165 research outputs found

    Vision-based techniques for automatic marine plankton classification

    Get PDF
    Plankton are an important component of life on Earth. Since the 19th century, scientists have attempted to quantify species distributions using many techniques, such as direct counting, sizing, and classification with microscopes. Since then, extraordinary work has been performed regarding the development of plankton imaging systems, producing a massive backlog of images that await classification. Automatic image processing and classification approaches are opening new avenues for avoiding time-consuming manual procedures. While some algorithms have been adapted from many other applications for use with plankton, other exciting techniques have been developed exclusively for this issue. Achieving higher accuracy than that of human taxonomists is not yet possible, but an expeditious analysis is essential for discovering the world beyond plankton. Recent studies have shown the imminent development of real-time, in situ plankton image classification systems, which have only been slowed down by the complex implementations of algorithms on low-power processing hardware. This article compiles the techniques that have been proposed for classifying marine plankton, focusing on automatic methods that utilize image processing, from the beginnings of this field to the present day.Funding for open access charge: Universidad de Málaga / CBUA. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors wish to thank Alonso Hernández-Guerra for his frm support in the development of oceanographic technology. Special thanks to Laia Armengol for her help in the domain of plankton. This study has been funded by Feder of the UE through the RES-COAST Mac-Interreg pro ject (MAC2/3.5b/314). We also acknowledge the European Union projects SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578) from the Horizon 2020 Research and Innovation Programme and the Ministry of Science from the Spanish Government through the Project DESAFÍO (PID2020-118118RB-I00)

    Validation methods for plankton image classification systems

    Get PDF
    In recent decades, the automatic study and analysis of plankton communities using imaging techniques has advanced significantly. The effectiveness of these automated systems appears to have improved, reaching acceptable levels of accuracy. However, plankton ecologists often find that classification systems do not work as well as expected when applied to new samples. This paper proposes a methodology to assess the efficacy of learned models which takes into account the fact that the data distribution (the plankton composition of the sample) can vary between the model building phase and the production phase. As opposed to most validation methods that consider the individual organism as the unit of validation, our approach uses a validation‐by‐sample, which is more appropriate when the objective is to estimate the abundance of different morphological groups. We argue that, in these cases, the base unit to correctly estimate the error is the sample, not the individual. Thus, model assessment processes require groups of samples with sufficient variability in order to provide precise error estimates

    Deep learning for Plankton and Coral Classification

    Get PDF
    Oceans are the essential lifeblood of the Earth: they provide over 70% of the oxygen and over 97% of the water. Plankton and corals are two of the most fundamental components of ocean ecosystems, the former due to their function at many levels of the oceans food chain, the latter because they provide spawning and nursery grounds to many fish populations. Studying and monitoring plankton distribution and coral reefs is vital for environment protection. In the last years there has been a massive proliferation of digital imagery for the monitoring of underwater ecosystems and much research is concentrated on the automated recognition of plankton and corals. In this paper, we present a study about an automated system for monitoring of underwater ecosystems. The system here proposed is based on the fusion of different deep learning methods. We study how to create an ensemble based of different CNN models, fine tuned on several datasets with the aim of exploiting their diversity. The aim of our study is to experiment the possibility of fine-tuning pretrained CNN for underwater imagery analysis, the opportunity of using different datasets for pretraining models, the possibility to design an ensemble using the same architecture with small variations in the training procedure. The experimental results are very encouraging, our experiments performed on 5 well-knowns datasets (3 plankton and 2 coral datasets) show that the fusion of such different CNN models in a heterogeneous ensemble grants a substantial performance improvement with respect to other state-of-the-art approaches in all the tested problems. One of the main contributions of this work is a wide experimental evaluation of famous CNN architectures to report performance of both single CNN and ensemble of CNNs in different problems. Moreover, we show how to create an ensemble which improves the performance of the best single model

    Semi-automated image analysis for the identification of bivalve larvae from a Cape Cod estuary

