
Impedance Control for Variable Stiffness Mechanisms

with Nonlinear Joint Coupling
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Abstract— The current discussion on physical human robot
interaction and the related safety aspects, but also the interest
of neuro-scientists to validate their hypotheses on human motor
skills with bio-mimetic robots, led to a recent revival of tendon-
driven robots. In this paper, the modeling of tendon-driven
elastic systems with nonlinear couplings is recapitulated. A
control law is developed that takes the desired joint position
and stiffness as input. Therefore, desired motor positions are
determined that are commanded to an impedance controller.
We give a physical interpretation of the controller. More impor-
tantly, a static decoupling of the joint motion and the stiffness
variation is given. The combination of active (controller) and
passive (mechanical) stiffness is investigated. The controller
stiffness is designed according to the desired overall stiffness.
A damping design of the impedance controller is included in
these considerations. The controller performance is evaluated
in simulation.

I. INTRODUCTION

The growing interest in physical human robot interaction

and the interest of neuro-scientists to validate their hypothe-

ses on human motor skills with bio-mimetic robots motivate

the design of highly anthropomorphic robots. Herein, the

design of a robot hand is a great challenge, since it requires

a large number of degrees of freedom (DOF) distributed on

small space. In the DLR Hand II [1] 13 active DOF were

realized by motors that are completely integrated within the

hand, so that it can be mounted in a modular way to a robot

wrist. The drawback of this design is that the robot hand

became about 1.5 times larger than the human one. The

relocation of the motors in the forearm via tendons is chosen

for the novel DLR hand arm system [2] (cf. Fig. 1) enabling

the realization of 19 antagonistic DOF, hence 38 motors,

while achieving a human-like size. The implementation of

the mechanical functionality required an asymmetric tendon

routing with nonlinear couplings. The goal of this paper is

to derive a control law for regulating the joint position and

stiffness for this class of mechanisms.

Tahara et al. [3] study a dual-finger model with synergistic

actuation of antagonist muscles. Based on Hill’s model for

the human muscle, a sensory-motor control rule for a planar

robot realizing a stable dual-finger grasp of a rectangular

object is presented. The object posture and the internal

forces are controlled independently. In [4] the static model

of a tendon-driven robot hand is presented by Bicchi and

Prattichizzo and a constraint optimization is given.

Kobayashi and Ozawa [5] present an adaptive neural

network control for tendon-driven robotic mechanisms with

Fig. 1. CAD drawing of the DLR hand arm system [2].

elastic tendons. An adaptive tracking controller is derived

and its stability is proven for linear and nonlinear tendon

elasticity. Global asymptotic tracking was proven for the

case of linear elastic tendons. The desired motor positions

are calculated from the implicit tendon force equation. This

equation includes an estimate of the link-side dynamics and

a link-side friction compensation term that are both mapped

by the pseudoinverse of the tendon coupling matrix. Many

aspects are treated in this work in order to develop an

impedance controller for a quite general class of tendon

systems. Some questions, however, like the selection of the

appropriate metric for the pseudoinverse of the coupling

matrix or the design and structure of the bias forces are not

treated. Furthermore, there is no physical interpretation of

the control law.

In [6] Palli et al. studied the feedback linearization of un-

coupled joints that are each driven antagonistically. Further-

more, an adaptive motor level PD controller was presented in

[7] for a single antagonistic joint that was verified by means

of experiments.

In the past, passivity-based impedance controllers for

flexible joint robots were presented by Ott and Albu-Schäffer

[8], [9]. In this framework, the emphasis was to derive

controllers from potential functions and to develop control

laws that realize a predefined stiffness characteristics in the

joints by means of control. Thereby, a gravity compensation

strategy for flexible joint manipulators and a consequent

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 3796

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11135210?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


damping and effective stiffness1 design were presented for

serial kinematic chains. Furthermore, the framework provides

an intuitive physical interpretation. In contrast to the work of

Ott and Albu-Schäffer, the control of a tendon-driven robotic

mechanism requires several extensions. The consideration of

linear joint elasticity has to be extended to nonlinear tendon

elasticity, enabling to define a variable mechanical joint

stiffness [2], [10]. The calculation of the effective stiffness

must be modified to cope with coordinate transformations

between tendon and joint space and the linearization of the

nonlinear tendon stiffness. The pulling constraints of the

tendons have to be ensured, i. e., via tendons one can only

pull and not push the joints. Due to the parallel kinematics

it is also necessary to handle coordinates that are related to

internal motion.

