
Deep learning for plankton and
coral classification

Alessandra Lumini
Department of Computer Science and Engineering, University of Bologna,

Bologna, Italy, and

Loris Nanni and Gianluca Maguolo
Department of Information Engineering, University of Padua, Padova, Italy

Abstract
In this paper, we present a study about an automated system for monitoring underwater ecosystems. The
system here proposed is based on the fusion of different deep learning methods. We study how to create an
ensemble based of different Convolutional Neural Network (CNN) models, fine-tuned on several datasets with
the aim of exploiting their diversity. The aim of our study is to experiment the possibility of fine-tuning CNNs
for underwater imagery analysis, the opportunity of using different datasets for pre-training models, the
possibility to design an ensemble using the same architecture with small variations in the training procedure.

Our experiments, performed on 5 well-known datasets (3 plankton and 2 coral datasets) show that the
combination of such different CNN models in a heterogeneous ensemble grants a substantial performance
improvement with respect to other state-of-the-art approaches in all the tested problems. One of the main
contributions of this work is a wide experimental evaluation of famous CNN architectures to report the
performance of both the single CNN and the ensemble of CNNs in different problems. Moreover, we show how
to create an ensemble which improves the performance of the best single model. The MATLAB source code is
freely link provided in title page.

Keywords Convolutional neural network, Fine-tuning, Plankton classification, Coral classification

Paper type Original Article

1. Introduction
Oceans are the essential lifeblood of the Earth: they provide over 70% of the oxygen and over
97%of thewater.Without our oceans, all life, including humans, would not survive. Increases
in human population and their resource use have drastically intensified pressures on marine
ecosystem services, therefore monitoring and maintaining the oceanic ecosystem is essential
to the maintenance of marine habitats. These habitats include plankton population and coral
reefs, which are critical to marine food cycles, habitat provision and nutrient cycling [1].
Planktons are one of the main components of ocean ecosystems, due to their function in the

Plankton
and coral

classification

© Alessandra Lumini, Loris Nanni and Gianluca Maguolo. Published in Applied Computing and
Informatics. Published byEmerald Publishing Limited. This article is published under the Creative Commons
Attribution (CCBY4.0) license.Anyonemayreproduce,distribute, translateandcreatederivativeworksof this
article (forbothcommercial andnon-commercial purposes), subject to full attribution to theoriginal publication
andauthors.The full termsof this licensemaybe seen at http://creativecommons.org/licences/by/4.0/legalcode

We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program.
We used a donated TitanX GPU to train CNNs used in this work.

Declaration of Competing Interest: The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence the work reported in this paper.

Publishers note: The publisher wishes to inform readers that the article “Deep learning for plankton and
coral classification”wasoriginally publishedby thepreviouspublisher ofAppliedComputing and Informatics
and the pagination of this article has been subsequently changed. There has been no change to the content of
the article. This changewas necessary for the journal to transition from the previous publisher to the new one.
The publisher sincerely apologises for any inconvenience caused. To access and cite this article, please use
Lumini, A., Nanni, L., Maguolo, G. (2019), “Deep learning for plankton and coral classification” Applied
Computing and Informatics, Vol. ahead-of-print No. ahead-of-print. https://10.1016/j.aci.2019.11.004.
The original publication date for this paper was 14/11/2019.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2210-8327.htm

Received 22 August 2019
Revised 28 October 2019

Accepted 14 November 2019

Applied Computing and
Informatics

Emerald Publishing Limited
2210-8327

DOI 10.1016/j.aci.2019.11.004

http://creativecommons.org/licences/by/4.0/legalcode
https://10.1016/j.aci.2019.11.004
https://doi.org/10.1016/j.aci.2019.11.004

oceans food chain. Studying variations of plankton distribution gives useful indicators for
oceanic state of health. Coral reefs are among the oldest ecosystems on Earth. They are
created by the accumulation of hard calcium carbonate skeletons that coral species leave
behind when they die. Not only are coral reef biologically rich ecosystems and a source of
natural beauty, they also provide spawning and nursery grounds to many fish populations,
protect coastal communities from storm surges and erosion fromwaves, and givemany other
services that could be lost forever if a coral reef was degraded or destroyed.

Therefore, the study of plankton and coral distribution is crucial to protect marine
ecosystems. In the last years there has been a massive proliferation of digital imagery [2] for
the monitoring of underwater ecosystems. Considering that, typically, less than 2% of the
acquired imagery can be manually observed by a marine expert, this increase in image data
has driven the need for automatic detection and classification systems. Many researchers
explored automated methods for performing accurate automatic annotation of marine
imagery using computer vision and machine learning based techniques [3]: the accuracy of
these systems often depends on the availability of high-quality ground truth dataset.

Deep learning has been certainly one of the most used techniques for underwater imagery
analysis within the recent past [3] and a growing number of works use CNN for underwater
marine object detection and recognition [4,5]. Researchers have increasingly replaced traditional
techniques [6,7], where feature extraction was based on hand-crafted descriptors (such as SIFT
and LBP) and classification was done with Support Vector Machines or Random Forests, in
favor of deep learning approaches [8,9], that exploit Convolutional Neural Networks (CNN) [10]
for image classification. CNNs are multi-layered neural networks whose architecture is
somewhat similar to that of the human visual system: they use restricted receptive fields, and a
hierarchy of layers which progressively extract more and more abstracted features. A great
advantage of CNNs vs traditional approaches is the use of view-invariant representations learnt
from large-scale data which make useless any kind of pre-processing.

The oldest attempts to use deep learning on underwater imagery analysis date back to
2015 in the National Data Science Bowl1 for plankton image classification. The winner of the
competition [11] proposed an ensemble of over 40 convolutional neural networks including
layers designed to increase the network robustness to cyclic variation: this is a valid proof of
the performance advantage of CNN ensembles vs. single models.

Theavailabilityofalargetrainingsethasencouragedotherworks:Pyetal. [12]proposedaCNN
inspired to GoogleNet improved with an inception module; Lee et al. [8] addressed the class-
imbalanceproblembyperformingtransferlearningpre-trainingtheCNNonclass-normalizeddata;
Dai et al. [9] suggested an ad-hocmodel, namedZooplanktoNet inspired byAlexNet andVGGNet;
Dai et al. [13] proposed a hybrid 3-channel CNNwhich takes as input the original image and two
preprocessedversionof it.When largetrainingsetswerenotavailable, automatically labellingwas
proposed [14] basedonDeepActiveLearning. Cui et al. [15] proposeda transfer learningapproach
starting from a model trained on several datasets. In [16] the authors showed that deep learning
outperforms handcrafted features for plankton classification and the use of handcrafted
approaches is useless also in an ensemblewithdeep learnedmethods. In [17] theCNNsareusedas
feature extractors in combination with a Support VectorMachine for plankton classification.

