21,674 research outputs found

    Rate-independent soft crawlers

    Full text link
    This paper applies the theory of rate-independent systems to model the locomotion of bio-mimetic soft crawlers. We prove the well-posedness of the approach and illustrate how the various strategies adopted by crawlers to achieve locomotion, such as friction anisotropy, complex shape changes and control on the friction coefficients, can be effectively described in terms of stasis domains. Compared to other rate-independent systems, locomotion models do not present any Dirichlet boundary condition, so that all rigid translations are admissible displacements, resulting in a non-coercivity of the energy term. We prove that existence and uniqueness of solution are guaranteed under suitable assumptions on the dissipation potential. Such results are then extended to the case of time-dependent dissipation

    Impedence Control for Variable Stiffness Mechanisms with Nonlinear Joint Coupling

    Get PDF
    The current discussion on physical human robot interaction and the related safety aspects, but also the interest of neuro-scientists to validate their hypotheses on human motor skills with bio-mimetic robots, led to a recent revival of tendondriven robots. In this paper, the modeling of tendon-driven elastic systems with nonlinear couplings is recapitulated. A control law is developed that takes the desired joint position and stiffness as input. Therefore, desired motor positions are determined that are commanded to an impedance controller. We give a physical interpretation of the controller. More importantly, a static decoupling of the joint motion and the stiffness variation is given. The combination of active (controller) and passive (mechanical) stiffness is investigated. The controller stiffness is designed according to the desired overall stiffness. A damping design of the impedance controller is included in these considerations. The controller performance is evaluated in simulation

    Designing bio-mimetic variational porosity for tissue scaffolds

    Get PDF
    Reconstructing or repairing the damaged or diseased tissues with porous scaffolds to restore the mechanical, biological and chemical functions is one of the major tissue engineering strategies. Development of Solid Free Form (SFF) techniques and improvement in biomaterial properties by synergy have provided the leverage to fabricate controlled and interconnected porous scaffold structures. But homogeneous scaffolds with regular porosity do not provide all the biological and mechanical requirements of an ideal tissue scaffold. Thus achieving controllable, continuous, interconnected gradient porosity with reproducible and fabricatable design is critical for successful regeneration of the replaced tissue. In this research, a novel scaffold modeling approach has been proposed to achieve bio-mimetic tissue scaffolds. Firstly, the optimum filament deposition angle has been determined based on the internal heterogeneous regions and their locations. Then an area-weight based approach has been applied to generate the spatial porosity function to determine the filament deposition location for the desired bio-mimetic porosity. The proposed methodology has been implemented using computer simulation. A micro-nozzle biomaterial deposition system driven by NC motion control has been used to fabricate a sample designed structure

    Exploring the Production of Extracellular Matrix by Astrocytes in Response to Mimetic Traumatic Brain Injury

    Get PDF
    Following injury to the central nervous system, extracellular modulations are apparent at the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of impacts, and impacts with or without strain. Multiple impacts on astrocytes resulted in increased apoptosis, supporting cumulative effects of multiple traumatic brain injury events. Surprisingly, the expression of glial fibrillary acidic protein and S100B by astrocytes was downregulated following injury. With multiple impacts, astrocytes downregulated collagen and glycosaminoglycan expression at acute time points. Suppression of matrix metalloproteinase-2 coupled with unchanging production of transforming growth factor beta-1 and tissue inhibitor of metalloproteinase-1 indicates an inability to degrade damaged ECM or produce new ECM. This was supported by long-term studies which indicate significant decreases in chondroitin sulfate proteoglycan and collagen I accumulation. This could suggest astrocytes experiencing damaging mechanical stimulation enter a survival state ceasing to moderate the extracellular environment at short time points after injury

    Preparation of hexagonal GeO2 particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras

    Get PDF
    We demonstrate the use of silk based proteins to control the particle/crystallite size during GeO2 formation, using a bio-mimetic approach at circumneutral pH and ambient temperature. Multicrystalline GeO2 was prepared from germanium tetraethoxide (TEOG) in the presence of different silk-based proteins: Bombyx mori silk (native silk) and two chimeric proteins prepared by linking a germania binding peptide (Ge28: HATGTHGLSLSH) with Bombyx mori silk via chemical coupling at different peptide loadings (silk-Ge28 10% and silk-Ge28 50%). The mineralisation activity of the silk-based proteins was compared with that of peptide Ge28 as a control system. GeO2 mineralisation was investigated in water and in citric acid/bis-tris propane buffer at pH 6. Morphology, particle size, crystallinity, water and organic content of the materials obtained were analysed to study the effect of added biomolecules and mineralisation environment on material properties. In the presence of silk additives well-defined cube-shape hybrid materials composed of hexagonal germania and up to ca. 5 wt% organic content were obtained. The cubic particles ranged from 0.4 to 1.4m in size and were composed of crystalline domains in the range 35-106 nm depending on the additive used and synthesis conditions

    Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging.

    Get PDF
    As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 μg mL-1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions

    Recent Developments in Synthesis and Photocatalytic Applications of Carbon Dots

    Get PDF
    The tunable photoluminescent and photocatalytic properties of carbon dots (CDs) via chemical surface modification have drawn increased attention to this emerging class of carbon nanomaterials. Herein, we summarize the advances in CD synthesis and modification, with a focus on surface functionalization, element doping, passivation, and nanocomposite formation with metal oxides, transition metal chalcogenides, or graphitic carbon nitrides. The effects of CD size and functionalization on photocatalytic properties are discussed, along with the photocatalytic applications of CDs in energy conversion, water splitting, hydrogen evolution, water treatment, and chemical degradation. In particular, the enzyme-mimetic and photodynamic applications of CDs for bio-related uses are thoroughly reviewed

    Electromagnetically inspired biomaterials for directing biology

    Get PDF
    The ability to spatially and temporally regulate the delivery of biomolecules in vivo is pervasively desired in contemporary and emerging biotechnological and therapeutic contexts. The ability to regulate the timing, dose, and directionality of multiple biomolecules is particularly desirable in the realm of tissue engineering, where the engineering/repair of functional tissues requires a highly choreographed sequence of localized biomolecular presentations. Here, I will describe works in progress towards the development of biomaterial systems—using simple electromagnetic principles as inspiration—that are capable of releasing molecular payloads in response to externally administered stimuli. I will describe how these systems may provide a high degree of control over the timing, dose, and directionality of multiple biomolecular presentations in wound healing and tissue engineering applications. I will also describe additional research directions geared towards directing biological processes that foundationally involve the use of electromagnetic principles. These projects will aim to (i) endow implant materials with bio-mimetic and bio-instructive properties, (ii) spatiotemporally regulate gene and drug delivery across cell membranes, and (iii) molecularly target undesirable cells for destruction

    Recombinant Collagen Engineered to Bind to Discoidin Domain Receptors Functions as a Receptor Inhibitor

    Get PDF
    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities

    Career: hybrid surfaces to control cell adhesion and function

    Get PDF
    Issued as final reportNational Science Foundation (U.S.
    corecore