The main contributions of this paper are as follows. Firstly,

the calculation of the desired tendon positions giving the

desired joint positions and stiffness in the case of nonlinear

coupling and exponential tendon stiffness is presented. This

derivation does not require the use of the pseudoinverse of

the coupling matrix. Secondly, a new multi-DOF impedance

control law is proposed including an effective joint stiffness

design together with a damping design. This design allows

to prescribe an effective joint stiffness by utilizing both

the passive mechanical stiffness and the active controller

stiffness. E.g., the diagonal terms of the mechanical stiffness

of a hyperboloid joint driven by four tendons [2] cannot be

set independently.

In this paper, first the modeling of tendon-driven elastic

systems with nonlinear coupling is recapitulated. In Section

III the inverse problem is addressed, which requires to

solve for motor positions given the desired joint position

and stiffness. These motor positions are used in a control

law described in Section IV. The presented algorithms are

evaluated by simulating an anthropomorphic robot finger in

Section V.

II. MODEL OF A MULTI DOF TENDON-DRIVEN VARIABLE

STIFFNESS ROBOT

In Fig. 2, a simple tendon-network consisting of two joints

and four tendons connected by nonlinear springs is shown.

In Table I, the variables to describe the equations of motion

of a multi DOF tendon-driven variable stiffness robot are

given. The tendon inverse kinematics hq(q) gives the tendon

positions as a function of the joint angles q. The function

hq(q) can be used to derive a differential map P (q):

P (q) =

(
∂hq(q)

∂q

)T

. (1)

In the literature this map is also known as coupling matrix

[11]. Note that in contrast to the Jacobian matrix of a serial

kinematic chain, the transposed coupling matrix maps from

joint to tendon velocities

ḣq = P T (q)q̇ (2)

1The effective stiffness expresses the amount of local displacement of a
generalized coordinate w.r.t. a corresponding generalized force. Thus, all
contributions to the effective stiffness are taken into account.

f

f

hθ hq(q)
τext,1 τext,2
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q2
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r2

f t

fm

Fig. 2. Simple example of a tendon network with two joints and four
tendons connected by nonlinear springs.

q ∈ R
n n Joint positions

θ ∈ R
m m Motor positions

hq(q) ∈ R
m m Tendon length changes w. r. t. joints

hθ(θ) ∈ R
m m Tendon length changes w. r. t. motor

M(q) ∈ R
n×n Positive definite (p. d.) inertia matrix

Mh ∈ R
m×m P. d. effective tendon inertia matrix

including motor inertia
C(q, q̇)q̇ ∈ R

n Link-side centrifugal and Coriolis terms
g(q) ∈ R

n Link-side gravity vector
τext ∈ R

n External torque
fm ∈ R

m Tendon motor forces (control input)
ft ∈ R

m Tendon forces
ff,θ ∈ R

m Motor friction forces

τf ∈ R
n Joint friction torque (viscous)

TABLE I

DEFINITION OF VARIABLES.

and the tendon forces are related to the joint torques by

τ q = P (q)f t. (3)

For a well-designed mechanism the coupling matrix P (q)
has full row rank over the whole configuration space [12].

Using the coupling matrix P (q) it is straightforward to

formulate the equations of motion [11]:

M (q)q̈ + C(q, q̇)q̇ + τ f + g(q) = P (q)f t + τ ext (4)

Mhḧθ + ff,θ + f t = fm . (5)

These equations are only valid as long as the inequality

constraint of pulling tendons is fulfilled, i. e.,

f t,i > 0, ∀i = 1, . . . , m. (6)

We assume in the following that the input values to the

proposed controller can be chosen such that this constraint is

fulfilled at any time if the resulting pre-tension is sufficiently

high.

The tendon force can be modeled as a function of the dis-

placement of the motor and the joint tendon length changes.