There are even fewer works that use CNNs for coral classification, since it is a very
challenging task due to the high intra-class variance and the fact that some coral species tend
to appear together. In [18] the authors proposed a new handcrafted descriptor for coral
classification and used a CNN only for the classification step. In [19] Mahmood et al. reported
the application of generic CNN representations combined with hand-crafted features for coral
reef classification. Afterwards the same authors [20] proposed a framework for coral
classification, which employs transfer learning from a pre-trained CNN, thus avoiding the
problem of small training set. Beijbom et al. [21] proposed the first architecture specifically
designed for coral classification: a five-channel CNN based on CIFAR architecture.

ACI

Gomez-Rios et al. [22] tested several CNN architectures and transfer learning approaches for
classifying coral image from small datasets.

In this work we study ensembles of different CNN models, fine-tuned on several datasets
with the aim of exploiting their diversity in designing an ensemble of classifiers. We deal
with: (i) the ability of fine-tuning pre-trained CNN for underwater imagery analysis, (ii) the
possibility of using different datasets for pre-training models (iii) the possibility of design an
ensemble using the same architecture with small variations.

Our ensembles are validated using five well-known datasets (three plankton datasets and
two coral datasets) and compared with other state-of-the-art approaches proposed in the
literature. Our ensembles based on the combination of different CNNs grant a substantial
performance improvement with respect to the state-of-the-art results in all the tested
problems. Despite of the complexity in terms of memory requirements, the proposed system
has the great benefit of working well “out-of-the-box” in different problems, requiring few
parameters tuning without specific pre-processing or optimization for each dataset.

The paper is organized as follows. In Section 2 we present the different CNN architectures
used in this work, as well as the training options/methods used for fine-tuning the networks.
In Section 3, we describe the experimental environments, including the five datasets used for
experiments, the testing protocols and the performance indicators; moreover, we suggest and
discuss a set of experiments to evaluate our ensembles. In Section 4 the conclusion is given
along with some proposal for future research.

2. Methods
In this work the deep learned methods are based on fine-tuning well-known CNN
architectures according to different training strategies: one and two round training (see the
end of this section for details), different activation functions, preprocessing before training.
We test several CNN architectures among the most promising models proposed in the
literature; the aim of our experiments is both evaluating the most suitable model for these
classification problems and considering their diversity to design an ensemble.

CNNs are a class of deep neural networks designed for computer vision and image
classification, image clustering by similarity, and object recognition. Among the different
application of CNNs there are face identification, object recognition, medical image analysis,
pedestrian and traffic signs recognition. CNNs are designed to work similarly to the human
brain in visually perceiving the world: they are made of neurons (the basic computation units
of neural networks), that are activatedby specific signals. The neurons of aCNNare stacked in
lines called “layers”, which are the building blocks of a neural network. A CNN is a repeated
concatenation of some classes of (hidden) layers included between the input and output
layers [23]:

� Convolutional layers (CONV) perform feature extraction: a CONV layer makes use of a
set of learnable filters to detect the presence of specific features or patterns in the input
image. Each filter, a matrix with a smaller dimension but the same depth as the input
file, is convolved across the input file to return an activation map.

� Activation layers (ACT), implement functions that help to decide if the neuron would
fire or not. An activation function is a non linear transformation of the input signal.
Since activation functions play a vital role in the training of CNN, several activation
functions have been proposed, including Sigmoid, Tanh and Rectified Linear Unit
(ReLU). In this work we test a variation of the standard ReLU recently proposed in [24]
and named Scaled Exponential Linear Unit (SELU). SELU is basically an exponential
function multiplied by an additional parameter, designed to avoid the problem of
gradient vanishing or explosion.

Plankton
and coral

classification

� Pooling layers (POOL) are subsampling layers used to reduce the number of
parameters and computations in the network with the aim of controlling overfitting.
The most used pooling functions are max, average and sum.

� Fully connected layers (FC) are the ones where the neurons are connected to all the
activations from the previous layer. The aim of a FC layer is to use the activations from
the previous layers for classifying the input image into various classes. Usually the
last FC layer basically takes an input volume and outputs an N dimensional vector,
where N is the number of classes of the target problem.

� Classification layers (CLASS) perform the final classification selecting the most likely
class. They are usually implemented using a SoftMax function in case of single label
problem or using a sigmoid activation functionwith amulticlass output-layer formulti
label problems.

In our experiments,we test and combine the followingdifferent pre-trainedmodels available in the
MATLABDeep Learning Toolbox; all the models are modified changing the last FC and CLASS
layers to fit the number of classes of the target problem, without freezing the weights of the
previous layers. Moreover, a variant of each model is evaluated implementing a SELU activation
function instead of each ReLU layer that follows a convolution. The models evaluated are:

� AlexNet [25]. AlexNet (the winner of the ImageNet ILSVRC challenge in 2012) is a
model including 5 CONV layers followed by 3 FC layers, with some max-POOL layers
in the middle. Fast training is achieved applying ReLU activations after each
convolutional and fully connected layer. AlexNet accepts images of 2273 227 pixels.

� GoogleNet [26]. GoogleNet (the winner of the ImageNet ILSVRC challenge in 2014) is
an evolution of AlexNet based on new “Inception” layers (INC), that are a combination
of some CONV layers at different granularity, whose outputs are concatenated into a
single output vector. This solution makes the network deeper limiting the number of
parameters to be inferred. GoogleNet is composed by 27 layers, but has less
parameters than AlexNet. GoogleNet accepts input images of 224 3 224 pixels.

� InceptionV3 [27]. InceptionV3 is an evolution of GoogleNet (also known as Inception1)
based on the factorization of 73 7 convolutions into 2 or 3 consecutive layers of 33 3
convolutions. InceptionV3 accepts larger images of 299 3 299 pixels.

� VGGNet [28]. VGGNet (the network placed second in ILSVRC2014) is a very deep network
which includes 16 ormore CONV/FC layers, each based on small 33 3 convolution filters,
interspersed byPOOL layers (one for each group of 2 or 3 CONV layers). The total number
of trainable layers is 23 ormore depending on the net: in our experiments we consider two
of the best-performing VGGmodels: VGG-16 and VGG-19, where 16 and 19 stand for the
number of layers. The VGG models accept images of 2243 224 pixels.

� ResNet [29]. ResNet (the winner of ILSVRC 2015) is a network about 8 times deeper
than VGGNet. ResNet introduces a new “network-in-network” architecture using
residual (RES) layers. Moreover, differently from above models, ResNet proposes
global average pooling layers instead of FC layers at the end of the network. The result
is amodel deeper than VGGNet, with a smaller size. In this workwe use ResNet50 (a 50
layer Residual Network) and ResNet101 (a deeper variant of ResNet50). Both models
accept images of 224 3 224 pixels.

