227 research outputs found

    Haptic-Based Shared-Control Methods for a Dual-Arm System

    Get PDF
    We propose novel haptic guidance methods for a dual-arm telerobotic manipulation system, which are able to deal with several different constraints, such as collisions, joint limits, and singularities. We combine the haptic guidance with shared-control algorithms for autonomous orientation control and collision avoidance meant to further simplify the execution of grasping tasks. The stability of the overall system in various control modalities is presented and analyzed via passivity arguments. In addition, a human subject study is carried out to assess the effectiveness and applicability of the proposed control approaches both in simulated and real scenarios. Results show that the proposed haptic-enabled shared-control methods significantly improve the performance of grasping tasks with respect to the use of classic teleoperation with neither haptic guidance nor shared control

    Towards a self-collision aware teleoperation framework for compound robots

    Get PDF
    This work lays the foundations of a self-collision aware teleoperation framework for compound robots. The need of an haptic enabled system which guarantees self-collision and joint limits avoidance for complex robots is the main motivation behind this paper. The objective of the proposed system is to constrain the user to teleoperate a slave robot inside its safe workspace region through the application of force cues on the master side of the bilateral teleoperation system. A series of simulated experiments have been performed on the Kuka KMRiiwa mobile robot; however, due to its generality, the framework is prone to be easily extended to other robots. The experiments have shown the applicability of the proposed approach to ordinary teleoperation systems without altering their stability properties. The benefits introduced by this framework enable the user to safely teleoperate whichever complex robotic system without worrying about self-collision and joint limitations

    Evaluation of haptic guidance virtual fixtures and 3D visualization methods in telemanipulation—a user study

    Get PDF
    © 2019, The Author(s). This work presents a user-study evaluation of various visual and haptic feedback modes on a real telemanipulation platform. Of particular interest is the potential for haptic guidance virtual fixtures and 3D-mapping techniques to enhance efficiency and awareness in a simple teleoperated valve turn task. An RGB-Depth camera is used to gather real-time color and geometric data of the remote scene, and the operator is presented with either a monocular color video stream, a 3D-mapping voxel representation of the remote scene, or the ability to place a haptic guidance virtual fixture to help complete the telemanipulation task. The efficacy of the feedback modes is then explored experimentally through a user study, and the different modes are compared on the basis of objective and subjective metrics. Despite the simplistic task and numerous evaluation metrics, results show that the haptic virtual fixture resulted in significantly better collision avoidance compared to 3D visualization alone. Anticipated performance enhancements were also observed moving from 2D to 3D visualization. Remaining comparisons lead to exploratory inferences that inform future direction for focused and statistically significant studies

    TIMS: A Tactile Internet-Based Micromanipulation System with Haptic Guidance for Surgical Training

    Full text link
    Microsurgery involves the dexterous manipulation of delicate tissue or fragile structures such as small blood vessels, nerves, etc., under a microscope. To address the limitation of imprecise manipulation of human hands, robotic systems have been developed to assist surgeons in performing complex microsurgical tasks with greater precision and safety. However, the steep learning curve for robot-assisted microsurgery (RAMS) and the shortage of well-trained surgeons pose significant challenges to the widespread adoption of RAMS. Therefore, the development of a versatile training system for RAMS is necessary, which can bring tangible benefits to both surgeons and patients. In this paper, we present a Tactile Internet-Based Micromanipulation System (TIMS) based on a ROS-Django web-based architecture for microsurgical training. This system can provide tactile feedback to operators via a wearable tactile display (WTD), while real-time data is transmitted through the internet via a ROS-Django framework. In addition, TIMS integrates haptic guidance to `guide' the trainees to follow a desired trajectory provided by expert surgeons. Learning from demonstration based on Gaussian Process Regression (GPR) was used to generate the desired trajectory. User studies were also conducted to verify the effectiveness of our proposed TIMS, comparing users' performance with and without tactile feedback and/or haptic guidance.Comment: 8 pages, 7 figures. For more details of this project, please view our website: https://sites.google.com/view/viewtims/hom

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Virtual Reality via Object Pose Estimation and Active Learning:Realizing Telepresence Robots with Aerial Manipulation Capabilities

    Get PDF
    This paper presents a novel telepresence system for advancing aerial manipulation indynamic and unstructured environments. The proposed system not only features a haptic device, but also a virtual reality (VR) interface that provides real-time 3D displays of the robot’s workspace as well as a haptic guidance to its remotely located operator. To realize this, multiple sensors, namely, a LiDAR, cameras, and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines are devised for industrial objects of both known and unknown geometries. We further propose an active learning pipeline in order to increase the sample efficiency of a pipeline component that relies on a Deep Neural Network (DNN) based object detector. All these algorithms jointly address various challenges encountered during the execution of perception tasks in industrial scenarios. In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Method-ologically, these results commonly suggest how an awareness of the algorithms’ own failures and uncertainty (“introspection”) can be used to tackle the encountered problems. Moreover, outdoor experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator (SAM). As a result, we show the viability of the proposed system in future industrial applications

