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Abstract

In recent decades, the automatic study and analysis of plankton communities using imaging techniques

has advanced significantly. The effectiveness of these automated systems appears to have improved, reaching

acceptable levels of accuracy. However, plankton ecologists often find that classification systems do not work

as well as expected when applied to new samples. This paper proposes a methodology to assess the efficacy

of learned models which takes into account the fact that the data distribution (the plankton composition of

the sample) can vary between the model building phase and the production phase. As opposed to most vali-

dation methods that consider the individual organism as the unit of validation, our approach uses a

validation-by-sample, which is more appropriate when the objective is to estimate the abundance of different

morphological groups. We argue that, in these cases, the base unit to correctly estimate the error is the sam-

ple, not the individual. Thus, model assessment processes require groups of samples with sufficient variability

in order to provide precise error estimates.

Since the advent of plankton-imaging systems, there has

been a clear need to automate the classification of these

images into taxonomic and functional categories. Despite

the complexity of the problem from a learning perspective,

automatic plankton classification seems to be quite good in

terms of accuracy and close to that achieved by professional

taxonomists (Benfield et al. 2007). The methods used when

building automatic plankton recognition systems differ in

many aspects, including the capture device used, image pre-

processing, the considered taxonomy, the construction of

the training, and test sets, the algorithm used for learning

and the validation methods applied to estimate the accuracy

of the overall approach. It is therefore virtually impossible to

compare the results from different studies and it is not easy

to extract general conclusions, except some obvious ones,

like the conclusion that accuracy tends to decrease when the

number of classes increases. For example, Tang et al. (1998)

report accuracies of up to 92% when classifying between six

classes, while other authors, like Culverhouse et al. (1996),

report 83% accuracy using neural networks and classifying

between 23 classes. Table 1 summarizes the diversity of

methods used.

However, most of the authors of the papers listed in Table

1 would probably agree with respect to a worrying fact: the

performance of plankton recognition systems degrade when

they are deployed and have to work in real conditions (Bell

and Hopcroft 2008). This means that the model assessment

strategies employed are not able to correctly estimate the

future performance of these systems. Yet, the techniques

applied are those proposed in the statistical literature, like

cross-validation. Acknowledging that solving this issue is dif-

ficult, the present paper exhaustively discusses it from a for-

mal point of view and proposes a validation methodology

that may help to mitigate the problem, suggesting further

directions of research. Our proposal is designed to deal with

the particular characteristics of plankton recognition sys-

tems, focusing on those cases in which the goal is to obtain

estimates for complete samples, e.g., the abundance of differ-

ent groups in unseen samples.

Why do traditional model assessment methods not work

in plankton recognition systems? In our opinion, there are

two main reasons why the performance of plankton recogni-

tion systems is not accurately estimated by model assess-

ment methods.

The first has to do with an imprecise definition of what

the actual prediction task is from the learning point of view

and how its performance should be assessed. In many cases,

error estimates during learning are provided in terms of the

classification accuracy at an individual level. Basically, they

estimate the probability of classifying an individual example

correctly. However, many of these studies are designed to

predict the total abundance of the different taxonomic or

functional groups. Hence, the actual performance of the

model/algorithm should be assessed in terms of the estimat-

ed abundance for each group in a sample. We believe that

this dichotomy in evaluating the learned model at an*Correspondence: juanjo@uniovi.es
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Table 1. Summary of the training sets and validation methodologies used in several papers. Note that results may not be compara-
ble due to the variety of datasets and methods used in the experiments. The abbreviations used are the following: manually selected
(man. sel.) examples (ex.), classes (cl.), samples (sa.), phytoplankton (phyto.), zooplankton (zoo.), cross-validation over training sets
(CV), Hold-out applied over testing sets (HO), Resubstitution (R), Accuracy (ACC), Precision (P), Recall (RE), True Positives (TP), False
Positives (FP), Confusion Matrices (CM), Abundance estimate (AE), Abundance comparison with graphics (AC), Regression analysis
(RA) and Kullback–Leibler Divergence (KLD).

Paper Datasets Validation method Performance metrics

Jeffries et al. (1984) 315 man. sel. ex., 8 cl. (zoo.) HO (265 ex. for training and 50

ex. for testing)

ACC (89%)

Gorsky et al. (1989) 3 cl. (phyto). 30 mL of each cl. for

testing

HO (50 ex./cl. for training) AE

Simpson et al. (1991) 100 man. sel. ex., 2 cl. (phyto.) HO ACC (90%)

Boddy et al. (1994) 42 cl. (phyto.) (200 man. sel. ex./cl.) HO (100 ex./cl. for testing) ACC (half of the cl. over 70%)

Culverhouse et al. (1996) 5000 man. sel. ex., 23 cl. (phyto.) HO (100 ex. for training, rest for

testing)

ACC (83%)

Frankel et al. (1996) 6000 man. sel. ex., 6 cl. (phyto.) R, HO (1,000 extra ex. for

testing)

ACC (98%), CM

Tang et al. (1998) 2000 man. sel. ex., 6 cl. (zoo. and

phyto.)

HO (1/2 training, 1/2 testing) ACC (95%)

Boddy et al. (2000) 1st) 61 cl. (phyto.)

2nd) 52 cl. (phyto.)

HO (500 ex./cl. for training and

500 ex./cl. for testing)

ACC (77% 1st. dataset, 73% 2nd.

dataset)

Embleton et al. (2003) 235 ex., 4 cl. (phyto.) HO (235 for training, 500 ex. for

testing)

CM, AC

Luo et al. (2003) 1st) 1,258 man. sel. ex., 5 cl.

2nd) 6,000 man. sel. ex., 6 cl. (zoo. and

phyto.)

10-fold CV ACC (90% 1st. dataset, 75% 2nd.

dataset), CM

Beaufort and Dollfus (2004) 4150 man. sel. ex., 11 cl. (150 ex./

cl. 1 2500 ex. in class others)

HO (50 ex./cl. for testing) AC (91%), RA

Davis et al. (2004) D1 1,920(5cl.) D2 1,527(7) D3 1,671(7)

D4 1,400(7) 200ex/cl T1 19,521(7) T2

20,000(7) T3 time series (zoo. and

phyto.)

R, CV, HO ACC (93% for R, 84% for CV and

63% for HO), CM, AC, RA

Grosjean et al. (2004) 1st) 1,035 man. sel. ex, 8 cl. (zoo.)

2nd) 1,127 man. sel. ex., 29 cl. (zoo.)

HO (2/3 training, 1/3 testing,

100 repetitions)

ACC (1st 85%, 2nd 75%)

Luo et al. (2004) 1st) 1,285 man. sel. ex., 5 cl.

2nd) 6,000 man. sel. ex., 6 cl. (phyto.

and zoo.)

10-fold CV over both datasets ACC (1st 90%, 2nd 75.6%), CM

Blaschko et al. (2005) 982 man. sel. ex., 13 cl. (zoo. and

phyto.)

10-fold CV ACC (71%)

Hu and Davis (2005) 20,000 man. sel. ex., 7 cl. (zoo. and

phyto.)

HO (200 ex. for training, 200 ex.

for testing)

ACC (72%), KLD

Lisin et al. (2005) 1826 man. sel. ex., 14 cl. (phyto. and

zoo.)

10-fold CV ACC (65.5%), CM

Luo et al. (2005) 8440 man. sel. ex., 5 cl. (phyto. and

zoo.)