� DenseNet [30]. DenseNet is an evolution of ResNet which includes dense connections
among layers: each layer is connected to each following layer in a feed-forward
fashion. Therefore the number of connections increases from the number of layers L to

ACI

L3 (Lþ 1)/2. DenseNet improves the performance of previousmodels at the cost of an
augmented computation requirement. DenseNet accepts images of 224 3 224 pixels.

� MobileNetV2 [31]. MobileNet is a light architecture designed for mobile and embedded
vision applications. The model is based on a streamlined architecture that uses depth-
wise separable convolutions to build light weight deep neural networks. The network
is made of only 54 layers and has an image input size of 224 3 224.

� NasNet [32]. NasNet is a well performing model, whose architecture is predefined, but
blocks or cells are learned by reinforcement learning search method. The basic idea of
NasNet is to learn architectural blocks from a small dataset and transfer them on the
target problem. The network training is quite heavy and requires large images (input
size of 331 3 331).

In this work we tested three different approaches for fine-tuning the models using one or two
training sets of the target problem:

� One round tuning (1R): one round is the standard approach for fine tuning pre-trained
networks; the net is initialized according pre-trained weights (obtained on the large
ImageNet dataset) and retrained using the training set of the target problem.
Differently from other works that fix weights of the first layers, we retrain all layers’
weights using the same learning rate in all the network.

� Two rounds tuning (2R): this strategy involves a first round of fine-tuning in a dataset
similar to the target one and a second round using the training set of the target
problem. The first step consists in fine-tuning the net (initialized according pre-trained
weights) on an external dataset including images from classes not incorporated in the
target problem. The second step is a One round tuning performed starting from the
network tuned on the external dataset. The motivation behind this method is to firstly
teach the network to recognize underwater patterns, which are very different from the
images in ImageNet dataset, then the second round is used to adjust the classification
weights according to the target problem. The plankton and coral datasets used for
preliminary tuning are described in Section 3.

� Incremental tuning (INC): one of the most important parameters in training is the
number of iterations (epochs) used for training. Due to the possibility of overfitting,
increasing the number of iterations does not ensure a performance increase. On the
other hand, changing the number of iteration introduces a variability whichmakes the
networks diverse to each other. Our incremental tuning strategy is specifically
designed to create ensembles and it is based on selecting networks at different training
epochs to be combined together in an ensemble. In this work we perform an
incremental training with steps of 3 epochs extracting 15 networks.

In Figure 1 a schema of the threemethods is reported, where each color is related to a separate
approach. One round tuning involves a single fine tuning: the training set is used to fine-tune
the input model (yellow arrow) and obtain as output the final 1R tuned CNN (yellow dotted
arrow). Two round tuning involves a first tuning of the input model using an external dataset
(green arrow), the resulting “domain trained CNN” (output of the first green dotted arrow) is
re-tuned using the training set to obtain the final 2R CNN. Incremental tuning starts as the 1R
tuning, then sequential tuning steps using the same training set (orange arrows) are
preformed to obtain a final ensemble of CNNs (resulting from dotted orange arrows).

The training options are the following: 30 epochs for training (45 for the INC tuning, at
steps of 3), mini-batch size varying from 16 to 128 observations (depending on the memory
requirements of the model)2, learning rate of 0.001. Unlike most of works published in the

Plankton
and coral

classification

literature, we do not use data augmentation since it did not grant sensible performance
improvements in our experiments.

Each model trained according to the three fine-tuning approaches listed above has been
evaluated as stand-alonemethod and as a component of several ensembles.We tested several
selection rules to design ensembles: the first exploits a diversity of architectures and it is the
fusion of different models trained using the same approach (Fus_1R, Fus_2R. . .), the second
is the fusion of the best stand-alone model (DenseNet) trained using different approaches
(DN_1Rþ 2R, DN_1Rþ 2Rþ INC,. . .), the third and the fourth are two trained rules whose
aim is selecting the best stand-alone models (named SFFS and WS, respectively). SFFS is
based on one of the most performing feature selection approach, i.e. Sequential Forward
Floating Selection [33], which has been adapted for selecting the most performing/
independent classifiers to be added to the ensemble. In the SFFS method, each model to be
included in the final ensemble is selected by adding at each step themodel which provides the
highest incremental of performance to existing subset of models. Then a backtracking step is
performed in order to exclude the worst model from the actual ensemble. Since SFFS requires
a training phase, in order to select the best suited models, we perform a leave-one-out-dataset
selection. The pseudo-code of SFFS selection using leave-one-out dataset is reported in
Figure 2. The second trained rule, named WS, is a heuristic rule for weighed selection: WS
finds a set of weights for all the classifiers and computes theweighted average of the scores of
the classifiers. The selection is performed setting to 0 the weight of some classifier. In order to
forceWS to assign a positive weight to only few classifiers, the loss function is the sum of the
usual crossentropy loss and a regularization term given by LREG ¼ P

wγ where γ < 1. Since
the sum of the weights is constrained to be 1, the regularization loss is minimized when only
one classifier has a positive weight. Hence, the algorithm must find a balance between a high
accuracy and a small number of classifiers. This balance depends on the value of γ The
optimization is performed using Stochastic Gradient Descent, and the training is performed
according to a leave-one-out-dataset protocol.

A detailed description of each ensemble tested in this work is given in Section 3.

Figure 1.
A schema of the three
fine-tuning
approaches: filled
arrows denote input for
training, dotted arrows
denotes output flows
(trained models). Each
color is related to a
different approach.
Yellow arrows are
related to 1R tuning,
green arrows to 2R
tuning, orange ones to
INC tuning. (For
interpretation of the
references to color in
this figure legend, the
reader is referred to the
web version of this
article.)

ACI

3. Experiments
In order to validate our approaches we perform experiments on five well-known datasets
(three plankton datasets and two coral datasets): for plankton classification we use the same
three datasets used by [7]3, while for coral classification we use two coral datasets tested
in [22]4

� WHOI is a dataset containing 6600 greyscale images stored in tiff format. The images,
acquired by Imaging FlowCytobot from Woods Hole Harbor water, belongs to 22
manually categorized plankton classes with equal number of samples for class. In our
experiments, we used the same testing protocol proposed by the authors of [34] based
on the splitting of the dataset between training and testing sets of equal size.

� ZooScan is a small dataset of 3771 greyscale images acquired using the Zooscan
technology from the Bay of Villefranche-sur-mer. Since images contain artifacts (due
to manual segmentation), all the images have been automatically cropped before
classification. The images belong to 20 classes with variable number of samples for
each class. In this work we use the same testing protocol proposed by [7]: 2-fold cross
validation.