A suitable function resulting in a progressive tendon stiffness

can be described for tendon i by the exponential function

f t,i(hθi
, hqi

) = kti
(eγi∆hi − 1), ∀i = 1, . . . , m, (7)

with the elongation of the tendon given by ∆hi = hθi
−

hqi
, and the parameters kti

> 0, γi ∈ R. This means that

a change in tendon length results in a modification of the

tendon force as long as the pulling constraint (6) is fulfilled.
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In Section III we use the fact that the tendon stiffness of

such a characteristics an affine function of the tendon force.

Note that henceforth the desired value of a variable will

be denoted by the additional index d.

III. INVERSE SOLUTION

From an application point of view, it is desirable to

specify the link-side position qd ∈ R
n and the symmetric

positive definite (p.d.) mechanical joint stiffness Sd ∈ R
n×n.

However, it is easy to show that a control law based on link-

side position measurements is not passive. A method is to

solve the inverse problem that maps qd and Sd to desired

motor positions hθ,d [7], [13]. The first set of equations

is given by the steady-state of the equations of motion of

the link-side (4) while setting the steady-state values as the

desired ones:

g(qd) − P (qd)f t,d = τ ext(hθ,d, qd), (8)

with f t,d = f t(hθ,d, hq(qd)) the vector containing the

desired tendon forces. In order to specify the mechanical

stiffness Sd(hθ,d, qd) for a given qd we determine the local

behavior of q w.r.t. to an external torque τext(hθ,d, q) for a

fixed desired motor position hθ,d, i.e.

Sd(hθ,d, qd) =

(
∂τ ext(hθ,d, q)

∂q

)∣
∣
∣
∣
q=qd

. (9)

Due to the symmetry of the stiffness matrix at most (n +
1)n/2 independent nonlinear equations can be derived. To-

gether with the n equations from (8) required to impose qd

and the m equations from the tendon force model (7), at

most (n+3)n/2+m equations are obtained to solve for the

2m unknown variables hθ,d and f t,d. In the special case of

uncoupled joints, it is sufficient to consider only the diagonal

matrix elements of Sd leading to 2n + m equations. Other

special cases like symmetrically coupled tendon networks

are described in [12]. Inserting τ ext(hθ,d, q) from (8) into

the joint stiffness (9) and using the exponential tendon force

characteristics (7) gives

Sd =
∂g(qd)

∂qd

−
∂P (qd)

∂qd

f t,d

+P (qd)Γdiag{f t,d + kt}P
T (qd), (10)

with the matrix Γ ∈ R
n×n = diag{γ1, . . . , γn}, the vector

kt = (kt1 , . . . , ktn
)T containing the tendon force parameters,

and the tendon stiffness
∂ft(hθ,d,hq)

∂hq

∣
∣
∣
q=qd

= −Γdiag{f t,d+

kt}. It is important to mention that the term
∂hθ,d

∂q
= 0,

because hθ,d is the constant setpoint for the underlying

impedance controller presented in the next section. Note that

the term ∂hθ

∂q
6= 0 is included in the derivation of the effective

stiffness in the following section.

In [12] this inverse problem is solved for tendon-driven

mechanisms with an exponential characteristics of the tendon

stiffness as defined in equation (7). However, in [12] the

coupling matrix P (q) is assumed to be independent of the

link positions, and furthermore, the gravity term is neglected.

Based on this stiffness matrix a stiffness vector is derived.

Combined with the steady-state equation (8), the tendon

forces are calculated by linear programming involving the

pseudoinverse and the nullspace projection of the coupling

matrix. With a proper choice of the tendon force model

the desired tendon positions hθ,d can then be determined

uniquely.

In the following, we propose a way to determine hθ,d

for a tendon-network with nonlinear elasticity and nonlinear

tendon routing. Furthermore, link gravity is included in our

inverse solution. Notice that, if the problem is well defined,

i.e. one specifies m − n stiffness components, there is no

need for pseudoinversion2. First, the operation

sv{S} : R
n×n → R

(n+1)n
2 (11)

sv{S} = si(i−1)/2+j = Sij ; i, j = 1, 2, . . . , n; i ≥ j

that generates the stiffness vector s representing uniquely a

stiffness matrix is defined. Since the stiffness equation (10)

is affine in the tendon force f t,d we rewrite the equation in

the stiffness vectorized form

sv{Sd − Sg(qd) − Sk(qd)} = St(qd)f t,d, (12)

with the gravity induced stiffness Sg(qd) = ∂g(qd)
∂qd

. The term

Sk(qd) = P (qd)Γdiag{kt}P
T (qd) is obtained by setting

∆h = 0 and consequently f t,d = 0 and can be seen as

the minimal stiffness3 fulfilling the pulling constraint (6) for

Sg(qd) = 0. The re-parametrization of the tendon induced

stiffness St(qd) ∈ R
(n+1)n

2 ×n can be expressed as

St(qd)f t,d = sv{−
∂P (qd)

∂qd

f t,d +P (qd)Γdiag{f t,d}P
T (qd)}.