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 538-554, doi:10.4319/lom.2012.10.538.Machine-learning methods for identifying planktonic organisms are becoming well-established. Although similar morphologies among species make traditional image identification methods difficult for larval bivalves, species-specific shell birefringence patterns under polarized light permit identification by color and texture-based features. This approach uses cross-polarized images of bivalve larvae, extracts Gabor and color angle features from each image, and classifies images using a Support Vector Machine. We adapted this method, which was established on hatchery-reared larvae, to identify bivalve larvae from a series of field samples from a Cape Cod estuary in 2009. This method had 98% identification accuracy for four hatchery-reared species. We used a multiplex polymerase chain reaction (PCR) method to confirm field identifications and to compare accuracies to the software classifications. Image classification of larvae collected in the field had lower accuracies than both the classification of hatchery species and PCR-based identification due to error in visually classifying unknown larvae and variability in larval images from the field. A six-species field training set had the best correspondence to our visual classifications with 75% overall agreement and individual species agreements from 63% to 88%. Larval abundance estimates for a time-series of field samples showed good correspondence with visual methods after correction. Overall, this approach represents a cost- and time-saving alternative to molecular-based identifications and can produce sufficient results to address long-term abundance and transport-based questions on a species-specific level, a rarity in studies of bivalve larvae.This project was supported by an award to S. Gallager and C. Mingione Thompson from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration and a grant from Woods Hole Oceanographic Institution’s Coastal Ocean Institute

    Application of statistical learning theory to plankton image analysis

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science and Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy At the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006A fundamental problem in limnology and oceanography is the inability to quickly identify and map distributions of plankton. This thesis addresses the problem by applying statistical machine learning to video images collected by an optical sampler, the Video Plankton Recorder (VPR). The research is focused on development of a real-time automatic plankton recognition system to estimate plankton abundance. The system includes four major components: pattern representation/feature measurement, feature extraction/selection, classification, and abundance estimation. After an extensive study on a traditional learning vector quantization (LVQ) neural network (NN) classifier built on shape-based features and different pattern representation methods, I developed a classification system combined multi-scale cooccurrence matrices feature with support vector machine classifier. This new method outperforms the traditional shape-based-NN classifier method by 12% in classification accuracy. Subsequent plankton abundance estimates are improved in the regions of low relative abundance by more than 50%. Both the NN and SVM classifiers have no rejection metrics. In this thesis, two rejection metrics were developed. One was based on the Euclidean distance in the feature space for NN classifier. The other used dual classifier (NN and SVM) voting as output. Using the dual-classification method alone yields almost as good abundance estimation as human labeling on a test-bed of real world data. However, the distance rejection metric for NN classifier might be more useful when the training samples are not “good” ie, representative of the field data. In summary, this thesis advances the current state-of-the-art plankton recognition system by demonstrating multi-scale texture-based features are more suitable for classifying field-collected images. The system was verified on a very large realworld dataset in systematic way for the first time. The accomplishments include developing a multi-scale occurrence matrices and support vector machine system, a dual-classification system, automatic correction in abundance estimation, and ability to get accurate abundance estimation from real-time automatic classification. The methods developed are generic and are likely to work on range of other image classification applications.This work was supported by National Science Foundation Grants OCE-9820099 and Woods Hole Oceanographic Institution academic program

    Efficient Unsupervised Learning for Plankton Images

    Get PDF
    Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem. Plankton microorganisms are in fact susceptible of minor environmental perturbations, that can reflect into consequent morphological and dynamical modifications. Nowadays, the availability of advanced automatic or semi-automatic acquisition systems has been allowing the production of an increasingly large amount of plankton image data. The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation, due to both the huge quantity of acquired data and the numerosity of plankton species. To address these challenges, we propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms. We build a set of image descriptors exploiting a two-step procedure. First, a Variational Autoencoder (VAE) is trained on features extracted by a pre-trained neural network. We then use the learnt latent space as image descriptor for clustering. We compare our method with state-of-the-art unsupervised approaches, where a set of pre-defined hand-crafted features is used for clustering of plankton images. The proposed pipeline outperforms the benchmark algorithms for all the plankton datasets included in our analysis, providing better image embedding properties

    An Integrated Approach to Analysis of Phytoplankton Images

    Full text link

    Multimodal Image and Spectral Feature Learning for Efficient Analysis of Water-Suspended Particles

    Get PDF
    apan Science and Technology Agency SICORP and Natural Environment Research Council (JST-NERC SICORP Marine Sensor Proof of Concept Grant JPMJSC1705, NE/R01227X/1); JSPS KAKENHI Grant (18K13934 and 18H03810); Sumitomo Foundation: Grant for environmental Research Project (203122). Acknowledgments. The authors thank Dr. T. Fukuba for the support for building the experimental setup. The authors also thank Dr. H. Sawada for providing samples for this work.Peer reviewedPublisher PD
    • 

    corecore