� Kaggle is a subset, selected by the authors of [7], of the large dataset acquired by ISIIS
technology in the Straits of Florida and used for the National Data Science Bowl 2015
competition. The selected subset includes 14,374 greyscale images from 38 classes.
The distribution among classes is not uniform, but each class has at least 100 samples.
In this work we use the same testing protocol proposed by [7]: 5-fold cross validation.

� EILAT is a coral dataset containing 1123 RGB image patches of size 64 3 64. The
patches are cut out from larger images acquired from coral reefs near Eilat in the Red
Sea. The dataset is divided into 8 classes characterized by imbalanced distribution. In
this work we use the same testing protocol proposed by [22]: 5-fold cross validation.

� RSMAS is a small coral dataset including 766 RGB image patches of size 256 3 256.
The patches are cut out from larger images acquired by the Rosenstiel School of
Marine and Atmospheric Sciences of the University of Miami. These images were
taken using different cameras in different places. The dataset is divided into 14

Figure 2.
Pseudo-code of SFFS
trained using leave-

one-out-dataset.

Plankton
and coral

classification

imbalanced classes. In this work we use the same testing protocol proposed by [22]:
5-fold cross validation.

For the 2-rounds trainingwe used a further training dataset for the plankton problems, obtained
by fusing the images from the dataset used for the National Data Science Bowl and not included
in the Kaggle dataset (15962 images from 83 classes) and the dataset “Esmeraldo” (11005
samples, 13 classes) obtained from the Zooscan [35] site5. For the coral problems we simply
perform the first round training using the coral dataset not used for testing: EILAT for RSMAS
and vice versa. In Figure 2 some sample images (2 images per class) from the five datasets are
shown. From top to bottom: WHOI, Zooscan, Kaggle, EILAT and RSMAS.

In all the experiments the class distribution has not been maintained when splitting the
dataset between training and testing, in order to better deal with the dataset drift problem,
i.e. the variation of distribution between training and test set which often causes performance
degradation (e.g. [36]). Moreover, wewish to stress that our experiments have been carried out
without ad hoc preprocessing for each dataset.

The evaluation of the proposed approaches and the comparison with the literature is
performed according to two of the most used performance indicators in the plankton and
coral recognition problems: F-measure and accuracy. In statistical analysis of binary
classification, the F-measure (also known as F-score) is a measure of a test’s accuracy
calculated as the harmonicmean of precision and recall. To extend the definition of F-measure
to amulti-class problem the performance indicator is evaluated as the two-class value (one-vs-
all) averaged on the number of the classes. Given C confusionmatricesMc related to the C one-
vs-all problems, i.e. 2 3 2 tables including the number of true positive samples (TPc), the
number of true negatives (TNc), the number of false positives (FPc) and false negatives (FNc)
for each class c ∈ [1..C], multi-class F-measure is defined as:

� F-Measure is the harmonic mean of precision and recall, FC ¼ PC$RC

PCþRC
, F ¼ 1

C

P
cFC

� Accuracy is the ratio between the number of true predictions and the total number of
samples.

� AC ¼ TPCþTNC

TPCþFNCþFPCþTNC
, A ¼ 1

C

P
cAC.

The first experiment exhaustively evaluates the ten CNNmodels according to the One round
fine-tuning strategy. Since CNNs require input images at fixed size, we compare 2 different
strategies for resizing: square resize (SqR) pads the image to square size before resizing to the
CNN input size, padding (Pad) simply pads the image to the CNN input size (only in few cases
where the size of the image is larger than the CNN input size, the image is resized). Padding is
performed adding white pixels to plankton images, but it is not suited for RGB coral images,
therefore we use tiling (Tile) in the 2 coral datasets, consisting in replicating the starting
image to a standard size (256 3 256) and then resizing.

Table 1 reports the performance (in terms of F-measure) obtained by different models,
fine-tuned according to the 1R strategy. The results of all the CNNs were obtained using
Stochastic Gradient Descent as optimizer, with a fixed learning rate of 0.001. The last two
rows in Table 1 report the classification results obtained by the fusion at score level of the
above approaches:

� Fus_SqR=Fus_PT: is the sum rule among the models trained using the same resizing
strategy.

� Fus_1R: is the sum rule among Fus_SqRþ Fus_PT

DenseNet is the best performing model (Table 1), while NasNet, which has been proved to be
one of the most performing architecture in several problems [32], works worse than expected.
The reason may be that its automatic block learning is overfitted in ImageNet. Another

ACI

1R
Dataset WHOI ZooScan Kaggle Eilat RSMAS
Resize Strategy SqR Pad SqR Pad SqR Pad SqR Tile SqR Tile

Model AlexNet 0.923 0.900 0.804 0.825 0.872 0.835 0.975 0.973 0.947 0.947
GoogleNet 0.935 0.931 0.836 0.841 0.890 0.869 0.978 0.981 0.974 0.967
InceptionV3 0.947 0.939 0.843 0.856 0.904 0.869 0.966 0.969 0.963 0.952
VGG16 0.940 0.936 0.847 0.863 0.890 0.881 0.983 0.979 0.971 0.964
VGG19 0.939 0.937 0.840 0.848 0.890 0.873 0.978 0.981 0.971 0.955
ResNet50 0.939 0.929 0.847 0.834 0.898 0.871 0.967 0.981 0.970 0.965
ResNet101 0.938 0.944 0.848 0.825 0.904 0.887 0.969 0.963 0.974 0.960
DenseNet 0.949 0.945 0.878 0.851 0.912 0.887 0.969 0.968 0.979 0.973
NasNet 0.950 0.943 0.861 0.834 0.904 0.887 0.939 0.954 0.944 0.948
MobileNetV2 0.927 0.931 0.819 0.807 0.886 0.859 0.950 0.952 0.942 0.947

Ensemble Fus_SqR/ Fus_PT 0.953 0.950 0.888 0.886 0.925 0.912 0.986 0.989 0.989 0.988
Fus_1R 0.954 0.894 0.924 0.990 0.994

T
a
b
le

1
.

F
-m

easu
re

ob
tain

ed
from

d
ifferen

t
C
N
N

m
od
els

(1R
train

in
g
),

v
ary

in
g
th
e
resizin

g
strateg

y
.

P
lan

k
ton

an
d
coral

classification

interesting observation from Table 1 is that the performance of single architectures can be
further improved by ensemble approaches. Even the lightweight MobileNetv2, which is one
of the worst performing architecture in these datasets, is useful in the ensemble (wrt results
reported in [16] where MobileNetV2 was not considered). Since SqR is the resizing strategy
that works better in most of the datasets and models, we fixed it for the following
experiments. Anyway, it is interesting to note that the fusion among scores obtained from
different resizing strategies grants better results than other ensembles.