(13)

In order to solve for the tendon force, these equations

are stacked together with the steady-state solution (8). It

is important to set the external torque τ ext to zero here.

If used in this equation, every external torque would be

compensated so that the joint behaves as force and not

impedance controlled. This way we obtain
(

g(qd)
sv{Sd − Sg(qd) − Sk(qd)}

)

=

[
P (qd)
St(qd)

]

︸ ︷︷ ︸

QT (qd)

f t,d.

(14)

The desired tendon force can be calculated if Q−T (qd) exists

f t,d = Q−T (qd)

(
g(qd)

sv{Sd − Sg(qd) − Sk(qd)}

)

. (15)

On the existence of Q−T (qd) and joint stiffness adjusta-

bility: In order to obtain an invertible matrix, Q(qd) has to

have rank
(n+3)n

2 . This implies that the number of tendons

must be at least m = (n+3)n
2 . In [12] such a mechanism

is called to be minimal joint stiffness adjustable. Note that

due to the pulling constraint (6) the elements of the stiffness

matrix cannot be chosen arbitrarily.

2Methods similar to [14] can be used for the best approximation if Sd

is fully specified, but m < n(n+3)
2

.
3This minimal stiffness is due to the property of the exponential function

since its derivative is only zero at −∞.
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In mechanisms that are not joint stiffness adjustable, a

selection of entries in Sd has to be made s. t. Q(qd) has

full rank. In many cases the most relevant elements are the

diagonal stiffness components. For example, given a tendon-

controllable asymmetric network with 4 joints and 8 tendons,

four rows in Q(qd) remain for the stiffness adjustment. The

most intuitive choice is to select the diagonal elements if

they can be set independently by the mechanism. Since the

joint stiffness coupling terms cannot be assigned they will

then result as a function of the joint configuration qd and

the diagonal stiffness components.

The desired tendon force (15) is finally folded back into

equation (7) to solve for the desired motor positions

hθi,d = hqi
(qd) +

1

γi
ln{

ft,di

kti

+ 1}. (16)

This equation is very similar to the well-known formula for

flexible joints [15].

IV. CONTROL STRATEGY

A. Controller structure

The goal of this section is to derive an impedance con-

troller. Figure 3 depicts a simple control structure. The

inverse calculation of Section III produces the desired motor

positions and the desired tendon forces. The motor controller

realizes the impedance behavior with the tendon forces fm

as control inputs. A more complex control structure using

hθ,d

hθSd

qd

f t,d

fmSec. III Impedance
Controller Robot

Fig. 3. Block diagram of the simple control structure.

the measurements of the tendon force is presented in Fig. 4.

The output of the impedance controller is now the input to an

underlying force controller that reshapes the motor inertia.

hθ,d
hθSd

qd

f t,d
fm

fd

f t

Sec. III Impedance

Controller
Controller RobotForce

Fig. 4. Block diagram of the control structure with an inner force control
loop.

B. Reshaping the motor inertia

In [16], the local feedback of the joint torque is used to

generate a low-level controller that can be interpreted as

a reshaping of the motor inertia. This physically intuitive

control law can be applied in a similar fashion to a tendon

driven system. With Mh,d ∈ R
m×m as the desired diagonal

motor inertia matrix the control law follows as

fm = MhM−1
h,dfd + (I− MhM−1

h,d)f t + ff,θ. (17)

The equation of the motor side dynamics (5) becomes

Mh,dḧθ + f t = fd. (18)

The vector fd is the new control input for the impedance

controller of the outer control loop. Note that the motor

friction f f,θ is compensated here.