HO (7,440 ex. for training, 1,000

ex. for testing)

ACC (88%)

Hu and Davis (2006) 20,000 man. sel. ex., 7 cl. (zoo. and

phyto.)

HO TP, FP, CM, AC

Tang et al. (2006) 3147 man. sel. ex., 7 cl. (phyto. and

zoo.)

R ACC (91%), CM

Sosik and Olson (2007) D 3,300 ex. (22 cl.) 150 ex./cl. T1

3,300(22) T2 19,000 (phyto.)

HO T3 15 sa. ACC (88%), R, P, AC (T3)

Bell and Hopcroft (2008) 63 cl. 10-30 ex./cl. (zoo.) CV, HO ACC (82%), CM, AE, RA
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individual level during training, but using it to estimate total

group abundance per sample during “production” should be

considered when validating plankton recognition systems.

When the goal is to obtain an accurate estimate of the abun-

dance per class, the learning problem is different to when

the goal is to classify each image correctly. The former is not

a classification task, as the model should return simply an

estimate for the whole sample. The performance at an indi-

vidual level is secondary in such cases.

There are, in fact, some methods whose final estimations

are not just based on the number of examples classified for

each class (Solow et al. 2001; Lindgren et al. 2013). Unfortu-

nately, most experimental studies focus only on obtaining

error estimates for individual predictions. Only a few papers

analyze the performance of the model when a global magni-

tude, typically abundance, is predicted. Different techniques

are applied in these papers:

� Confusion matrix. The abundance of each group can be

estimated from a confusion matrix (Gislason and Silva

2009; Vandromme et al. 2012; Lindgren et al. 2013). The

problem is that the information of the confusion matrix

comprises just one sample, the complete testing set. This is

equivalent to estimating the classification accuracy at an

individual level using only one example.

� Graphically. Some papers use graphs to compare the actual

and the predicted magnitude for a set of samples (Davis

et al. 2004; Sosik and Olson 2007; Lindgren et al. 2013).

The problem is that performance cannot be measured

numerically using only graphs.

� Regression analysis. This is carried out to analyze the rela-

tionship between both values, observing whether they are

well correlated; see, for instance, (Davis et al. 2004; Bell

and Hopcroft 2008; Gislason and Silva 2009). R2 is a good

measure to assess fit accuracy, but does not measure pre-

diction accuracy so well.

In addition of these techniques, a precise estimate of the

error for the target magnitude should be provided using a

group of samples. This estimate will be more useful once the

model is deployed. Therefore, our unit in the model assess-

ment process is not the individual example, but the sample,

i.e., a group of individual examples. The most important ele-

ment in our proposal is that the datasets should be com-

posed of a collection of actual complete samples.

The second problem arises from another intrinsic property

of plankton recognition problems: changes in data distribu-

tion (Haury et al. 1978), also called dataset shift (Moreno-

Torres et al. 2012). This drift occurs when the joint distribu-

tion of inputs (description of the individuals) and outputs

(classes) differs between training and test stages. For

instance, when the probability of a class (e.g., diatoms)

changes or when the characteristics of the individuals of

such class change (e.g., the size distribution of diatoms

TABLE 1. Continued

Paper Datasets Validation method Performance metrics

Gislason and Silva (2009) D1 1,135 ex. (34 cl.), D2 1,139 ex. (25

cl.), D3 1,174 ex. (19 cl.), T 17sa. (zoo.)

10-fold CV, HO ACC, CM, P, AE, RA (T)

Gorsky et al. (2010) 5–35 cl. (phyto. and zoo.), 300 ex./cl. CV TP, FP, CM, AC

Zhao et al. (2010) 3119 man. sel. ex., 7 cl. (phyto. and

zoo.)

10-fold CV ACC (93.27%), CM

Ye et al. (2011) 154,289 ex., 26 cl. (zoo.) HO (50% for training, 50% for

testing)

ACC (69%), AC

�Alvarez et al. (2012) 526 sa., 86 sa. for training, 17 sa. for

testing (61,700 ex.), 6 cl. (phyto. and

zoo.)

HO ACC (86%), CM, P, RE, AC

Vandromme et al. (2012) 14 cl. 9668 ex. for training (zoo.) HO (26,027 ex. in 22 sa. for

testing)

CM, AC, RA

Gonz�alez et al. (2013) 5145 man. sel. ex., 5 cl. (phyto. and

zoo.)

Fivefold CV (repeated twice) ACC (93,6%), P, RE

Lindgren et al. (2013) 50 sa., 5 depths, 17 cl. (zoo.) CV ACC (81.6%), P, AE (1, 5 sa.)

Ellen et al. (2015) 725,516 ex. (46 sa.), 24 cl. (phyto. and

zoo.)

HO (80% for training, 20% for

testing

RE (88% with 8 cl.), CM

Orenstein et al. (2015) 3.4 million ex., 70 cl. (phyto. and zoo.) HO (20% for training, 80% for

testing)

ACC (93.8%)

Dai et al. (2016) 9460 man. sel. ex., 13 cl. (zoo.) HO (80% for training, 20% for

testing)

ACC (93.7%)

Faillettaz et al. (2016) 1.5 million ex., 14 cl. (phyto. and zoo.) HO (5,979 man. sel. ex. for

training)

ACC (56.3%), P. for biological

groups (84%), AC

Gonz�alez et al. Validation methods for plankton image classification systems

223



varies) or both things together (e.g., the proportion of dia-

toms changes and also their size distribution). Data drifts

occur in many practical applications for a number of differ-

ent reasons. However, there are two well documented situa-

tions: (1) the sample selection bias introduced in the dataset

used during training and/or the validation process, for

instance, when the training set is manually built without

representing the true underlying probability distribution,

and (2) because it is impossible to reproduce the testing con-

ditions at training time, mainly because the testing condi-

tions vary over time and are unknown when the training set

is built. Both situations may be found, at different levels, in

plankton recognition studies. Focussing on the latter, plank-

ton composition shows natural variability. The concentra-

tion of different morphological groups usually varies over

space and time and this variation depends on numerous

causes. However, this is precisely what the model must

capture. In order to achieve this goal and also to assess its

future performance, the collection of samples that compose

the dataset should contain sufficient variability. So once

again, variability in terms of individuals, which is the cur-

rent trend, should shift to variability in terms of samples.

Otherwise, it is impossible to obtain accurate estimates.

This paper makes two main contributions to the litera-

ture. The first is that of studying how changes in distribution

affect the performance of classifiers and assessment strate-

gies. The second is to put forward some guidelines and pro-

pose an appropriate model assessment methodology

designed to deal with the characteristics of the aforemen-

tioned plankton recognition tasks. A relatively large dataset,

composed of 60 different samples and 39,613 examples, was

used to analyze both aspects. The dataset was captured using

a FlowCAM (Sieracki et al. 1998) in the Bay of Biscay and off

the northern coast of the Iberian Peninsula.

Material and methods

Learning task

Supervised classification tasks require as input a dataset

D5fðxi; yiÞ : i51 . . . ng, in which xi is the representation of an

individual in the input space X and yi 2 Y5fc1; . . . ; clg is its

corresponding class. The goal of a classification task is to

induce from D a hypothesis or model

h : X ! Y5fc1; . . . ; clg; (1)

that correctly predicts the class of unlabeled query instances,

x. A typical example of this kind of learning problem is the

prediction of a disease. The input space, X , would be the

symptoms of the patient and h returns the most probable

disease from Y. Obviously, patients are interested in know-

ing how accurate h is. Hence, the assessment strategy must

estimate the probability that h correctly predicts the disease

of a random patient, x.