In Tables 2 and 3 exhaustive experiments obtained from different CNN models, using the
following methods, are reported (NasNet is excluded for computational reasons): 1R (simple
fine tuning using SqR resizing strategy), 2R (2 rounds tuning using SqR resizing strategy),
INC (ensemble of models obtained by incremental training), SELU (a variation of each model
based on SELU activation, trained by 1R).

In Table 4 the results obtained by several ensembles are reported. We consider both the
ensembles obtained fusing all the CNN models trained with the same strategy (named
“Fus_*”) and the fusion of the best single model DenseNet (named “DN_*”) trained according
to different approaches:

� Fus_1R is the fusion (already reported in Table 1) among the models trained by 1R
tuning

� Fus_2R is the fusion among the models trained by 2R tuning

� Fus_INC is the fusion of the ensembles obtained by incremental training

� Fus_SELU is the fusion among the models modified by means of SELU activation
layers.

� DN_1R is the fusion among the two DenseNet models fine-tuned by 1R tuning using
two resizing strategies (SqR þ Pad/Tile)

� DN_1Rþ 2R is the fusion among DN_1R and the DenseNet model trained by 2R
tuning

� DN_1Rþ 2Rþ INC is the fusion among DN_1Rþ 2R and the INC version of
DenseNet

� DN_1Rþ 2Rþ INCþ SELU is the fusion among the above ensemble and the SELU
version of DenseNet

The last column of Table 4 shows the Rank of the average rank, which is obtained by ranking
methods for each dataset, averaging the results and ranking again the approaches.

From the results in Tables 2 and 3 it is clear that a single fine tuning is enough for the
tested problem, maybe because the datasets used in the first round tuning are not sufficiently
similar to the target problem ormore probably because the dimension of the training set of the
target problem is large enough to perform training. The INC version of each model slightly
improves the performance in some cases but does not grant a substantial advantage. As to
SELU, it works better than ReLU only in few cases and does not work in VGG models.
Anyway from the ensembles of Table 4 we can see that the use of a preliminary training (2R)
or other variations allows to create classifiers diverse from 1R and their fusion can
significantly improve the performance in these classification problems. Clearly the ensembles
of different CNN models (Fus_*) strongly outperform the stand-alone CNNs in all the five
tested datasets. However, due to computational reasons, we also considered lighter ensembles
based on a single architecture (we selected the most performing one, i.e. DenseNet): it is
interesting to note that DN_1Rþ 2R obtains a very good performance using only three
networks.

ACI

Dataset WHOI ZooScan Kaggle
Method 1R 2R INC SELU 1R 2R INC SELU 1R 2R INC SELU

AlexNet 0.923 0.920 0.914 0.914 0.804 0.839 0.816 0.813 0.872 0.880 0.882 0.879
GoogleNet 0.935 0.940 0.935 0.941 0.836 0.854 0.835 0.861 0.890 0.894 0.965 0.890
InceptionV3 0.947 0.944 0.953 0.941 0.843 0.849 0.863 0.861 0.904 0.909 0.910 0.907
VGG16 0.940 0.929 0.940 – 0.847 0.840 0.853 – 0.890 0.887 0.904 –
VGG19 0.939 0.930 0.933 – 0.840 0.831 0.846 – 0.890 0.871 0.914 –
ResNet50 0.939 0.932 0.936 0.928 0.847 0.863 0.841 0.847 0.898 0.903 0.908 0.903
ResNet101 0.938 0.938 0.941 0.937 0.848 0.869 0.837 0.843 0.904 0.904 0.909 0.909
DenseNet 0.949 0.947 0.951 0.882 0.878 0.882 0.876 0.763 0.912 0.914 0.913 0.853
MobileNetV2 0.927 0.924 0.935 0.928 0.819 0.823 0.848 0.833 0.886 0.892 0.901 0.896

T
a
b
le

2
.

F
-m

easu
re

ob
tain

ed
from

d
ifferen

t
C
N
N

m
od
els

u
sin

g
th
e

follow
in
g
m
eth

od
s
on

th
e
P
lan

k
ton

d
atasets

(V
G
G
16

an
d
V
G
G
19

d
o

n
ot

con
v
erg

e
u
sin

g
S
E
L
U
activ

ation
fu
n
ction

).

P
lan

k
ton

an
d
coral

classification

Moreover, we make some experiments using a CNN as feature extractor for training
Support Vector Machine classifiers. We used the same approach proposed in [37] starting
from DenseNet trained by 1R_SqR approach. The results are reported in Table 5: the first row
reports the same performance of DenseNet trained by 1R_SqR of Table 2 (here named
DN_SqR), the second row reports the performance of the ensemble of SVM trained using the
features extracted by DenseNet (DN_SVM); the last row Sum is the sum rule between
DN_SVM and DN_SqR. Unfortunately, the performance improvement is almost negligible,
anyway, a slight improvement is obtained in all the datasets.

Dataset WHOI ZooScan Kaggle EILAT RSMAS

DN_SqR 0.949 0.878 0.912 0.969 0.979
DN_SVM 0.935 0.860 0.911 0.969 0.972
DN_SqR þ DN_SVM 0.951 0.878 0.914 0.970 0.980

Dataset EILAT RSMAS
Method 1R 2R INC SELU 1R 2R INC SELU

AlexNet 0.975 0.954 0.975 0.980 0.947 0.901 0.962 0.943
GoogleNet 0.978 0.966 0.974 0.982 0.974 0.942 0.971 0.969
InceptionV3 0.966 0.971 0.968 0.972 0.963 0.954 0.961 0.969
VGG16 0.983 0.967 0.982 – 0.971 0.952 0.982 –
VGG19 0.978 0.969 0.988 – 0.971 0.922 0.981 –
ResNet50 0.967 0.962 0.975 0.977 0.970 0.961 0.981 0.980
ResNet101 0.969 0.973 0.971 0.983 0.974 0.973 0.988 0.979
DenseNet 0.969 0.972 0.985 0.951 0.979 0.974 0.983 0.930
MobileNetV2 0.950 0.952 0.973 0.966 0.942 0.938 0.966 0.954

Dataset WHOI ZooScan Kaggle EILAT RSMAS Rank

Fus_1R 0.954 0.894 0.924 0.990 0.994 2
Fus_2R 0.952 0.891 0.923 0.991 0.994 5
Fus_INC 0.956 0.886 0.935 0.985 0.989 6
Fus_SELU# 0.943 0.869 0.922 0.987 0.987 10
Fus_2R þ Fus_1R 0.955 0.899 0.926 0.989 0.994 1
Fus_SELU þ Fus_1R 0.951 0.892 0.925 0.989 0.994 4
DN_1R 0.953 0.880 0.917 0.976 0.991 9
DN_1R þ 2R 0.955 0.894 0.924 0.980 0.994 3
DN_1R þ 2R þ INC 0.954 0.880 0.916 0.981 0.991 8
DN_1R þ 2R þ INC þ SELU 0.953 0.891 0.922 0.983 0.993 7

Dataset WHOI ZooScan Kaggle EILAT RSMAS

Fus_2R þ Fus_1R (27 classifiers) 0.955 0.899 0.926 0.989 0.994
SFFS(11 classifiers) 0.958 0.900 0.927 0.990 0.995
SFFS(3 classifiers) 0.954 0.889 0.921 0.979 0.984
WS(11 classifiers) 0.958 0.902 0.927 0.987 0.993
WS(3 classifiers) 0.956 0.895 0.923 0.981 0.985

Table 5.
Transfer learning
performance
(F-measure).