C. Tendon Control

The outer control loop that realizes the motor level

impedance control can be given as

fd = −Kheh − Dhėh + f t,d + Mh,dḧθ,d, (19)

with Kh, Dh ∈ R
m×m the controlled stiffness and damp-

ing matrices of the controller and eh = hθ − hθ,d. The

feed-forward term Mh,dḧθ,d is added for completeness; in

practice this term is not applied due to its computational

complexity. One intuitive choice of parametrization of the

controlled stiffness and damping is to design a controller for

each tendon or motor, respectively. This has the advantage

that the control design is easy since the tendon coupling is

ignored and Kh, Dh are diagonal. The controlled stiffness

is serial to the adjusted mechanical one. Thus, the effective

stiffness at the link can be reduced by reducing either the

controlled or the mechanical stiffness components. By con-

trolling in motor coordinates, the position and stiffness are

coupled by Kh. When using a diagonal controlled stiffness

we are quite limited in reducing the active stiffness, since

the motors have to hold the desired tendon position in which

the pre-tension is ensured. With low active stiffness it cannot

be guaranteed that the tendon force can be kept within the

pulling constraint.

D. Static Decoupling

In [13] a change of coordinates is performed to relate the

motor position errors to errors due to the joint motion and the

stiffness adjustment for a single antagonistic joint4. In order

to extend this idea to a multi DOF mechanism the coupling

matrix has to be investigated. In quasi-static condition, the

change in tendon length at the motors equals the tendon

displacement due to joint motion plus the tendon motion that

is related to stiffness adjustment. In equation (14) the tendon

forces are mapped to a stacked vector containing the joint

torque due to gravity and the stiffness vector at the desired

position. In a similar fashion we can derive the locally valid

relationship starting with the steady-state and the stiffness

equation of the mechanism (8) and (10) using the joint angles

q and stiffness vector5 s = sv{S} instead of the desired

ones, i. e.

f q̄s = QT (q)fd, with (20)

QT (q) =

[
P (q)
St(q)

]

and f q̄s =

(
τ q

s

)

. (21)

4The coupling matrix of a single antagonistic joint with radius r is P =
[r, −r].

5The actual mechanical stiffness S is computed using equation (10) based
on the current values and not the desired ones.
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Using the principle of virtual work ėT
h fd = ėT

q̄sf q̄s the

relationship

ėh = Q(q)ėq̄s (22)

δeh = Q(q)δeq̄s (23)

is obtained. Thus, the corresponding control law can be

written as, cf. (19),

fd = −Q−T K q̄sQ
−1

︸ ︷︷ ︸

Kh
q̄s(q)

eh − Q−T Dq̄sQ
−1

︸ ︷︷ ︸

Dh
q̄s(q)

ėh

+f t,d + Mh,dḧθ,d, (24)

with K q̄s, Dq̄s ∈ R
m×m

K q̄s =

[
Kq 0

0 Ks

]

Dq̄s =

[
Dq 0

0 Ds

]

(25)

the stiffness and damping matrices on task level. In this

way it is possible to relate the stiffness components to the

variables that were chosen by the generation of the joint

torques and the stiffness vector s. Inserting this control law

in the closed-loop equations of the force controller (18) gives

Mh,dëh + Dh
q̄s(q)ėh + Kh

q̄s(q)eh + ∆f t = 0, (26)

with the error in the tendon force ∆f t = f t − f t,d.

Note that this method is closely related to the well-known

augmented Jacobian method used for redundancy resolution

[17]. Furthermore, this approach does not require an expo-

nential characteristic of the tendon force. The matrix Q(q)
could be also obtained in another way, e.g. by singular value

decomposition of the coupling matrix. However, in this case

it would not be possible to identify the coordinates related to

the change in the tendon pretension as joint stiffness values.

E. Linearization of the Closed Loop Dynamics

In this section the closed loop dynamics of the whole

tendon mechanism (4) and (26) are linearized. This model

is then used to parameterize the controller stiffness Kq such

that a locally valid effective stiffness can be derived. Rewrit-

ten in state space form with the state xT = (q, q̇, eh, ėh)
while neglecting the joint friction, the equations become

ẋ =









q̇

M−1(q)[P (q)f t(q, eh + hθ,d)−
C(q, q̇)q̇ − g(q) + τ ext]

ėh

M−1
h,d[−Kh

q̄s(q)eh − Dh
q̄s(q)ėh−

∆f t(q, eh + hθ,d)]









. (27)