Most approaches solve plankton recognition tasks using a

classifier, including those aimed at returning aggregate esti-

mates. For instance, predicting the abundance per unit of

volume for class cj of a dataset, D, can be computed using a

classifier, h:

�hðD; cjÞ5
1

v

X
xi2D

IðhðxiÞ5cjÞ; (2)

where v is the volume and I(p) is the indicator function that

returns 1 if p is true and 0 otherwise. This approach is called

“classify and count” in the context of quantification learn-

ing (Forman 2008) as individual instances are first classified

by h and then counted to compute the estimate for the

whole sample, D. Formally, the aforementioned learning

task takes the form �h : Xn3Y ! R, if we wish to predict one

magnitude for a given class, or the form �H : Xn ! Rl, if we

wish to make a prediction for all classes together. Notice

that �H can be computed using �h in (2) because
�H ðDÞ5ð�hðD; c1Þ; . . . ; �hðD; clÞÞ. Notice that both, �h and �H , do

not require an individual example as input, but a sample

denoted as Xn representing a set of a variable number of

instances from the original input space X .

There are two reasons why the classify and count

approach is so popular. First, it is a straightforward solution

using any off-the-shelf classifier. However, it is not the only

possible approach; there exist other alternatives whose anal-

ysis falls outside the scope of this paper. One such method

was proposed by Solow et al. (2001) and applied by Lindgren

et al. (2013). In fact, the classify and count approach is out-

performed by other methods according to the quantification

literature (Forman 2008; Barranquero et al. 2013).

The second reason is the false belief that if you build the

best possible classifier, then you will also have the most

accurate estimates at an aggregated level too. This is simply

not true (Forman 2008). The only case when it is true is

when you have a perfect classifier (accuracy 100%), but this

never occurs in real-world applications as difficult as plank-

ton recognition problems. Imagine, for instance, a two-class

problem (positive class and negative class) with 200 exam-

ples, 100 of each class, and two classifiers, h1 and h2. h1 pro-

duces 0 false positives and 20 false negatives, while for h2,

these values are 20 false positives and 20 false negatives.

Classifier h1 has an accuracy of 90%, but it does not estimate

the abundance of both classes exactly. While h2 is a worse

classifier, with an accuracy of 80%, the abundance estimates

are perfect. Several examples can also be found in plankton

recognition papers. For instance, in Lindgren et al. (2013),

according to Table 2, page 77, the precision classifying Non-

ionella examples is 96.7%, with a 3% of error in estimating

abundance, while the precision classifying examples of the

Multiparticles class is just 68.4% but the error in estimating

the abundance is only 1%. In the experiments, we shall see

similar examples in the case study (see Fig. 6).
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Optimizing precision at an individual level does not

mean improving precision at an aggregate level. The perfor-

mance metrics for both problems are different, so the opti-

mal model for one of them, is rarely also optimal for the

other. The perfect classifier is simply an exception. The per-

formance measures for samples require a kind of compensa-

tion among the whole sample, as occurs for classifier h2 in

the previous example. There are classifiers that select this

kind of model for binary quantification; see, for instance,

(Barranquero et al. 2015).

Our advice is that the experiments should focus on esti-

mating the error at an aggregate level at which the ecologi-

cal question is posed, typically analyzing samples for a target

region. This, of course, requires datasets composed of several

samples taken for such region. Recall that most often, the

ecological unit of analysis is the sample and therefore the

classification accuracy at an individual level should be some-

what secondary.

Datasets: representing the underlying probability

distribution

One factor that has a major influence on the validation

process is the way in which datasets are constructed. Learn-

ing theory establishes that training (and validation) datasets

must be generated independently and identically according

to the probability distribution, P(x, y), on X3Y. This is the

so-called independent and identically distributed (i.i.d.)

assumption, which is the main assumption made for the

learning processes of most algorithms (Duda et al. 2012).

When this assumption is not fulfilled, the model obtained is

suboptimal with respect to the true underlying distribution,

P(x, y), and the performance function optimized by the algo-

rithm (for instance, accuracy). Unfortunately, the datasets

used in many plankton studies are biased. Several authors

design their training sets, selecting ideal examples or fixing

the number of examples manually for each class in an

attempt to improve the overall accuracy, especially when

some morphological groups are scarce. This is a clear case of

sampling bias and the training set does not represent the

underlying probability distribution.

Although these kinds of databases are sometimes only

used for training the models, which are subsequently validat-

ed using a different testing set, sampling bias is still danger-

ous for the training process. Learning a model is in fact a

searching process in which the algorithm selects the best

model from a model space according to: (1) the training

dataset, which is the representation of the probability distri-

bution, and (2) a target performance measure, including

some regularization mechanism to avoid overfitting. If the

training set is biased, then the learning process is ill-posed.

Furthermore, if the same dataset is also employed in the vali-

dation phase (for instance, when a cross-validation is per-

formed), then the estimate of the error obtained is clearly

biased. Thus, the first thing to bear in mind is the golden

rule of building an unbiased dataset.

A frequent practice in plankton recognition studies is to

look for the best training dataset. This is partly motivated by

the scarcity of labeled examples and imbalanced classes;

there are groups that have much fewer examples than

others. Researchers usually build training datasets with the

same number of individuals for each class to avoid this issue.

This is a bad practice.

It is true that imbalanced situations can make some classi-

fiers misclassify the examples of the minority classes. None-

theless, the solution from a formal point of view is not to

select the examples for the training dataset manually, there-

by biasing the sampling process. The correct procedure is

just the opposite. In supervised learning, the training data

comes first. It is the most important element and should be

obtained obeying the i.i.d. assumption as far as possible,

without introducing sampling bias of any kind. Then, we

may work with three elements to boost the performance of

our model: (1) enhancing the representation of the input

objects (e.g., using advanced computer vision techniques

robust to rotation or obstruction), (2) selecting a classifier

well tailored to the characteristics of the training data and

the learning task (e.g., using algorithms for imbalanced data

(Chawla et al. 2004) if required), and (3) tuning the parame-

ters of the learning algorithm (e.g., algorithms usually have

a regularization parameter to avoid overfitting, like parame-

ter C in the case of Support Vector Machines).

Selecting the training dataset manually (Culverhouse

et al. 1996; Luo et al. 2003; Grosjean et al. 2004; Hu and

Davis 2005) is counterproductive for a number of reasons.

Balancing the number of training examples for all classes

may mean that a large class does not have sufficient diversi-

ty, for instance, when such class is complex and it has differ-

ent types of individuals. Limiting the number of examples

for such classes reduces the desired diversity of the training

data. The i.i.d. assumption guarantees that, if the sample is

large enough, all the individuals will be represented in the

training set, making the learning process more reliable.

The previous argument is supported by statistical learning

theory. Over the past few years, learning theory papers have

established generalization error bounds for different classi-

fiers, including Support Vector Machines (SVM) and ensem-

ble methods like Boosting (Bartlett and Shawe-Taylor 1999;

Schapire and Singer 1999; Cristianini and Shawe-Taylor

2000; Vapnik and Chapelle 2000). These bounds decrease

(i.e., the probability of error is lower) when the number of

examples in the training set increases, among other factors.