Table 3.
F-measure obtained
from different CNN
models using the
following methods on
the Coral datasets
(VGG16 and VGG19 do
not converge using
SELU activation
function).

Table 4.
F-measure obtained
from different
ensembles using the
following methods on
the five datasets
(# VGG models are not
considered).

Table 6.
F-measure obtained
from reduced
ensembles.

ACI

Figure 3.
Each row includes 8
sample images from
different classes (2

images per class) of the
five datasets: WHOI,

ZooScan, Kaggle,
EILAT, RSMAS.

Plankton
and coral

classification

The last experiment is aimed at reducing the computational requirement of the best
ensemble. To this aim, we tested two “classifier selection approaches” as detailed in Section 2:
SFFS and WS.

The results obtained selecting 11 and 3 classifiers are reported in Table 6 and are very
interesting, since they demonstrate that a reduced set of 11 classifiers improve the
performance with respect to the previous best ensemble. Using less classifiers permits to
develop a lighter approach, SFFS(11 classifiers) has an average memory usage (measured as
the sum of occupation of the CNNs models) of 2026 MB while WS(11 classifiers) has an
average memory usage of 2129 MB, SFFS(3 classifiers) has an average memory usage of
582.8 MB while WS(3 classifiers) has a memory usage of 502 MB, respect the ∼5.5 GB
of Fus_2Rþ Fus_1R.

The performance increase obtained starting from the best stand-alone approach (i.e.
DN_SqR) to our best ensemble is shown in Figure 3where each step towards our best solution
is compared. To show that the performance increase, in case of imbalanced distribution, is not
related only to larger classes, but also to small classes we show in Figure 5 the confusion
matrices obtained byDN_SqRand SFFS(11) on the ZooScan dataset which is the dataset with
larger performance increase (the confusion matrices on the other datasets are included as
Supplemental material). The comparison of the two matrices confirms an improvement
distributed over all the classes (See Figure 4).

Tables 7 and 8 report the comparison among the ensembles proposed in this work and
other state-of-the-art approaches evaluated using the same testing protocol (except for
Opt [18]):

� FUS_Hand [38] is an ensemble of handcrafted descriptors;

� Gaussian SVM [7] is a handcrafted approach based on a SVM classifier.

� MKL [7] is a handcrafted approach based on multiple kernel learning classifiers.

� DeepL [22] is a deep learned approach based on ResNet

� Opt [18] is handcrafted approach based on a novel feature descriptor. The reported
result is the best among all tested feature descriptors.

� EnsHC [39] is an ensemble of several handcrafted features (i.e. completed local binary
pattern, grey level co-occurrence matrix, Gabor filter response, . . .) and classifiers.

The results are reported in terms of F-measures and accuracy depending on the performance
indicator used in the literature. The same ensemble, not adapted in each given dataset,
obtains state of the art results in all the five tested datasets.

The last result reported in this work is the list of methods included in our best ensemble
(i.e. SFFS(11 classifiers)) optimized using all the five datasets:

Figure 4.
Comparison of
different approaches in
terms of F-measure on
the 5 datasets.

ACI

Figure 5.
Comparison of the

confusion matrices for
DN_SqR(left) and

SFFS(11) (right) on the
ZooScan dataset.

Plankton
and coral

classification

1. AlexNet_1R_ Pad/Tile

2. AlexNet_2R

3. vgg16_1R_SqR

4. vgg16_INC

5. googlenet_1R_ Pad/Tile

6. googlenet_INC

7. resnet50_2R

8. inceptionv3_1R_ Pad/Tile

9. densenet201_1R_ Pad/Tile

10. densenet201_2R

11. nasnetlarge_1R_SqR

4. Conclusions
Underwater imagery analysis is a challenging task due to the large number of different
classes, the great intra-class variance, the low extra-class differences and the lightning
variations due to the water. In this paper we studied several deep learned approaches for
plankton and coral classification with the aim of exploiting their diversity for designing an
ensemble of classifiers. Our final system is based on the fine-tuning of several CNN models
trained according to different strategies, which fused together in a final ensemble gain higher
performance than the single CNN. In our experiments, carried out on 5 datasets (3 plankton
and 2 coral ones), we evaluated well-known CNN models fine-tuned on the target problem
using some training variations (different resizing for input images, tuning on similar datasets,
small variations of the original CNN model): the experimental results show that the best

Dataset WHOI ZooScan Kaggle EILAT RSMAS

Fus_2R þ Fus_1R 0.955 0.899 0.926 0.989 0.994
DN_1R þ 2R 0.955 0.894 0.924 0.980 0.994
SFFS (11 classifiers) 0.958 0.900 0.927 0.990 0.995
WS (11 classifiers) 0.958 0.902 0.927 0.987 0.993
FUS_Hand [38] 0.903 0.843 0.849 – –
Gaussian SVM [7] 0.896 0.861 0.830 – –
MKL (3 kernels) [7] 0.900 0.894 0.846 – –
OPT [18]* – – – 0.88 0.863

Dataset WHOI ZooScan Kaggle EILAT RSMAS

Fus_2R þ Fus_1R 95.5 88.6 94.2 98.8 99.1
DN_1R þ 2R 95.5 87.7 93.9 97.9 99.1
SFFS (11 classifiers) 95.8 88.5 94.2 98.9 99.2
WS (11 classifiers) 95.8 88.8 94.2 98.7 99.0
DeepL [22] – – – 97.85 97.95
EnsHC [39] ** – – – 96.9 96.5

Table 7.
Comparison vs. state-
of-the-art methods (F-
measure). * indicates
slightly different
testing protocol (75%
training, 25%test).

Table 8.
Comparison vs. state-
of-the-art methods
(Accuracy).
** indicates a different
testing protocol: 10-
fold cross validation.

ACI

stand-alone model for most of the target datasets is DenseNet, anyway the combination of
several CNNs in an ensemble grants a substantial performance improvement with respect to
the single best model.

In order to reduce the complexity of the resulting ensemble, we used a feature selection
approach aimed at selecting the best classifiers to be included in the fusion: the final result is a
lighter version of the ensemble including only 11 classifiers which outperforms all the other
ensembles proposed.

