3 research outputs found

    The Design of Capacitive Slit on Improving the Antenna Gain of Binomial Double Strip Hexacula Omnidirectional Broadband Antenna

    Get PDF
    The capacitive slit is a method of making the impedance value to be resistive. To achieve this goal is a challenge in addition to the slit antenna and gives impact to gain as one of the important parameters in antenna design. The antenna gain in a particular direction is defined as 4Ď€ times the ratio of radiation intensity in that direction to the power received by the transmitter antenna. In this research, the proposed capacitive slit method was tested on the hexacula omnidirectional broadband antenna operating on frequency 0.85-3 GHz and gain 4.8 dBi. The testing was conducted to obtain the gain improvement of the hexacula omnidirectional broadband antenna. The placement of the capacitive slit was implemented on double strip antenna with 4 times experiments. The best experiment result was obtained when three capacitive slits were placed on different strips. The capacitive slit was designed by analyzing the average value of input impedance before calculating the dimension of the capacitive slit that applied to the antenna. The experiment result shows that the best value of antenna gain is 7.19 dBi. The gain increment is linear to the number of capacitive slits applied to the antenna

    On the modeling of WCDMA system performance with propagation data

    Get PDF
    The aim of this study was to develop calculation methods for estimating the most important system level performance characteristics of the WCDMA radio network (i.e. network capacity and coverage) in the presence of interference from various sources. The calculation methods described in this work enable the fast design of radio systems with a reasonable degree of accuracy, where different system parameters, propagation conditions and networks as well as frequency scenarios can be easily tested. The work also includes the development and verification of a propagation model for a microcellular environment. Traditionally, system level performance figures have been retrieved using system simulations where the radio network has been modeled as accurately as possible. This has included base stations and mobile stations, propagation models, traffic models and mobility models. Various radio resource management (RRM) algorithms, such as power controls and handovers have also been modeled. However, these system simulations are very complex and time consuming and typically the models are difficult to modify. The idea behind this work is to use the main statistical parameters retrieved from accurate, case specific propagation models and to use these statistics as input for the developed analytical radio network models. When used as output from these analytical models we are able to obtain the performance measures of the network. The specific application area for the developed methods is the evaluation of the effect of the interference from the adjacent frequency channels. Adjacent channel interference decreases the efficiency of the usage of the electromagnetic spectrum i.e. the spectral efficiency. The aim of a radio system design is to ensure that the reduction in the spectral efficiency is as low as possible. This interference may originate from the same or a different radio system and from the same or another operator's network. The strength of this interference is dependent on the system parameters and the network layout. The standard questions regarding adjacent system interference between different operators' network are what guard band is needed between the radio carriers in order to maintain the quality of the network or what are the main mobile and network parameters, such as adjacent channel emission levels or adjacent channel selectivity, required in order to achieve satisfactory network performance. With the developed method proposed here it is possible to answer these questions with reasonable accuracy. One important aspect of network performance is the radio wave propagation environment for which the radio systems are designed. This thesis presents methods evaluating radio wave propagation, especially for cases where the base station antenna is below the rooftops, i.e. in the case of microcellular network environments. The developed microcellular propagation model has been developed for network planning purposes and it has been verified using numerous field propagation measurements. The model can be used in cases where the mobile station is located either indoors or outdoors.reviewe

    Conception de systèmes multi-antennes multi-bandes pour terminaux mobiles LTE

    Get PDF
    Multiple antennas techniques are an interesting solution to increase throughput without increasing the bandwidth. This is an advantage in a context where the proliferation of users and services leads to a saturation of spectrum. However, the systems based on diversity raise new challenges for their integration into terminals. The work presented in this thesis is to consider jointly the performance of multi-antennas systems and integration into terminals constraints. Developed systems operate in two bands LTE: 790-862 MHz and 2.5-2.69 GHz, and cover also for some of them the upper part of the band TVWS (TVWhite Space): 700-790 MHz to provide cognitive radio applications. The first study is concentrated on designing an efficient system while maintaining a reasonable size. The proposed system is integrated into the terminals emerging in the market today such as mini-tablets, the tablet-phone hybrid or laptop. Very satisfactory performance in terms of bands and isolation are achieved. Aiming the size reduction, we propose an alternative compact system providing acceptable performances. For this purpose, three prototypes are proposed where the last could be integrated into a mobile phone. For all systems, we have evaluated the diversity performances in terms of correlation coefficient and Mean Effective Gain. It has been founded that the systems provide good diversity performances even if the terminal's position is changed during the communication. Moreover, the influence on the antennas performances with a presence of users is studied. The results show that these systems are suitable for LTE and can be used for MIMO wireless communications.Les techniques à base d’antennes multiples constituent une solution intéressante à l’augmentation du débit sans accroître la bande passante. Cependant, la conception de systèmes à base de diversité soulève de nouveaux défis quant à leur intégration au sein de terminaux à encombrement réduit. Le travail présenté consiste à prendre en compte conjointement les éléments déterminant les performances de communication multi-antennes et les contraintes d’intégration liées aux terminaux. Les systèmes développés fonctionnent dans deux bandes LTE: 790-862 MHz et 2.5-2.69 GHz; certains couvrent également la partie haute de la bande TVWS (TV White Space): 700-790 MHz afin d’offrir des applications de radio cognitive. Pour la première conception, la démarche consiste à obtenir un système performant sans rechercher, dans un premier temps une forte intégration. Néanmoins, le système proposé est intégrable dans des terminaux émergeant dans le marché actuel comme l’hybride téléphone-tablette. Des performances très satisfaisantes en termes de bandes et d’isolation sont atteintes. Ensuite, on privilégie la compacité du système tout en offrant des performances acceptables. Cette démarche permet la conception de trois prototypes, dont le dernier est intégrable dans un téléphone.D’autre part, l’influence de la présence d’un utilisateur mais également de l’intégration dans un terminal multimédia sur les performances des systèmes est étudiée. Enfin, les performances en diversité sont évaluées dans différentes configurations d’environnements. Les résultats ont montré que ces systèmes sont adaptés à la technologie LTE et offrent la possibilité d’établir des communications sans fil MIMO
    corecore