this fault
tolerance. The distortion measure slightly increases with the fault rate using
such weight storage, corresponding to a graceful degradation of the structure
of the map. The quantization measure even improves with faults, especially
with large maps or during the early stages of self-organization. A study of
the evolution of neural prototypes with faults and learning shows that faulty
SOMs combine the partially preserved map with new prototypes that faults
are spreading within the bounds of the input space thanks to the individu-
alized weight storage policies for which faulty bits can only affect significant
bits of the weights. These results confirm the intrinsic fault tolerance of self-
organizing maps when they are implemented in a way that takes advantage of
their parallel structure and using adequate technological choices. As illustrated
by the experimental results, the distortion measure does not appear as really
able to account for the structure preservation of a SOM in a precise way. In
our future works, we intend to address this limit by introducing more evolved
measures, in relation with the idea of population coding of the BMU (groups
of neurons instead of a single winner), a paradigm for which we expect an even
better fault tolerance and thanks to which SOMs may outperform other quan-
tization models that do not order their prototypes according to a predefined
topology.

References

1. Abraham, J.A., Fuchs, W.K.: Fault and error models for vlsi. Proceedings of the IEEE
74(5), 639–654 (1986)



Fault Tolerance of Self Organizing Maps 23

2. Alippi, C.: Selecting accurate, robust, and minimal feedforward neural networks. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(12),
1799–1810 (2002)

3. Allende, H., Moreno, S., Rogel, C., Salas, R.: Robust self-organizing maps. In: A. Sanfe-
liu, J.F. Mart́ınez Trinidad, J.A. Carrasco Ochoa (eds.) Progress in Pattern Recognition,
Image Analysis and Applications: 9th Iberoamerican Congress on Pattern Recognition,
CIARP 2004, Puebla, Mexico, October 26-29, 2004. Proceedings, pp. 179–186. Springer
Berlin Heidelberg (2004)

4. Avižienis, A.: Framework for a taxonomy of fault-tolerance attributes in computer sys-
tems. SIGARCH Comput. Archit. News 11(3), 16–21 (1983)

5. Beaton, D., Valova, I., MacLean, D.: Cqoco: A measure for comparative quality of
coverage and organization for self-organizing maps. Neurocomputing 73(10–12) (2010)

6. de Bodt, E., Cottrell, M., Verleysen, M.: Statistical tools to assess the reliability of
self-organizing maps. Neural Networks 15(8–9), 967 – 978 (2002)

7. Cavalieri, S., Mirabella, O.: A novel learning algorithm which improves the partial fault
tolerance of multilayer neural networks. Neural Networks 12(1), 91 – 106 (1999)

8. Chin, C.T., Mehrotra, K., Mohan, C.K., Rankat, S.: Training techniques to obtain
fault-tolerant neural networks. In: Fault-Tolerant Computing, 1994. FTCS-24. Digest
of Papers., Twenty-Fourth International Symposium on, pp. 360–369 (1994)

9. Cottrell, M., Olteanu, M., Rossi, F., Villa-Vialaneix, N.: Theoretical and applied aspects
of the self-organizing maps. In: Advances in Self-Organizing Maps and Learning Vector
Quantization: Proc. of the 11th Int. Workshop WSOM, pp. 3–26 (2016)

10. Girau, B., Torres-Huitzil, C.: Optimal weight storage improves fault tolerance of soms.
In: 2017 International Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig), pp. 1–6 (2017)

11. Hammadi, N.C., Ito, H.: Improving the performance of feedforward neural networks by
noise injection into hidden neurons. Journal of Intelligent and Robotic Systems 21(2),
103–115 (1998)

12. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer
30(4), 75–82 (1997)

13. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(1990)