All the MATLAB code used in our experiments will be freely available in our GitHub
repository (https://github.com/LorisNanni) in order to reproduce the experiments reported
and for future comparisons.

Notes
1 https://www.kaggle.com/c/datasciencebowl
2 AlexNet, Vgg16, Vgg19, GoogleNet, MobileNetV2: 128; ResNet50: 32; ResNet101, Inceptionv3: 16,

NasNet:8
3 Available from https://github.com/zhenglab/PlanktonMKL/tree/master/Dataset
4 Available from https://data.mendeley.com/datasets/86y667257h/2
5 http://www.zooscan.obs-vlfr.fr/article.php3?id_article5115 (training) þ http://www.zooscan.obs-

vlfr.fr/article.php3?id_article5117 (test)

References

[1] A.W.D. Larkum, R.J. Orth, C.M. Duarte, Seagrasses: Biology, Ecology and Conservation, 2006. doi:
10.1007/978-1-4020-2983-7.

[2] R.J. Olson, H.M. Sosik, A submersible imaging-in-flow instrument to analyze nano-and
microplankton: Imaging FlowCytobot, Limnol. Oceanogr. Methods 5 (2007) 195–203, http://dx.
doi.org/10.4319/lom.2007.5.195.

[3] M. Moniruzzaman, S.M.S. Islam, M. Bennamoun, P. Lavery, Deep learning on underwater marine
object detection: A survey, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), 2017: pp. 150–160. doi:10.1007/978-3-319-70353-4_13.

[4] H. Qin, X. Li, Z. Yang, M. Shang, When underwater imagery analysis meets deep learning: A
solution at the age of big visual data, in: Ocean. 2015 – MTS/IEEE Washingt., 2016.

[5] D. Rathi, S. Jain, S. Indu, Underwater Fish Species Classification using Convolutional Neural
Network and Deep Learning, in: 2017 9th Int. Conf. Adv. Pattern Recognition, ICAPR 2017, 2018.
doi:10.1109/ICAPR.2017.8593044.

[6] F. Zhao, F. Lin, H.S. Seah, Binary SIPPER plankton image classification using random subspace,
Neurocomputing 73 (2010) 1853–1860, http://dx.doi.org/10.1016/j.neucom.2009.12.033.

[7] H. Zheng, R. Wang, Z. Yu, N. Wang, Z. Gu, B. Zheng, Automatic plankton image classification
combining multiple view features via multiple kernel learning, BMC Bioinformatics 18 (2017) 1–18,
http://dx.doi.org/10.1186/s12859-017-1954-8.

[8] H. Lee, M. Park, J. Kim, Plankton classification on imbalanced large scale database via
convolutional neural networks with transfer learning, in: Proc. - Int. Conf. Image Process. ICIP,
2016: pp. 3713–3717. doi: 10.1109/ICIP.2016.7533053.

[9] J. Dai, R. Wang, H. Zheng, G. Ji, X. Qiao, ZooplanktoNet: Deep convolutional network for zooplankton
classification, in: Ocean. 2016 - Shanghai, 2016. doi: 10.1109/OCEANSAP.2016.7485680.

[10] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, et al., Recent advances in convolutional
neural networks, Pattern Recognit. 77 (2018) 354–377, http://dx.doi.org/10.1016/J.PATCOG.2017.
10.013.

Plankton
and coral

classification

https://github.com/LorisNanni
https://www.kaggle.com/c/datasciencebowl
https://github.com/zhenglab/PlanktonMKL/tree/master/Dataset
https://data.mendeley.com/datasets/86y667257h/2
http://www.zooscan.obs-vlfr.fr/article.php3%3Fid_article%3D115
http://www.zooscan.obs-vlfr.fr/article.php3%3Fid_article%3D115
http://www.zooscan.obs-vlfr.fr/article.php3%3Fid_article%3D117
http://www.zooscan.obs-vlfr.fr/article.php3%3Fid_article%3D117
http://www.zooscan.obs-vlfr.fr/article.php3%3Fid_article%3D117
https://doi.org/10.1007/978-1-4020-2983-7
http://dx.doi.org/10.4319/lom.2007.5.195
http://dx.doi.org/10.4319/lom.2007.5.195
https://doi.org/10.1007/978-3-319-70353-4_13
https://doi.org/10.1109/ICAPR.2017.8593044
http://dx.doi.org/10.1016/j.neucom.2009.12.033
http://dx.doi.org/10.1186/s12859-017-1954-8
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1109/OCEANSAP.2016.7485680
http://dx.doi.org/10.1016/J.PATCOG.2017.10.013
http://dx.doi.org/10.1016/J.PATCOG.2017.10.013

[11] S. Dieleman, J. De Fauw, K. Kavukcuoglu, Exploiting Cyclic Symmetry in Convolutional Neural
Networks, CoRR. abs/1602.0 (2016). http://arxiv.org/abs/1602.02660.

[12] O. Py, H. Hong, S. Zhongzhi, Plankton classification with deep convolutional neural networks, in:
2016 IEEE Inf. Technol. Networking, Electron. Autom. Control Conf., 2016: pp. 132–136. doi:10.
1109/ITNEC.2016.7560334.

[13] J. Dai, Z. Yu, H. Zheng, B. Zheng, N. Wang, A Hybrid Convolutional Neural Network for Plankton
Classification, in: C.-S. Chen, J. Lu, K.-K. Ma (Eds.), Comput. Vis. – ACCV 2016 Work., Springer
International Publishing, Cham, 2017: pp. 102–114.

[14] E. Bochinski, G. Bacha, V. Eiselein, T.J.W. Walles, J.C. Nejstgaard, T. Sikora, Deep Active
Learning for In Situ Plankton Classification, in: Z. Zhang, D. Suter, Y. Tian, A. Branzan Albu, N.
Sid�ere, H. Jair Escalante (Eds.), Pattern Recognit. Inf. Forensics, Springer International
Publishing, Cham, 2019: pp. 5–15.

[15] F.C.M. Rodrigues, N.S.T. Hirata, A.A. Abello, L.T.D. La Cruz, R.M. Lopes, R.H. Jr., Evaluation of
Transfer Learning Scenarios in Plankton Image Classification, in: Proc. 13th Int. Jt. Conf. Comput.
Vision, Imaging Comput. Graph. Theory Appl. Vol. 5 VISAPP, SciTePress, 2018: pp. 359–366. doi:
10.5220/0006626703590366.

[16] A. Lumini, L. Nanni, Deep learning and transfer learning features for plankton classification,
Ecol. Inform. (2019), http://dx.doi.org/10.1016/j.ecoinf.2019.02.007.