It is easy to show that xT
d = (qd,0,0,0), τ ext = 0 is

an equilibrium of the closed loop system. The linearization

around this equilibrium point can be calculated as

∆ẋ =

0

B

B

B

@

∆q̇

M−1(qd)[(Lq(xd) − Sg(qd))∆q+
Le(xd)∆eh + ∆τ ext]

∆ėh

M−1
h,d[−τ c − T q(xd)∆q − T e(xd)∆eh]

1

C

C

C

A

,

(28)

with

τ c = Kh
q̄s(qd)∆eh + Dh

q̄s(qd)∆ėh

T q(xd) =
∂f t(q, eh + hθ,d)

∂q

∣
∣
∣
∣
x=xd

T e(xd) =
∂f t(q, eh + hθ,d)

∂eh

∣
∣
∣
∣
x=xd

(29)

Lq(xd) =
∂(P (q)f t(q, eh + hθ,d))

∂q

∣
∣
∣
∣
x=xd

Le(xd) =
∂(P (q)f t(q, eh + hθ,d))

∂eh

∣
∣
∣
∣
x=xd

,

and the term Sg(qd) = ∂g(q)
∂q

∣
∣
∣
x=xd

describing a stiffness

evoked by the gravity field of the mechanism acting parallel

to the tendon stiffness on the joints. Note that the Coriolis

terms disappear from the linearized equations since they are

a quadratic function of the joint velocity q̇.

The partial derivatives in equation (29) can be rewritten

using the definitions of ∆h and eh. Defining T f (xd) =
∂ft(q,eh+hθ,d)

∂(∆h)

∣
∣
∣
x=xd

= T T
f (xd) we can write

T e(xd) = T f (xd)
∂(∆h)

∂hθ

∂hθ

∂eh

∣
∣
∣
∣
x=xd

= T f (xd)

T q(xd) = T f (xd)
∂(∆h)

∂hq

∂hq(q)

∂q

∣
∣
∣
∣
x=xd

= −T f (xd)P
T (qd),

The term Lq(xd) contains the product of the coupling

matrix and the nonlinear tendon force that are all a function

of q leading to a complex expression given by

Lq(xd) = −Sp(xd) − P (qd)T f (xd)P
T (qd) (30)

with Sp(xd) = − ∂P (q)
∂q

∣
∣
∣
x=xd

f t(qd, hθ,d) representing a

stiffness due to the nonlinearity in the tendon routing that acts

parallel to the tendon stiffness on the joints. The symmetry

of Sp(xd) is shown in the appendix.

The behavior around the operating point can be now

formulated as

Mẅ + Dẇ + Kw =

(
∆τ ext

0

)

, (31)

M =

[
M q(qd) 0

0 Mh,d

]

D =

[
0 0

0 Dh
q̄s

]

K =

[
Sp + Sg + PT fP T −PT f

−T fP T T f + Kh
q̄s

]

,

with wT = (∆q, ∆eh). Note that the matrix K is symmetric

as long as the controller stiffness K q̄s is chosen symmetri-

cally.

F. Effective Stiffness

The goal of an impedance controller is to give a mech-

anism the behavior of a desired impedance. In the past

the intrinsic passive joint stiffness was used to calculate

the controller stiffness, such that an effective, respectively
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desired stiffness was obtained for serial kinematic chains

[16]. In this work, we focus on the effective stiffness that

can be determined for the steady-state and that is defined as

∆τ ext = Keq∆q. In fact, it is not our goal to cancel out the

natural mechanical joint stiffness by means of control since

we want to use the mechanical properties to protect the robot

from exerting large forces during impacts. We expect that in

this way we can reduce the sampling time for the outer loop

controller.