This is a quite intuitive result; when the model has been

trained with more information (examples), its ability to clas-

sify unseen examples is greater. Hence, if the total number

of examples is reduced in order to balance all classes, the

risk of the generalization error of the classifier increases.
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Basically, supervised learning requires a large collection of

examples, one that is as large as possible, sampled without

bias from the underlying population. This in turn guarantees

the required diversity of the examples. Note that diversity in

this context refers to the different types of objects that the

model has to work with. This includes not only the different

types of individuals from a biological or morphological point

of view, but also the diversity produced by the capturing

device or any other element of the processing system that

may mean that the same type of individual is represented

differently. This general principle has the drawback that

obtaining a large collection of examples is usually expensive.

Our case is even worse, because, if the unit is the sample

and not the individual, a large collection of diverse samples

is required. The problem is that obtaining sufficient diversity

at the sample level is difficult, but makes diversity at an indi-

vidual level less problematic.

Data distribution drift

Understanding data distribution drift is important to

obtain a better solution to the plankton recognition prob-

lem. Formally, this occurs when the joint distribution of

inputs and outputs changes. Given two datasets, D and T,

captured at different times or places, drift occurs when their

joint probability distributions differ; in symbols,

PDðx; yÞ 6¼ PTðx; yÞ. Several factors can be the cause of this

drift and the joint probability can be expressed in different

ways depending on the type of learning problem. Fawcett

and Flach (2005) proposed a taxonomy to classify learning

problems according to the causal relationship between class

labels and covariates (or inputs). The interest of this taxono-

my lies in the fact that it determines the kind of changes in

the distribution that a particular task may experience. The

authors distinguished between two different kinds of prob-

lems: X ! Y problems, in which the class label is causally

determined by the values of the inputs; and Y ! X prob-

lems, where the class label causally determines the covari-

ates. Spam detection constitutes an example of the first type

of problem; the content of the mail and other characteristics

determine whether the mail is spam or not. On the other

hand, a medical diagnosis task is a typical example of Y ! X
problems; suffering from a particular disease, y, causes a

series of symptoms, x, to appear, and not the other way

around. Plankton recognition is a Y ! X problem. An indi-

vidual will have some characteristics because it belongs to a

particular species or morphological group. These characteris-

tics are a consequence of its class.

In this type of problem, the joint distribution, P(x, y), can

be written as Pðx; yÞ5PðxjyÞPðyÞ; in which P(y) represents the

probability of a class and PðxjyÞ is the probability of an

object x, although knowing that the class is y. We know that

P(x, y) changes, so we need to determine whether both terms

in the expression change or just one of them.

In abundance related problems, it is evident that P(y)

changes, because it is precisely the magnitude that must be

estimated for the model. However, does PðxjyÞ change? The

answer to this question is more complex. Lets imagine that

we represent each individual using only one characteristic:

the particle physical size. If PðxjyÞ remains constant, it means

that the distribution of sizes in each class does not change.

Notice that this is a quite strong condition that depends on

several factors, basically the representation of the input

space, the taxonomy and the classes considered in each par-

ticular plankton recognition problem. If we only have

a small number of top-level classes, it is almost certain that

PðxjyÞ changes as these classes are formed by different sub-

classes, whose probabilities will not change in proportion to

the main class. Conversely, if the problem distinguishes

between classes at the bottom of a taxonomy, then PðxjyÞ
changes are less probable.

Knowledge of all these factors for a given problem, mainly

the behavior of PðxjyÞ, is crucial in order to design new algo-

rithms that are robust against the expected changes in the

joint probability distribution. For instance, the algorithm

proposed by Solow et al. (2001) is based on the assumption

that PðxjyÞ is constant. This is also the main assumption

made by several quantification algorithms (Forman 2008).

A way to measure changes in the distribution between

two datasets is the Hellinger distance (HD). This measure has

been used in classification methods to detect failures in clas-

sifier performance due to shifts in data distribution (Cieslak

and Chawla 2009). In this paper, HD will be used to study

the dataset shift between training and test datasets and how

this relates to the accuracy of the classifier and the corre-

sponding validation methods. The Hellinger distance is a

type of f-divergence initially proposed to quantify the simi-

larity between two probability distributions. Based on the

continuous case formulation, the Hellinger distance can also

be computed for the discrete case. Given two datasets, D and

T, from the same input space, X , their HD is calculated as

HDðD;TÞ5 1

d

Xd

f 51

HDf ðD;TÞ5
1

d

Xd

f 51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xb

k51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDf ;kj
jDj 2

jTf ;kj
jTj

s !2vuuut ; (3)

in which d is the dimension of the input space (the number

of attributes or features), HDf ðD;TÞ represents the Hellinger

distance for feature f, b is the number of bins used to con-

struct the histograms, jDj is the total number of examples in

dataset jDj, and jDf ;kj is the number of examples whose fea-

ture f belongs to the k-th bin (the same definitions apply to

dataset T).

Performance measures

In order to compare the performance of several methods

over a group of samples, two different types of results can be

studied. First, the goal may be to analyze the error for a
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particular class across all samples and obtain the error rate.

However, it may also be necessary to calculate the precision

for all classes across all samples, a kind of general error of

the model.

To compute the error rate for a particular class, we need

to compare the predicted count data or frequencies,

fn0ci;j : j51; . . . ;mg, with the ground-truth count of class ci

over m labeled samples fnci;j : j51; . . . ;mg. Three performance

measures are usually employed in similar regression

problems:

� Bias: BiasðciÞ5 1
m

Xm
j51

nci;j2n0ci;j

� Mean Absolute Error: MAEðciÞ5 1
m

Xm
j51

jnci;j2n0ci;jj

� Mean Square Error: MSEðciÞ5 1
m

Xm
j51

ðnci;j2n0ci;jÞ
2

The drawback of Bias is that negative and positive biases

are neutralized. For instance, a method that guesses the

same number of units as too high or too low will have zero

bias on average. MAE and MSE are probably the most widely

used loss functions in regression problems, although MAE is

more intuitive and easier to interpret than MSE. Nonetheless,

all these metrics present some issues in this case. First, if the

frequencies are expressed in terms of another variable, typi-

cally volume, the density must be similar in order to average

the errors across samples, otherwise the samples with a

higher density have a greater influence on the final score.

More importantly, these metrics do not allow us to deter-

mine the magnitude of the errors. Averaging across samples

with different frequencies has certain implications that

should be carefully taken into account. For instance, an error

of 10 units produced when the actual value is 100 is not the

same as when the actual value is 20. In the latter case, the

error can be considered worse. The problem of these mea-

sures in the context of plankton studies is that it is quite

commonplace for a given sample not to contain examples

for some classes. Any error in theses cases is high in relative

terms, even when the absolute error is low. These factors

decrease the usefulness of these performance metrics.

There are several measures for evaluating the impor-

tance of errors. Mean Absolute Percentage Error,

MAPE51=m
Xm
i51

ðjnci;j2n0ci;jj=nci;jÞ, also called Mean Relative

Error MRE, is probably the most popular. However, this mea-

sure presents some issues: it is asymmetric, unbounded and

undefined when nci;j50. Moreover, recent papers (Tofallis

2015) have shown that MAPE prefers those models that sys-

tematically under-forecast when it is used in model selection

processes. The log of the accuracy ratio, i.e., lnðn0ci;j=nci;jÞ, has

been introduced to select less biased models. However, this

measure presents the same problem as MAPE: it is undefined

when nci;j is 0 for one sample, which it is quite common

when the number of classes is large. Symmetric MAPE (Arm-

strong 1978) seems the best alternative considering all the

above factors:

SMAPEðciÞ5
1

m

Xm
i51

jnci;j2n0ci;jj
nci;j1n0ci;j

: (4)

It is a percentage, it is always defined and its reliability for

model selection purposes is comparable to that of lnðn0ci;j=nci;jÞ
according to Tofallis (2015).