[17] K. Cheng, X. Cheng, Y. Wang, H. Bi, M.C. Benfield, Enhanced convolutional neural network for
plankton identification and enumeration, PLoS One (2019) http://dx.doi.org/10.1371/journal.pone.
0219570.

[18] A.B.M. N, D. Dharma, Coral reef image/video classification employing novel octa-angled pattern
for triangular sub region and pulse coupled convolutional neural network (PCCNN), Multimed.
Tools Appl. 77 (2018) 31545–31579. doi:10.1007/s11042-018-6148-5.

[19] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, et al., Coral classification
with hybrid feature representations, Proc. – Int. Conf. Image Process. ICIP (2016), http://dx.doi.
org/10.1109/ICIP.2016.7532411.

[20] A. Mahmood, M. Bennamoun, S. An, F.A. Sohel, F. Boussaid, R. Hovey, et al., Deep image
representations for coral image classification, IEEE J. Ocean. Eng. (2019), http://dx.doi.org/10.
1109/JOE.2017.2786878.

[21] O. Beijbom, T. Treibitz, D.I. Kline, G. Eyal, A. Khen, B. Neal, et al., Improving automated
annotation of benthic survey images using wide-band fluorescence, Sci. Rep. (2016), http://dx.doi.
org/10.1038/srep23166.

[22] A. G�omez-R�ıos, S. Tabik, J. Luengo, A.S.M. Shihavuddin, B. Krawczyk, F. Herrera, Towards
highly accurate coral texture images classification using deep convolutional neural networks and
data augmentation, Expert Syst. Appl. (2019), http://dx.doi.org/10.1016/j.eswa.2018.10.010.

[23] A. Goodfellow, Ian, Bengio, Yoshua, Courville, Deep Learning, MIT Press. (2016). http://www.
deeplearningbook.org/.

[24] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-Normalizing Neural Networks, in:
NIPS, 2017. http://arxiv.org/abs/1706.02515 (accessed June 19, 2019).

[25] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural
networks, Adv. Neural Inf. Process. Syst. (2012) 1–9, http://dx.doi.org/10.1016/j.protcy.2014.09.007.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with
convolutions, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2015: pp. 1–9. doi:
10.1109/CVPR.2015.7298594.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the Inception Architecture for
Computer Vision, in: 2016 IEEE Conf. Comput. Vis. Pattern Recognit., 2016: pp. 2818–2826. doi:
10.1109/CVPR.2016.308.

[28] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition,
Int. Conf. Learn. Represent. (2015) 1–14, http://dx.doi.org/10.1016/j.infsof.2008.09.005.

ACI

http://arxiv.org/abs/1602.02660
https://doi.org/10.1109/ITNEC.2016.7560334
https://doi.org/10.1109/ITNEC.2016.7560334
https://doi.org/10.5220/0006626703590366
http://dx.doi.org/10.1016/j.ecoinf.2019.02.007
http://dx.doi.org/10.1371/journal.pone.0219570
http://dx.doi.org/10.1371/journal.pone.0219570
https://doi.org/10.1007/s11042-018-6148-5
http://dx.doi.org/10.1109/ICIP.2016.7532411
http://dx.doi.org/10.1109/ICIP.2016.7532411
http://dx.doi.org/10.1109/JOE.2017.2786878
http://dx.doi.org/10.1109/JOE.2017.2786878
http://dx.doi.org/10.1038/srep23166
http://dx.doi.org/10.1038/srep23166
http://dx.doi.org/10.1016/j.eswa.2018.10.010
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://arxiv.org/abs/1706.02515
http://dx.doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1016/j.infsof.2008.09.005

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE
Conf. Comput. Vis. Pattern Recognit., 2016: pp. 770–778. doi:10.1109/CVPR.2016.90.

[30] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional
networks, in: Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017. doi:10.
1109/CVPR.2017.243.

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, MobileNetV2: Inverted Residuals and
Linear Bottlenecks, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2018. doi:
10.1109/CVPR.2018.00474.

[32] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning Transferable Architectures for Scalable
Image Recognition, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2018. doi:
10.1109/CVPR.2018.00907.

[33] P. Pudil, J. Novovi�cov�a, J. Kittler, Floating search methods in feature selection, Pattern Recognit.
Lett. (1994) http://dx.doi.org/10.1016/0167-8655(94)90127-9.

[34] H.M. Sosik, R.J. Olson, Automated taxonomic classification of phytoplankton sampled with
imaging-in-flow cytometry, Limnol. Oceanogr. Methods 5 (2007) 204–216, http://dx.doi.org/10.
4319/lom.2007.5.204.

[35] G. Gorsky, M.D. Ohman, M. Picheral, S. Gasparini, L. Stemmann, J.B. Romagnan, et al., Digital
zooplankton image analysis using the ZooScan integrated system, J. Plankton Res. 32 (2010) 285–
303, http://dx.doi.org/10.1093/plankt/fbp124.

[36] P. Gonzalez, E. Alvarez, J. Diez, A. Lopez-Urrutia, J.J. del Coz, Validation methods for plankton
image classification systems, Limnol. Oceanogr. Methods 15 (2017) 221–237, http:/dx.doi.org/10.
1002/lom3.10151.

[37] L. Nanni, S. Ghidoni, S. Brahnam, Handcrafted vs. non-handcrafted features for computer vision
classification, Pattern Recognit. 71 (2017) 158–172, http://dx.doi.org/10.1016/j.patcog.2017.05.025.

[38] L. Nanni, A. Lumini, Ocean ecosystems plankton classification, in: M. Hassaballah, K.M. Hosny
(Eds.), Recent Adv. Comput. Vis. Theor. Appl., Springer, 2018.

[39] A.S.M. Shihavuddin, N. Gracias, R. Garcia, A.C.R. Gleason, B. Gintert, Image-based coral reef
classification and thematic mapping, Remote Sens. (2013), http://dx.doi.org/10.3390/rs5041809.

Appendix A
Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.aci.2019.11.004.

Corresponding author
Alessandra Lumini can be contacted at: alessandra.lumini@unibo.it

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Plankton
and coral

classification

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.4319/lom.2007.5.204
http://dx.doi.org/10.4319/lom.2007.5.204
http://dx.doi.org/10.1093/plankt/fbp124
http://dx.doi.org/10.1002/lom3.10151
http://dx.doi.org/10.1002/lom3.10151
http://dx.doi.org/10.1016/j.patcog.2017.05.025
http://dx.doi.org/10.3390/rs5041809
https://doi.org/10.1016/j.aci.2019.11.004
mailto:alessandra.lumini@unibo.it

	ACI-J.ACI.2019.11.004_proof_JERD.pdf
	Deep learning for plankton and coral classification
	Introduction
	Methods
	Experiments
	Conclusions
	Notes
	References
	Supplementary data

