135,823 research outputs found

    The influence of the few: a stable 'oligarchy' controls information flow in house-hunting ants

    Get PDF
    Animals that live together in groups often face difficult choices, such as which food resource to exploit, or which direction to flee in response to a predator. When there are costs associated with deadlock or group fragmentation, it is essential that the group achieves a consensus decision. Here, we study consensus formation in emigrating ant colonies faced with a binary choice between two identical nest-sites. By individually tagging each ant with a unique radio-frequency identification microchip, and then recording all ant-to-ant ‘tandem runs’—stereotyped physical interactions that communicate information about potential nest-sites—we assembled the networks that trace the spread of consensus throughout the colony. Through repeated emigrations, we show that both the order in which these networks are assembled and the position of each individual within them are consistent from emigration to emigration. We demonstrate that the formation of the consensus is delegated to an influential but exclusive minority of highly active individuals—an ‘oligarchy’— which is further divided into two subgroups, each specialized upon a different tandem running role. Finally, we show that communication primarily occurs between subgroups not within them, and further, that such between-group communication is more efficient than within-group communication

    Consensus in Equilibrium: Can One Against All Decide Fairly?

    Get PDF
    Is there an equilibrium for distributed consensus when all agents except one collude to steer the decision value towards their preference? If an equilibrium exists, then an n-1 size coalition cannot do better by deviating from the algorithm, even if it prefers a different decision value. We show that an equilibrium exists under this condition only if the number of agents in the network is odd and the decision is binary (among two possible input values). That is, in this framework we provide a separation between binary and multi-valued consensus. Moreover, the input and output distribution must be uniform, regardless of the communication model (synchronous or asynchronous). Furthermore, we define a new problem - Resilient Input Sharing (RIS), and use it to find an iff condition for the (n-1)-resilient equilibrium for deterministic binary consensus, essentially showing that an equilibrium for deterministic consensus is equivalent to each agent learning all the other inputs in some strong sense. Finally, we note that (n-2)-resilient equilibrium for binary consensus is possible for any n. The case of (n-2)-resilient equilibrium for multi-valued consensus is left open

    The philosophical significance of binary categories in Habermas’s discourse ethics

    Get PDF
    The philosophical programme associated with the discourse ethics of JĂŒrgen Habermas has been widely discussed in the literature. The fact that Habermas has devoted a considerable part of his work to the elaboration of this philosophical programme indicates that discourse ethics can be regarded as a cornerstone of his communication-theoretic approach to society. In essence, Habermas conceives of discourse ethics as a philosophical framework which derives the coordinative power of social normativity from the discursive power of communicative rationality. Although there is an extensive literature on Habermas’s communication-theoretic account of society, almost no attention has been paid to the fact that the theoretical framework which undergirds his discourse ethics is based on a number of binary conceptual divisions. It is the purpose of this paper to shed light on the philosophical significance of these binary categories in Habermas’s discourse ethics and thereby demonstrate that their complexity is indicative of the subject’s tension-laden immersion in social reality

    Consensus, Cohesion and Connectivity

    Full text link
    Social life clusters into groups held together by ties that also transmit information. When collective problems occur, group members use their ties to discuss what to do and to establish an agreement, to be reached quick enough to prevent discounting the value of the group decision. The speed at which a group reaches consensus can be predicted by the algebraic connectivity of the network, which also imposes a lower bound on the group's cohesion. This specific measure of connectivity is put to the test by re-using experimental data, which confirm the prediction

    Decentralized dynamic task allocation for UAVs with limited communication range

    Full text link
    We present the Limited-range Online Routing Problem (LORP), which involves a team of Unmanned Aerial Vehicles (UAVs) with limited communication range that must autonomously coordinate to service task requests. We first show a general approach to cast this dynamic problem as a sequence of decentralized task allocation problems. Then we present two solutions both based on modeling the allocation task as a Markov Random Field to subsequently assess decisions by means of the decentralized Max-Sum algorithm. Our first solution assumes independence between requests, whereas our second solution also considers the UAVs' workloads. A thorough empirical evaluation shows that our workload-based solution consistently outperforms current state-of-the-art methods in a wide range of scenarios, lowering the average service time up to 16%. In the best-case scenario there is no gap between our decentralized solution and centralized techniques. In the worst-case scenario we manage to reduce by 25% the gap between current decentralized and centralized techniques. Thus, our solution becomes the method of choice for our problem
    • 

    corecore