In order to compute a kind of overall result, an initial per-

formance metric that can be applied is Bray–Curtis dissimi-

larity (Bray and Curtis 1957). This is commonly used to

analyze abundance data collected at different sampling loca-

tions in ecological studies. The Bray–Curtis dissimilarity is

defined as:

BC5122

Xl

i51

minðnci
;n0ci
Þ

Xl

i51

nci
1n0ci

5

Xl

i51

jnci
2n0ci

j

Xl

i51

nci
1n0ci

; (5)

where l is the number of classes. A good thing here is that

both samples obviously have the same total size. This means

that the score it is the same whether counts or frequencies

are used. The Bray–Curtis dissimilarity is bound between 0

and 1, with 0 meaning that the prediction is perfect.

Although the Bray–Curtis dissimilarity metric is able to

quantify the difference between samples, it is not a true dis-

tance because it does not satisfy the triangle inequality

axiom.

A possible alternative to the Bray–Curtis dissimilarity is

the Kullback–Leibler Divergence, also known as normalized

cross-entropy. In this case, it is usual to compare a set of

frequencies:

KLDðn;n0Þ5
Xl

i51

nciXl

i51

nci

� log
nci

n0ci;j

� �
: (6)

The main advantage of KLD is that it may be more suitable

for averaging over different test prevalences. However, a

drawback of KLD is that it is less interpretable than other

measures, such as the Bray–Curtis dissimilarity or MAE.

Moreover, it is not defined when a frequency is 0 or 1,

which is quite common in plankton recognition, particularly

when the number of classes is large. In order to resolve these

situations, KLD can be normalized via the logistic function:

NKLDðn;n0Þ52=ð11exp ðKLDðn;n0ÞÞÞ.

Assessment methods for a collection of samples

As stated previously, several studies have found it difficult

to expose their algorithms to changes in the distribution of

plankton populations, reaching the conclusion that

Gonz�alez et al. Validation methods for plankton image classification systems

227



traditional assessment methods significantly overestimate

models accuracy. Our goal is to propose an assessment meth-

odology that ensures that training and testing datasets

change, introducing the data distribution variations that will

occur under real conditions. Moreover, the test should not

be carried out only with one test set. Ideally, testing should

be carried out with different samples presenting different dis-

tributions, covering the actual variations due to seasonal fac-

tors or the location of sampling stations as much as possible.

Here, we shall discuss how to extend traditional assessment

methods, namely hold-out and cross-validation, to the case

of working with a group of samples, highlighting both their

drawbacks and strengths.

The extension of hold-out is fairly straightforward. As

always, we need a training dataset, obtained without sam-

pling bias, that represents the probability distribution of the

study. Additionally, a collection of samples must be collected

to constitute the testing set. The performance of the model

is assessed just in this collection, computing a sample-based

measure, like the ones discussed previously.

The drawback of hold-out is that the effort involved in

collecting data is doubled because we need two separate

datasets. This is much most costly when working with sam-

ples. The labeled data is usually limited, so in some studies

one of the datasets will be smaller than it should be. If the

training dataset is reduced in size, useful information to

build the model is lost. If we limit the size of the testing

dataset, the assessment of the model will be poor. It seems

that shifting the unit of the study from the individual to the

sample makes hold-out less suitable.

The other alternative is to apply cross-validation (CV).

The difference with respect to traditional CV is that the folds

are composed of a number of complete samples. The key

parameter in CV is the number of folds. Selecting a low

number of folds once again means that the training dataset

for each run is smaller, with the same drawbacks as men-

tioned previously. Thus, the best way to have the maximum

amount of training data is to conduct a leave-one-out (LOO)

cross-validation of samples (see Fig. 1). Given a set of m sam-

ples, m training and test iterations are performed (E1 . . . Em).

In each iteration, all but one sample (the gray sample in

each iteration in Fig. 1), is selected as the testing set, per-

forming training with the remaining samples (the white

samples in each iteration in Fig. 1).

Notice that this kind of LOO is computationally less

expensive than in the case of LOO at the individual level,

because the number of individuals is much larger than the

number of samples (n� m); in the case under study, 39,613

examples vs. 60 samples. The other main advantage is that

the method operates under similar conditions to real ones

when the model is deployed: it has been trained using a

group of samples, then it has to make a prediction for a

new, unseen sample. It also guarantees a realistic degree of

variation between training and test sets. We shall analyze

this factor in the experiments.

The advantages of LOO over hold-out are twofold: (1)

LOO uses as many training examples as possible, and (2) the

estimate of the error is theoretically more precise. However,

it also presents an important drawback: it cannot be applied

when the samples present some kind of correlation among

themselves; for instance, when they come from a series of

samples obtained in a short period of time. In such cases,

hold-out is the best option: the model is trained with a sepa-

rate training set and tested on such collection of testing sam-

ples. Any sort of cross-validation using this collection of

samples will over-estimate the performance of the model. In

order to apply cross-validation to a collection of correlated

samples, the division in folds must guarantee that those

samples correlated among themselves should belong to the

same fold. This may, however, be impossible in some cases;

for instance, when the size of the fold is just one sample,

which is the case of LOO.

Finally, if the collection of samples is large, which is the

ideal situation, then instead of using LOO, which can be

computationally expensive in such situations, a CV by sam-

ple can be applied. The number of folds selected should be

as large as possible depending on the computational resour-

ces available in order to obtain a more precise estimate.

Another important aspect is that, in order to compute the

performance measures, the actual samples of the dataset

must be considered, without aggregating those that belong

to the same fold. Testing samples must not be aggregated

S1

S2

S3

Sm

Iteration 1
E1

Iteration 2
E2

Iteration 3
E3

Iteration m
Em

Leave-One-Out by Sample

S1

S2

S3

Sm

S1

S2

S3

Sm

S1

S2

S3

Sm

Fig. 1. Given m samples, m training and test iterations are performed
(E1 . . . Em). In each iteration, the gray sample is selected as the testing

set, while white samples are used for training. The samples may have
different sizes, as represented in the figure.
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because this procedure will create new artificial samples. The

error should be measured for each sample separately and

then averaged. For instance, if we have a dataset with 1000

samples, carrying out a LOO by sample will be computation-

ally expensive, as 1000 training and testing operations will

be required, each one with a large number of individual

examples. This can be reduced to our liking, selecting a

number of folds and performing a CV by sample. For

instance, with 10-folds, 900 samples will be used for each

training process, using the other 100 samples for testing.

This process will be carried out 10 times (vs. 1000 iterations

of LOO), thus saving in training time. Note that we cannot

evaluate error using a test set of 100 samples together, as it

would be an artificial sample, suffering the same problems as

standard cross validation. Instead, the error should be mea-

sured for each test sample separately and then averaged.

Case under study

A relatively large dataset of samples was collected to study

the behavior of plankton recognition systems and model

assessment methods. Specifically, the images obtained corre-

spond to 60 different samples obtained at different places

and different times. This dataset was captured using a Flow-

CAM (Sieracki et al. 1998) in the Bay of Biscay and off the

northern coast of Spain and Portugal between August 2008

and April 2010 (�Alvarez et al. 2012). Images were captured

using 100X magnification with the aim of analyzing organ-

isms with an equivalent spherical diameter (ESD) between 20

lm and 100 lm. Each of the captured images was segmented

using the intensity-based method proposed by Tang et al.