14. Kohonen, T.: The self-organizing map. Neurocomputing 21(1–3), 1 – 6 (1998)
15. Maass, W.: Noise as a resource for computation and learning in networks of spiking

neurons. Proceedings of the IEEE 102(5), 860–880 (2014)
16. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from un-

reliable components. Automata Studies pp. 43–98 (1956)
17. Piuri, V.: Analysis of fault tolerance in artificial neural networks. Journal of Parallel

and Distributed Computing 61(1), 18 – 48 (2001)
18. Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In:

Proceedings of the Fifth Workshop on Data Analysis (WDA’04), pp. 67–82 (2004)
19. Protzel, P.W., Palumbo, D.L., Arras, M.K.: Performance and fault-tolerance of neural

networks for optimization. IEEE Transactions on Neural Networks 4(4), 600–614 (1993)
20. Rahimi, A., Benini, L., Gupta, R.K.: Variability mitigation in nanometer cmos inte-

grated systems: A survey of techniques from circuits to software. Proceedings of the
IEEE 104(7), 1410–1448 (2016)

21. Rougier, N., Boniface, Y.: Dynamic self-organising map. Neurocomputing 74(11), 1840
– 1847 (2011)

22. Rynkiewicz, J.: Self-organizing map algorithm and distortion measure. Neural Networks
19(6–7), 830 – 837 (2006)

23. Sejnowksi, T., Delbruck, T.: The language of the brain. Scientific American 307, 54–59
(2012)

24. Sequin, C.H., Clay, R.D.: Fault tolerance in artificial neural networks. In: Neural Net-
works, 1990., 1990 IJCNN International Joint Conference on, pp. 703–708 vol.1 (1990)

25. Talumassawatdi, R., Lursinsap, C.: Fault immunization concept for self-organizing map-
ping neural networks. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 09(06), 781–790 (2001)



24 Bernard Girau, Cesar Torres-Huitzil

26. Tambara, L.A., Tonfat, J., Santos, A., Kastensmidt, F.L., Medina, N.H., Added, N.,
Aguiar, V.A.P., Aguirre, F., Silveira, M.A.G.: Analyzing reliability and performance
trade-offs of hls-based designs in sram-based fpgas under soft errors. IEEE Transactions
on Nuclear Science 64(2), 874–881 (2017)

27. Tchernev, E.B., Mulvaney, R.G., Phatak, D.S.: Investigating the fault tolerance of neural
networks. Neural Computation 17(7), 1646–1664 (2005)

28. Torres-Huitzil, C., Girau, B.: Fault and error tolerance in neural networks: A review.
IEEE Access 5, 17,322–17,341 (2017)

29. Torres-Huitzil, C., Popovych, O., Girau, B.: Fault tolerance of self organizing maps.
In: 2017 12th International Workshop on Self-Organizing Maps and Learning Vector
Quantization, Clustering and Data Visualization (WSOM), pp. 1–8 (2017)

30. Ultsch, A.: Data mining and knowledge discovery with emergent self-organizing feature
maps for multivariate time series. In: S.K. E. Oja (ed.) Kohonen Maps, pp. 33–46 (1999)

31. Venkatesh, S.S.: Robustness in neural computation: random graphs and sparsity. IEEE
Transactions on Information Theory 38(3), 1114–1119 (1992)

32. Wang, Z., Lee, K.H., Verma, N.: Overcoming computational errors in sensing platforms
through embedded machine-learning kernels. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 23(8), 1459–1470 (2015)

33. Wu, Y., Takatsuka, M.: Spherical self-organizing map using efficient indexed geodesic
data structure. Neural Networks 19(6–7), 900 – 910 (2006). Advances in Self Organising
Maps - WSOM’05

34. Yasunaga, M., Hachiya, I., Moki, K., Kim, J.H.: Fault-tolerant self-organizing map im-
plemented by wafer-scale integration. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 6(2), 257–265 (1998)

35. Zeng, X., Yeung, D.S.: Sensitivity analysis of multilayer perceptron to input and weight
perturbations. IEEE Transactions on Neural Networks 12(6), 1358–1366 (2001)