A standard technique to determine the effective stiffness is

to transform the stiffness matrices in a common coordinate

system and to identify the connectivity in terms of serial and

parallel connections. In the stiffness matrix K of equation

(31) we can identify the structure of two connected springs

in series K2, Kq that are connected in parallel with K1
6

at the joints q (cf. Fig 5) , with K1(xd) = Sg(xd) +
Sp(xd), K2(xd) = P (qd)T f (xd)P

T (qd), and Kq =
P (qd)K

h
qsP

T (qd) the controller stiffness that has been

transformed to joint coordinates. With this interpretation the

τ ext

M h M q(q)

hθhθ,d q

K1

K2Kq

P T (q)

P (q)

Fig. 5. Visualization of the stiffness components of the stiffness matrix
K (cf. equation (31)).

effective joint stiffness Keq can be calculated as

Keq = K1 + (K−1
2 + K−1

q )−1. (32)

The controller stiffness for a given desired effective stiff-

ness can then be formulated as

Kq = ((Keq − K1)
−1 − K−1

2 )−1. (33)

Thus Kq is specified by the effective joint stiffness. Note

that the choice of Keq,d is not trivial since it must be

realizable by a positive definite matrix Kq. The gains for

Ks still need to be chosen in (25). The choice of Ks only

influences the joint motion at high frequencies. In general,

Ks has to be set as high as it is allowed by the technological

constraints (e. g. sample time, sensor resolution, etc. ), since

the mechanical stiffness of the system has to be maintained,

respectively the pulling constraint must be fulfilled. For

tendons without tension the equations of motion are no

longer valid since the coupling matrix changes structurally.

Furthermore, there is a possibility of loss of tendon routing

and failure of the mechanism.

6The matrices Sg , Sp are symmetric, but, in general, not positive definite.

G. Damping Design

In equation (31), the controller damping Dq̄s appears only

in the equations related to the tendon states ∆eh, ∆ėh. One

possible choice is to define Dq̄s as a function of Mh,d and

K q̄s with the use of a double diagonalization [18]. The term

ξ ∈ [0, 1], that is obtained by the double diagonalization,

represents the damping coefficient and parameterizes the

damping term. However, with this damping design the link-

side inertia, the stiffness of the tendon network, and the

stiffness due to gravity are neglected. Therefore, we propose

to use the effective joint stiffness Keq from equation (32)

together with the stiffness Ks, and to combine it with an

effective inertia matrix on task level M eqs(qd). In order to

derive Meqs(qd) we assume quasi-static conditions such that

we can add the task inertia to the tendon inertia Mh,d. First,

Mh,d has to be transformed to task coordinates. Using the

mapping from equation (22), the tendon inertia represented

in task coordinates is given as QT (qd)Mh,dQ(qd). The

effective inertia matrix on task level is the sum of the inertia

matrices, i.e.

Meqs(qd) =

[
M(qd) 0

0 0

]

+ Q(qd)
T Mh,dQ(qd).

Applying the double diagonalization damping design to

Meqs(qd) and Keqs =

[
Keq 0

0 Ks

]

, Dq̄s is obtained

and inserted in equation (25) that is used in the control law

(24).

Note that only the use of a full-state feedback control law

(e. g. with the state vector z = (hθ, ḣθ, q, q̇)) will enable

us to specify the complete system behavior using e. g. pole

placement techniques. This would represent an extension of

the work of Albu-Schäffer [8], [9] and is subject of current

research.

V. SIMULATION: APPLICATION TO AN ANTAGONISTIC

FINGER

The proposed control law is applied to a prototype of a bio-

inspired finger prototype (cf. Fig. 6) and evaluated by means

of simulations. The finger has four joints driven by eight

tendons. The two base joints are realized by a hyperboloid

joint that is connected with four tendons. Details on the finger

design can be found in [2]. The specific coupling impedes

an independent setting of the mechanical stiffness along the

q1− and q2−axis. According to equation (14), a mechanism

with four DOF and 8 tendons related to joint motion has four

DOF remaining for the stiffness vector. Since the stiffness

components s11 and s22 turn out to be linear dependent we

redefine the stiffness vector introduced in equation (11) to

sv{S} = (s11, s12, s33, s44).

The controller is evaluated by commanding a step response

in the desired stiffness and position. Furthermore, the setting

of the effective stiffness is verified by applying a step in the

external torque τ ext. In Table II the controller parameters

are given. According to Section IV-F the effective stiffness

was chosen such that a positive definite Kq was obtained.
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Fig. 6. The index finger prototype of the DLR hand arm system with
definition of joint coordinates.

Keq,d[Nm/rad] Ks[Nm/rad]

=

2

6

4

0.8 0.0 0.0 0.0
0.0 8.0 −0.06 0.8
0.0 −0.06 2.5 −1.1
0.0 0.8 −1.1 1.0

3

7

5
= diag{25, 25, 25, 25}

sv{sd}[Nm/rad] ξ
= [30, 0, 10.5, 4.5] = 1

TABLE II

CONTROLLER PARAMETERS.