(1998). Once segmented, the images were classified by an

expert taxonomist into eight categories (Artefacts, Diatoms,

Detritus, Sillicoflagellates, Ciliates, Dinoflagellates, Crusta-

ceans and the category Others, for other living objects which

could not be classified among the previous categories). A cru-

cial aspect is that all the organisms within each sample were

analyzed and labeled without exception to avoid sampling

bias.

The sample stations are located at different geographical

points and at different depths, as shown in Fig. 2. This

results in high variation in the concentration of species, can

be seen in Fig. 3, since large regions have been covered in

both temporal and spatial terms. For example, the concen-

tration of diatoms in Sample 57 is large (over 75%) com-

pared to Sample 54, in which there are almost no diatoms

(less than 1%). More examples like this one can be found in

the dataset.

The features vector for each image, x, for each image was

calculated using the EBImage R package (Pau et al. 2010).

Standard descriptors, including shape and texture features

(Haralick et al. 1973), were computed with this package. Fur-

thermore, features computed by the FlowCAM software,

such as particle diameter and elongation, were also included

in the feature vector. In all, a vector with 64 characteristics

was computed for each image.

To summarize, a total of m 5 60 samples were captured

and processed, resulting in a total of n 5 39, 613 images

manually labeled in eight different classes.

All experiments were performed using the caret R package

(Kuhn 2008). Results were extracted using two different

learning algorithms, Support Vector Machines (SVM) (Vap-

nik and Vapnik 1998) and Random Forest (Breiman 2001),

to confirm that the results do not depend on a particular

classifier. These classifiers are the most popular in plankton

recognition papers. A Gaussian kernel was used to train the

SVM models, using a grid search in order to find the best

parameters for just the training dataset of each run (regulari-

zation parameter C values from 1 to 13103, and sigma val-

ues from 131026 to 131021). In the case of Random Forest,

each model is composed of 500 trees. A grid search was also

used to estimate the number of random features selected

(values 4,8,16). Tuning parameters is essential in order to

avoid overfitting and to obtain better results. This process

must be carried out using only the training data in each run

of the learning algorithm.

Results

The goal of the experiments was not to build the best

classifier or analyze various learning approaches. The experi-

ment was simply designed to compare model assessment

Fig. 2. Geographical location and sampling season. The numbers

shown in the figure correspond to the station (see Fig. 3) to allow the
identification of the place where each sample was collected).
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methods, focusing on the differences between those based

on the performance at an individual level and those based

on samples. We thus compared standard cross-validation

(CV), which works at an individual level, with the proposed

leave-one-out (LOO) by sample. Note that in the former case

the whole dataset is merged and the samples are not taken

into account to obtain the folds. Thus, individual examples

from the same sample may belong to different folds. Specifi-

cally, we compared three methods: 10-fold CV, 60-fold CV

(both working at an individual level) and LOO by sample.

We selected 10-fold CV because it is a quite common experi-

mental procedure in many studies (see Table 1) and 60-fold

CV to match up the number of samples in the dataset, pro-

viding a fair comparison to the experiment using the LOO

by sample method.

Table 2 presents the results for both algorithms (SVM and

RF) using the three different validation techniques discussed

previously. The results for SVM are slightly better, although

both algorithms show the same trend. SVM achieves a

reasonable degree of accuracy of 82.88% using a standard 10-

fold CV. There is no significant difference when the number

of folds is increased to 60. Similar results are also obtained

with RF using 10-fold CV and 60-fold CV. We can thus con-

clude that the number of folds has no influence over the

obtained estimate. This is mainly due to the fact that the

number of examples in the dataset is quite large. Therefore,

the probability distributions represented by the training data-

sets used in each trial are similar because they are large

(35,652 examples in a 10-fold CV vs. 38,953 in a 60-fold CV)
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Fig. 3. Distribution of samples by classes. Samples are grouped by depth (in meters) and labeled using the station number and the month in which

they were taken.

Table 2. Accuracy (in percentage) and standard error using
different validation methods.

10 CV 60 CV LOO by sample

Acc Acc Acc Accsample

SVM 82.88 6 0.191 83.10 6 0.179 77.74 71.78 6 1.679

RF 82.06 6 0.180 82.16 6 0.183 77.05 70.36 6 1.912
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and cross-validation tends to produce similar folds, so the

learned models should be approximately equal in each run. In

fact, exploring results fold by fold, it was found that the varia-

tion in accuracy between folds was small (1.5%/1.4% for 10-

fold CV and 6.1%/6.2% for 60-fold CV using SVM/RF,

respectively).

However, the accuracy estimate is lower when LOO by

sample is used. Notice that we can compute accuracy in two

different ways here: (1) summing up the number of correct

predictions on each sample and dividing by the total num-

ber of examples (this corresponds to the probability of cor-

rectly classifying a single unseen instance), and (2) averaging

the accuracy per sample (the estimate is the average accuracy

of a given unseen sample). Although the scores are different,

they are computed from the same individual predictions, the

difference arising from the way of averaging the predictions.

In the case of standard CV, both values, Accbyfold and Acc

are approximately equal. This is because all the folds have

approximately the same size. Being n the number of exam-

ples in training set D, NF the number of folds and nFj
the

number of examples in fold Fj, we have that:

Accbyfold5
1

NF

XNF

j51

1

nFj

X
xi2Fj

IðhjðxiÞ5yiÞu
1

n

XNF

j51

X
xi2Fj

IðhjðxiÞ5yiÞ5Acc;

(7)

because n
NF unFj

for all j. In contrast, the samples have differ-

ent sizes in a LOO by sample experiment and hence the two

values differ.

Comparing the accuracy estimate at an individual level

obtained by means of CV and LOO by sample, the question

that has to be answered here is why they are different. First,

in our opinion, standard CV is optimistic because, as stated

previously, individual examples from the same sample are

placed in different folds. Thus, the learner uses examples for

training from the same samples as those in the testing set.

The estimate is optimistic because these examples are corre-

lated and tend to be similar. This will not occur when the

model is deployed and it classifies a new unseen sample,

which is in fact the conditions that LOO by sample

simulates.

On the other hand, the estimate provide by LOO could be

seen as pessimistic because one particular sample used as the

test sample may be very different from the rest. This obvi-

ously will not occur the same number of times if the train-

ing set is composed of a larger collection of samples.

Actually, when the number of samples tends to infinity,

both methods will return the same estimate (which will be

the true accuracy). However, bear in mind that we are esti-

mating the accuracy for the model computed with a limited

dataset, not with an infinite number of samples. Hence, in

our case, if the test sample is not very well classified in one

iteration of LOO using the model learned with the other 59

samples (nearly 40,000 examples), we may infer that the

same will occur with other unseen samples when we train

our model with the complete 60-sample training set. This is,

in fact, the goal of the validation process, making estimates

of the future performance. Moreover, these cases show us

that the training dataset is possibly not large enough, and

that more samples are required.

For all the above reasons, we do think that the estimate

computed by means of LOO by sample is more realistic than

the one computed by means of standard CV, even though

the latter may be somewhat pessimistic, which is better than

being optimistic, and it is probably more accurate for a finite

collection of samples, which is our goal. Another interesting

aspect is that the difference between both measures can

serve as an estimator of the completeness of the training set.

On the other hand, the average accuracy at a sample level

is especially useful once we have trained our model and we

wish to apply it to classify new, unseen single samples.

Recall that it measures the expected accuracy when the mod-

el only classifies one finite sample and hence it is different

to the one previously discussed. First, it is logical for the

accuracy in this case to be lower due to size of the samples;

the accuracy tends to be lower for smaller samples because

any mistake represents a higher percentage. Furthermore, for

the same reason, it is always more variable than in the case

of large samples. For very large samples, the accuracy at a

sample level will tend to be the same as that estimated at an

individual level. However, several ecological studies work

with relatively small samples.

The second aspect to consider is that the variability in

terms of samples can be huge with respect to several fea-

tures, like size, difficulty and class distribution, among

others. We can find small samples and large ones, samples

that contain individuals that are particularly difficult to clas-

sify and other samples that are composed of easy examples,

samples with a different class distribution, etc. Thus, the

accuracy can dramatically differ in all of these situations. For

instance, in the LOO experiment in Table 2, the accuracy for

the worst sample is as low as 30.1% (93 examples); in the

contrary case, this value rises to 96.4% for the best sample

(2731 individuals). The standard deviation of the estimate is

13.01, showing the great variability in accuracy when differ-

ent samples are considered. For the sake of comparison, the

standard deviation in 10-fold CV is 0.60 and 1.39 in 60-fold

CV. The standard deviation of LOO seems excessively high

in this experiment, suggesting that we should probably add

new samples to the training data to increase the stability of

the model. Nonetheless, it is far more realistic than the one

provided by standard CV.

In conclusion, we need as large a collection as possible of

actual samples in order to estimate the accuracy, or any oth-

er magnitude, at a sample level. This is the reason for pro-

posing LOO by sample. Note that these measures cannot be

computed using traditional CV because the folds that CV

generates: (1) are artificial samples that do not represent
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actual ones, and (2) they do not have the required variabili-

ty. In fact, the folds of a CV are a sort of average of the

underlying population. Figure 4 shows this feature, compar-

ing the training and testing distributions of both experi-

ments. The figure shows the Hellinger Distance (HD) of both

sets, computed used 30 bins, and the corresponding accuracy

estimate of the sample/fold. Both distributions are approxi-

mately equal in the case of CV (Fig. 4a). It is worth noting

that the accuracy and HDs remain practically constant

throughout each of the folds. In contrast, the distributions

of the training and testing sets differ when LOO by sample is

applied; the HDs are significantly different and the accuracy

between samples also varies notably (see Fig. 4b). Notice that

the minimum HD in the LOO experiment is greater than all

the HDs for the CV experiment.

The box plot in Fig. 5 shows the accuracies of LOO by

sample and 60-fold CV using SVM for the different classes

across the iterations of the experiment. Samples or folds

with less than 10 examples for a given class were omitted

(three for Crustaceans). This filter was applied to exclude sit-

uations that do not produce representative results. For

instance, if there is only a single example of a class in a giv-

en test set and the classifier fails to recognize it, it will yield

an accuracy of 0% for that particular iteration and class,

when in fact the classifier has only failed to classify one

example, which is insignificant.

Analyzing the box plot in detail, major differences can be

seen in classification stability for some classes, especially

Detritus and Diatoms. When using standard CV (Fig. 5b),

the success rate by class once again remains much more con-

stant throughout all folds because their variability is small.

The classes with more variability are those with a limited

number of examples per fold (Ciliates, 10.3 examples; Crus-

taceans, 3.2; Dinoflagellates, 12.6; and Silicoflagellates, 12.3).

Classes with a large number of examples (Detritus and Dia-

toms) do not show any variability. It is thus impossible to

study the robustness and stability of the model for each

class. In contrast, when LOO by sample is used (Fig. 5a), the

classifier accuracy for each class in different iterations tends

to be more variable, allowing researchers to analyze these

cases in order to improve their models. Once more, this is

because these measures are estimates obtained at a sample

level, in which LOO by sample is a more appropriate valida-

tion method.

The second part of these experiments is devoted to ana-

lyzing the behavior of the proposed performance metrics to

estimate the abundance. Our purpose is to show a compari-

son between two algorithms, in this case SVM and Random

Forest. Two performance measures are considered: SMAPE

and Bray–Curtis dissimilarity. The former is applied to study

the precision for each class individually and the latter to

obtain a global measure. In all cases, we use the predictions

obtained in the LOO by sample experiments. Table 3 con-

tains the results for both SVM and RF.

Analyzing the SMAPE results, the errors are excessively

high, except for Detritus and Diatoms. Comparing SVM and

RF, the scores obtained by SVM are better than those of RF

for most classes, except for Others and Silicoflagellates. This

is also confirmed by the Bray–Curtis dissimilarity value,

which is lower in the case of SVM. These results seem to sug-

gest that the better the accuracy of a model, the better the

estimates at an aggregated level.

Figure 6 shows the relationship between accuracy and

Bray–Curtis dissimilarity when SVM and RF are used in a

LOO by sample experiment. Each point represents both

scores for a sample. In both cases, the correlation between

the two measures are lower than expected, confirming that

better accuracy at an individual level does not mean better

performance when an aggregated magnitude is predicted.

For instance, in sample 31 the accuracy is just 0.62 but BC

score is relatively low, 0.09, while sample 39 has a much

0.0 0.1 0.2 0.3 0.4

0.
2

0.
4

0.
6

0.
8

Hellinger Distance

A
cc

ur
ac

y

(a) Standard 60-fold CV

�

�

�
��

�
�

�

�

�
�

�

�

�
��

�

�

�

�

�

� �

�

�

�
�

�

�� �

�
�

��
��

�

� �

�

�

�

�

�

�

�
��

�

�
�

��

��

�

� �
�

0.0 0.1 0.2 0.3 0.4

Hellinger Distance

A
cc

ur
ac

y

0.
2

0.
4

0.
6

0.
8

(b) LOO by sample

Fig. 4. Relationship between HD and accuracy for each fold/sample
using SVM as the classifier (R250:0341, p-value 5 0.1577 and

S 5 0.1289 for the LOO experiment). Dotted lines: 95% confidence
interval. A similar graph is obtained for the Random Forest classifier. (a)
Standard 60-fold CV, (b) LOO by sample.
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better accuracy, 0.83, but a higher BC dissimilarity, 0.13. In

fact, the two problems are different from a learning point of

view, as discussed previously, and the optimal model for one

of them is not optimal for the other, except in the trivial

case of obtaining a perfect classifier, which is unrealistic.

Discussion

We can distinguish between two major groups of studies

in which image classification tools are useful. Abundance is

a primary ecological currency and many studies require auto-

matic methods able to predict the abundance of the different

planktonic groups for samples collected in plankton surveys.

However, the aim of other studies is to understand proper-

ties of the plankton community in addition to abundance

(for example, calculating the size structure composition of

each classification category) and hence require precise classi-

fication of each individual image. Although both cases seem

the same learning problem (both classify plankton images),

these two types of applications likely require different learn-

ing algorithms and surely call for different model assessment

and validation methods. The most important difference

between both types of studies is that, in the former the aim

is to minimize the error per sample, while in the latter, the

learning algorithm should also seek to minimize the error

for each individual image. This paper focuses mainly on the

analysis of the validation techniques required for those stud-

ies that require predictions for complete samples.