In Figure 7 the response of S to a step command in the

desired passive stiffness Sd with qd = 0 is presented. After

7 ms the mechanical stiffness converges to the new steady-

state.

In Figure 8 and 9 the responses of q and hθ to a step

command of 0.2 rad in qd,2 is presented. An overshoot of

0.04 rad can be observed for joint 2 due to the large step

size. The strong coupling of the joints 2, 3, and 4 can be

observed by the transient behavior of q3, q4. Joint 1 is not

coupled with the other joints and remains undisturbed. After

50 ms the joint positions converge to the desired value. The

response of hθ (Fig. 9) shows a similar transient behavior.

However, it can be seen that hθ has a shorter response

time than q and converges after 30 ms. Note that from

this figure it is difficult to relate the tendon motion to the

joint motion and stiffness giving more motivation to our

coordinate transformation.

The resulting effect of a step in the external torque

τ ext = [0.1, 0.1, 0.0, 0.0]T Nm proves the ability to set the

effective stiffness Keq,d (cf. Fig. 10). For the same load,

q1 is elongated much more than q2. The joints q3, q4 are

also elongated due to their desired coupling with q2. Since

the external torque changes the tendon stiffness the effective

stiffness differs from the desired one. For the given load τ ext

the error in the effective stiffness Keq,d is

Keq,d − Keq = 10
−3

2

6

4

−0.392 −0.541 −0.149 −0.017
−0.541 −5.129 −0.076 0.131
−0.149 −0.076 0.019 −0.064
−0.017 0.131 −0.064 0.171

3

7

5

Nm

rad
.
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Fig. 7. Response of S to a step in the desired passive stiffness Sd . Note
that instead of s22 the coupling stiffness s12 is controlled since s11 and
s22 are linear dependent.
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Fig. 8. Response of q to a step in the desired position qd.

Even though in a hyberboloid joint the mechanical stiffness

of axis 1 and 2 cannot be set independently using the

proposed control laws the desired effective stiffness could be

achieved in an excellent manner. The independent setting of

the stiffness in the base joint enables us to define a Cartesian

stiffness at the fingertip.

VI. CONCLUSION

In this paper, an impedance controller for a tendon-driven

mechanism was presented that takes into account both the

variable mechanical stiffness and the actively controlled

stiffness. This enables us to increase the adjustable stiffness

range compared to only specifying a mechanical stiffness.

Therefore, desired tendon positions were calculated as a

function of the desired joint positions and stiffness exploiting

the properties of the exponential force characteristics. These

values were used as setpoints in the impedance controller that

does not require the properties of an exponential tendon stiff-

ness. Using a transformation matrix that relates the tendon
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Fig. 9. Response of hθ to a step in the desired motor positions hθ,d.
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Fig. 10. Response of qd − q to a step in the external torque τext =
[0.1, 0.1, 0.0, 0.0]T Nm.

position error to joint position and stiffness errors, we could

give the mechanism locally a desired effective stiffness. The

damping is calculated as a function of the effective mass and

effective stiffness of the complete mechanism. In simulation

studies we demonstrate the performance by applying steps in

the desired position and mechanical stiffness. The reaction to

a step in the external torque shows that we can set the desired

effective stiffness even for the two axes of a hyperboloid

joint.

It is planned to apply the proposed control law to the

finger prototype [2]. In future, we will analyze the passivity

properties of the proposed controller.
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APPENDIX

Symmetry of the expression
∂P (q)

∂q
f t(q, hθ):

P (q) =

(
∂h(q)

∂q

)T

=







∂h1(q)
∂q1

· · · ∂h1(q)
∂qn

...
. . .

...
∂hm(q)

∂q1
· · · ∂hm(q)

∂qn







T

[
∂

∂q
P (q)f t(q, hθ)

]

k,j

=

m∑

i=1

(
∂2hi(q)

∂qk∂qj

)

fi

=

m∑

i=1

(
∂2hi(q)

∂qj∂qk

)

fi

It can be immediately seen that interchanging the indices k, j
yields the same expression and henceforth the symmetry of
∂P (q)

∂q
f t(q, hθ) is shown.
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