It is important to stress the great variability found in the

performance rates depending on the classified sample. A

great disparity in results is also observed in intra-class accura-

cy. In this respect, the proposed methodology can show us

aspects of the capabilities of the models that would remain

hidden using other validation strategies. One of these

aspects is the significant variability in the results found for

certain classes (e.g., diatoms and ciliates). In difficult prob-

lems like the one addressed in this paper, it is important to

try to look beyond the overall accuracy rate. Very useful

information can thus be found which may be valuable in

order to build better automatic recognition systems.

One of the most interesting features of performing sample-

oriented experiments, like LOO by sample, is that it helps

researchers to draw conclusions about the adequacy of the

whole learning process. High variations in performance

between samples, or for certain classes, may reflect a need to

increase the size of the dataset, adding new labeled samples.

Eventually, the system may face a new sample, that contains

examples that seldom appear in the rest of the training dataset,

causing a high error rate for that sample and class and hence

high variability in the results. Adding more samples will make

the results and the system more robust and more stable.

An illustrative example can be seen in Fig. 5a. There is at

least one sample for which the hit rate is 0 for the class
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Fig. 5. Accuracy by class and iteration/fold using SVM as the classifier. Only classes with 10 (three for the Crustaceans class) or more examples in the
iteration/fold are represented. The number of these cases for LOO are: Artefacts (46), Ciliates (13), Crustaceans (19), Detritus (59), Diatoms (49),

Dinoflagellates (24), Others (49), and Silicoflagellates (18). For CV, there are always 60 values. (a) Standard 60-fold CV, (b) LOO by sample.

Table 3. SMAPE scores and Bray–Curtis dissimilarity in the
LOO by sample experiment.

SMAPE scores SVM Random Forest

Artefacts 0.41 6 0.03 0.53 6 0.04

Ciliates 0.47 6 0.05 0.63 6 0.05

Crustaceans 0.32 6 0.05 0.33 6 0.05

Detritus 0.10 6 0.01 0.12 6 0.01

Diatoms 0.19 6 0.03 0.25 6 0.03

Dinoflagellates 0.41 6 0.04 0.57 6 0.05

Others 0.45 6 0.04 0.42 6 0.04

Silicoflagellates 0.38 6 0.05 0.38 6 0.05

SVM Random Forest

Bray–Curtis 0.15 6 0.01 0.19 6 0.01
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Ciliates. The sample in question is Sample 13, which has 140

examples labeled as Ciliates. All of these examples are mis-

classified by the classifier when LOO is applied. Investigating

more deeply, it turned out that this group of examples was

actually a subspecies of ciliates, oligotrichs. There are only

142 examples of this subspecies in our dataset, 140 of which

are in Sample 13. Obviously, when excluding Sample 13

from the training set, the classifier does not have enough

information to learn how to classify this subtype. Such situa-

tions cannot be detected using standard CV during the

experiments, but will occur once the model is deployed. This

is another important reason why the validation strategy

should cover such cases, in order to detect them and, if nec-

essary, improve both the dataset and the classification algo-

rithm. It may be considered that sufficient samples are taken

when LOO results are good enough not only in terms of

overall accuracy, but also with respect to other aspects, like

the variability in inter-sample and intra-class performance.

The ultimate goal is to obtain a more robust final model and

its corresponding accurate performance estimate.

An interesting open question is whether we can somehow

anticipate the reliability of the prediction for a new sample.

In this respect, Fig. 4 seems to suggest that when a sample is

far from the training set in terms of Hellinger distance, any

prediction made is less reliable. This is partially true,

although there are other factors that also exert an influence.

The most important is the difficulty in classifying the instan-

ces of the sample: classifiers make most mistakes in those

examples near the frontiers between classes. Actually, to

detect whether the sample is strange, we could compute the

minimum distance between the sample and all of those in

the training set. A large distance implies that the new sam-

ple is so different to the samples in the training set, thus

making the prediction less reliable.

The main drawback of the methodology proposed here is

that it requires a large collection of samples to be absolutely

precise. In some studies, this is impossible due to the cost of

labeling individual examples. A possible alternative in these

situations is to generate artificial, yet biologically plausible

samples. This technique is used in quantification learning

and is based on the fact that we are dealing with a Y ! X
problem and the class causally determines the values of the

inputs. We know that P(y) changes in abundance-related

problems, and in some studies we can make the further

assumption that PðxjyÞ remains constant. Given an actual

sample, we can generate a new artificial sample following

these two steps: (1) varying the proportions of the classes of

the original sample, generating random values for P(y) possi-

bly using predefined thresholds, and (2) performing a ran-

dom sampling with replacement (to ensure that PðxjyÞ does

not change) in the original sample, until the number of

examples required for each class is obtained. This process

has to be carried out using knowledge about the actual study

in order to generate plausible samples with the expected dis-

tribution of classes, P(y). This allows us to study whether the

model is able to correctly predict the abundance for a wide

range of expected distributions. In some problems, the

assumption that PðxjyÞ remains constant is too strong; for

instance, in the case under study, in which only top-level

classes are considered. However, in problems with a large

taxonomy, the assumption is probably true for the classes at

the bottom of the taxonomy and the procedure could be

applicable.

Conclusions

This paper analyzes different validation techniques used

in plankton recognition problems, comparing the common
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Fig. 6. Relationship between Accuracy and Bray–Curtis Dissimilarity in LOO experiments (R250:6510, p-value 5 0, S 5 0.0560 for SVM and
R250:7798, p-value 5 0, S 5 0.0548 for RF). (a) SVM, (b) Random Forest.
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methods used in the field. Although studies apply different

approaches, most present similar issues. Results can be very

different when different validation strategies are employed,

leading to results which are not directly comparable. Even

more importantly, when they are used in “production,” the

models learned are likely to provide less satisfactory results

than those estimated in the experimental phase applying tra-

ditional model assessment methods. The reason is that these

techniques, such as standard cross-validation, are devised for

other kinds of learning tasks.

After discussing the shortcomings of these validation

strategies for those problems in which the goal is to predict

a magnitude given new samples, we propose to change the

basic unit of these studies, using the sample as the basic

unit. In keeping with this idea, the present paper proposes

an extension of the well-known leave-one-out method as a

good alternative to obtain accurate estimates at a sample lev-

el. The method is able to estimate classifier performance

more realistically, taking into account the variety of samples

the classifier will face. Using this model assessment method

and applying the Hellinger distance, it has been found that

the difference between the training and test sets exerts a cer-

tain influence over model performance.

Another important conclusion is that it is necessary to

focus efforts on designing new learning algorithms which

are more robust to the differences between training and test

sets. This does not mean to increasing the overall classifier

accuracy (which already may be high enough), but making

the methods more robust to the changes that occur under

real world conditions. These algorithms could be applied in

domains like the one studied here, in which, due to a variety

factors, the data used to train the model does not accurately

represent the final data it will predict. From the point of

view of machine learning researchers, this validation strategy

allows them to test whether their ideas and the algorithms

they have developed to address plankton classification prob-

lems work well when there are changes in data distribution.

In the era of Big Data, in which large collections of data

are obtained for different applications, plankton recognition

also needs to build large datasets for different types of analytic

studies. In this respect, using software and hardware tools

that allow taxonomists to classify instances quickly can help

to obtain these datasets, thereby reducing costs. Ultimately,

machine learning requires data, particularly for difficult learn-

ing problems like plankton recognition. Lack of data leads to

poor models, to poor model assessments or, often, to both.
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