    A comprehensive review of haptic feedback in minimally invasive robotic liver surgery: Advancements and challenges

    Get PDF
    Background: Liver medical procedures are considered one of the most challenging because of the liver's complex geometry, heterogeneity, mechanical properties, and movement due to respiration. Haptic features integrated into needle insertion systems and other medical devices could support physicians but are uncommon. Additional training time and safety concerns make it difficult to implement in robot-assisted surgery. The main challenges of any haptic device in a teleoperated system are the stability and transparency levels required to develop a safe and efficient system that suits the physician's needs. Purpose: The objective of the review article is to investigate whether haptic-based teleoperation potentially improves the efficiency and safety of liver needle insertion procedures compared with insertion without haptic feedback. In addition, it looks into haptic technology that can be integrated into simulators to train novice physicians in liver procedures. Methods: This review presents the physician's needs during liver interventions and the consequent requirements of haptic features to help the physician. This paper provides an overview of the different aspects of a teleoperation system in various applications, especially in the medical field. It finally presents the state-of-the-art haptic technology in robot-assisted procedures for the liver. This includes 3D virtual models of the liver and force measurement techniques used in haptic rendering to estimate the real-time position of the surgical instrument relative to the liver. Results: Haptic feedback technology can be used to navigate the surgical tool through the desired trajectory to reach the target accurately and avoid critical regions. It also helps distinguish between various textures of liver tissue. Conclusion: Haptic feedback can complement the physician's experience to compensate for the lack of real-time imaging during Computed Tomography guided (CT-guided) liver procedures. Consequently, it helps the physician mitigate the destruction of healthy tissues and takes less time to reach the target.</p

    The classification and new trends of shared control strategies in telerobotic systems: A survey

    Get PDF
    Shared control, which permits a human operator and an autonomous controller to share the control of a telerobotic system, can reduce the operator's workload and/or improve performances during the execution of tasks. Due to the great benefits of combining the human intelligence with the higher power/precision abilities of robots, the shared control architecture occupies a wide spectrum among telerobotic systems. Although various shared control strategies have been proposed, a systematic overview to tease out the relation among different strategies is still absent. This survey, therefore, aims to provide a big picture for existing shared control strategies. To achieve this, we propose a categorization method and classify the shared control strategies into 3 categories: Semi-Autonomous control (SAC), State-Guidance Shared Control (SGSC), and State-Fusion Shared Control (SFSC), according to the different sharing ways between human operators and autonomous controllers. The typical scenarios in using each category are listed and the advantages/disadvantages and open issues of each category are discussed. Then, based on the overview of the existing strategies, new trends in shared control strategies, including the “autonomy from learning” and the “autonomy-levels adaptation,” are summarized and discussed

    Haptic Shared Control in Tele-Manipulation: Effects of Inaccuracies in Guidance on Task Execution

    Get PDF
    Haptic shared control is a promising approach to improve tele-manipulated task execution, by making safe and effective control actions tangible through guidance forces. In current research, these guidance forces are most often generated based on pre-generated, errorless models of the remote environment. Hence such guidance forces are exempt from the inaccuracies that can be expected in practical implementations. The goal of this research is to quantify the extent to which task execution is degraded by inaccuracies in the model on which haptic guidance forces are based. In a human-in-the-loop experiment, subjects (n = 14) performed a realistic tele-manipulated assembly task in a virtual environment. Operators were provided with various levels of haptic guidance, namely no haptic guidance (conventional tele-manipulation), haptic guidance without inaccuracies, and haptic guidance with translational inaccuracies (one large inaccuracy, in the order of magnitude of the task, and a second smaller inaccuracy). The quality of natural haptic feedback (i.e., haptic transparency) was varied between high and low to identify the operator\u27s ability to detect and cope with inaccuracies in haptic guidance. The results indicate that haptic guidance is beneficial for task execution when no inaccuracies are present in the guidance. When inaccuracies are present, this may degrade task execution, depending on the magnitude and the direction of the inaccuracy. The effect of inaccuracies on overall task performance is dominated by effects found for the Constrained Translational Movement, due to its potential for jamming. No evidence was found that a higher quality of haptic transparency helps operators to detect and cope with inaccuracies in the haptic guidance.</p

    Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot

    Full text link
    [EN] High dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method.This research was funded by Generalitat Valenciana (Grants GV/2021/074 and GV/2021/181) and by the SpanishGovernment (Grants PID2020-118071GB-I00 and PID2020-117421RBC21 funded by MCIN/AEI/10.13039/501100011033). This work was also supported byCoordenacao de Aperfeiaoamento de Pessoal de Nivel Superior (CAPES Brasil) under Finance Code 001, by CEFET-MG, and by a Royal Academy of Engineering Chair in Emerging Technologies to YD.Girbés-Juan, V.; Schettino, V.; Gracia Calandin, LI.; Solanes, JE.; Demiris, Y.; Tornero, J. (2022). Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot. Journal on Multimodal User Interfaces. 16(2):219-238. https://doi.org/10.1007/s12193-021-00386-8219238162Hägele M, Nilsson K, Pires JN, Bischoff R (2016) Industrial robotics. Springer, Cham, pp 1385–1422. https://doi.org/10.1007/978-3-319-32552-1_54Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057. https://doi.org/10.1016/j.automatica.2006.06.027Son HI (2019) The contribution of force feedback to human performance in the teleoperation of multiple unmanned aerial vehicles. J Multimodal User Interfaces 13(4):335–342Jones B, Maiero J, Mogharrab A, Aguliar IA, Adhikari A, Riecke BE, Kruijff E, Neustaedter C, Lindeman RW (2020) Feetback: augmenting robotic telepresence with haptic feedback on the feet. In: Proceedings of the 2020 international conference on multimodal interaction, pp 194–203Merrad W, Héloir A, Kolski C, Krüger A (2021) Rfid-based tangible and touch tabletop for dual reality in crisis management context. J Multimodal User Interfaces. https://doi.org/10.1007/s12193-021-00370-2Schettino V, Demiris Y (2019) Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4600–4606Casper J, Murphy RR (2003) Human–robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans Syst Man Cybern Part B (Cybern) 33(3):367–385. https://doi.org/10.1109/TSMCB.2003.811794Chen JY (2010) UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics 53(8):940–950. https://doi.org/10.1080/00140139.2010.500404 (pMID: 20658388.)Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Bettelli M, Calestani D, Zappettini A (2019) Haptic teleoperation of UAV equipped with gamma-ray spectrometer for detection and identification of radio-active materials in industrial plants. In: Tolio T, Copani G, Terkaj W (eds) Factories of the future: the Italian flagship initiative. Springer, Cham, pp 197–214. https://doi.org/10.1007/978-3-319-94358-9_9Santos Carreras L (2012) Increasing haptic fidelity and ergonomics in teleoperated surgery. PhD Thesis, EPFL, Lausanne, pp 1–188. https://doi.org/10.5075/epfl-thesis-5412Hatzfeld C, Neupert C, Matich S, Braun M, Bilz J, Johannink J, Miller J, Pott PP, Schlaak HF, Kupnik M, Werthschützky R, Kirschniak A (2017) A teleoperated platform for transanal single-port surgery: ergonomics and workspace aspects. In: IEEE world haptics conference (WHC), pp 1–6. https://doi.org/10.1109/WHC.2017.7989847Burns JO, Mellinkoff B, Spydell M, Fong T, Kring DA, Pratt WD, Cichan T, Edwards CM (2019) Science on the lunar surface facilitated by low latency telerobotics from a lunar orbital platform-gateway. Acta Astronaut 154:195–203. https://doi.org/10.1016/j.actaastro.2018.04.031Sivčev S, Coleman J, Omerdić E, Dooly G, Toal D (2018) Underwater manipulators: a review. Ocean Eng 163:431–450. https://doi.org/10.1016/j.oceaneng.2018.06.018Abich J, Barber DJ (2017) The impact of human–robot multimodal communication on mental workload, usability preference, and expectations of robot behavior. J Multimodal User Interfaces 11(2):211–225. https://doi.org/10.1007/s12193-016-0237-4Hong A, Lee DG, Bülthoff HH, Son HI (2017) Multimodal feedback for teleoperation of multiple mobile robots in an outdoor environment. J Multimodal User Interfaces 11(1):67–80. https://doi.org/10.1007/s12193-016-0230-yKatyal KD, Brown CY, Hechtman SA, Para MP, McGee TG, Wolfe KC, Murphy RJ, Kutzer MDM, Tunstel EW, McLoughlin MP, Johannes MS (2014) Approaches to robotic teleoperation in a disaster scenario: from supervised autonomy to direct control. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1874–1881. https://doi.org/10.1109/IROS.2014.6942809Niemeyer G, Preusche C, Stramigioli S, Lee D (2016) Telerobotics. Springer, Cham, pp 1085–1108. https://doi.org/10.1007/978-3-319-32552-1_43Li J, Li Z, Hauser K (2017) A study of bidirectionally telepresent tele-action during robot-mediated handover. In: Proceedings—IEEE international conference on robotics and automation, pp 2890–2896. https://doi.org/10.1109/ICRA.2017.7989335Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S (2018) Sfv: reinforcement learning of physical skills from videos. ACM Trans. Graph. 37(6):178:1-178:14. https://doi.org/10.1145/3272127.3275014Coleca F, State A, Klement S, Barth E, Martinetz T (2015) Self-organizing maps for hand and full body tracking. Neurocomputing 147: 174–184. Advances in self-organizing maps subtitle of the special issue: selected papers from the workshop on self-organizing maps 2012 (WSOM 2012). https://doi.org/10.1016/j.neucom.2013.10.041Von Marcard T, Rosenhahn B, Black MJ, Pons-Moll G (2017) Sparse inertial poser: automatic 3d human pose estimation from sparse Imus. In: Computer graphics forum, vol 36. Wiley, pp 349–360Zhao J (2018) A review of wearable IMU (inertial-measurement-unit)-based pose estimation and drift reduction technologies. J Phys Conf Ser 1087:042003. https://doi.org/10.1088/1742-6596/1087/4/042003Malleson C, Gilbert A, Trumble M, Collomosse J, Hilton A, Volino M (2018) Real-time full-body motion capture from video and IMUs. In: Proceedings—2017 international conference on 3D vision, 3DV 2017 (September), pp 449–457. https://doi.org/10.1109/3DV.2017.00058Du G, Zhang P, Mai J, Li Z (2012) Markerless kinect-based hand tracking for robot teleoperation. Int J Adv Robot Syst 9(2):36. https://doi.org/10.5772/50093Çoban M, Gelen G (2018) Wireless teleoperation of an industrial robot by using myo arm band. In: International conference on artificial intelligence and data processing (IDAP), pp 1–6. https://doi.org/10.1109/IDAP.2018.8620789Lipton JI, Fay AJ, Rus D (2018) Baxter’s homunculus: virtual reality spaces for teleoperation in manufacturing. IEEE Robot Autom Lett 3(1):179–186. https://doi.org/10.1109/LRA.2017.2737046Zhang T, McCarthy Z, Jow O, Lee D, Chen X, Goldberg K, Abbeel P (2018) Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In: IEEE international conference on robotics and automation (ICRA), pp 5628–5635. https://doi.org/10.1109/ICRA.2018.8461249Hannaford B, Okamura AM (2016) Haptics. Springer, Cham, pp 1063–1084. https://doi.org/10.1007/978-3-319-32552-1_42Rodríguez J-L, Velàzquez R (2012) Haptic rendering of virtual shapes with the Novint Falcon. Proc Technol 3:132–138. https://doi.org/10.1016/J.PROTCY.2012.03.014Teklemariam HG, Das AK (2017) A case study of phantom omni force feedback device for virtual product design. Int J Interact Des Manuf (IJIDeM) 11(4):881–892. https://doi.org/10.1007/s12008-015-0274-3Karbasizadeh N, Zarei M, Aflakian A, Masouleh MT, Kalhor A (2018) Experimental dynamic identification and model feed-forward control of Novint Falcon haptic device. Mechatronics 51:19–30. https://doi.org/10.1016/j.mechatronics.2018.02.013Georgiou T, Demiris Y (2017) Adaptive user modelling in car racing games using behavioural and physiological data. User Model User-Adapted Interact 27(2):267–311. https://doi.org/10.1007/s11257-017-9192-3Son HI (2019) The contribution of force feedback to human performance in the teleoperation of multiple unmanned aerial vehicles. J Multimodal User Interfaces 13(4):335–342. https://doi.org/10.1007/s12193-019-00292-0Ramírez-Fernández C, Morán AL, García-Canseco E (2015) Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: 2015 9th international conference on pervasive computing technologies for healthcare (PervasiveHealth), pp 280–286. https://doi.org/10.4108/icst.pervasivehealth.2015.260242Saito Y, Raksincharoensak P (2019) Effect of risk-predictive haptic guidance in one-pedal driving mode. Cognit Technol Work 21(4):671–684. https://doi.org/10.1007/s10111-019-00558-3Girbés V, Armesto L, Dols J, Tornero J (2016) Haptic feedback to assist bus drivers for pedestrian safety at low speed. IEEE Trans Haptics 9(3):345–357. https://doi.org/10.1109/TOH.2016.2531686Girbés V, Armesto L, Dols J, Tornero J (2017) An active safety system for low-speed bus braking assistance. IEEE Trans Intell Transp Syst 18(2):377–387. https://doi.org/10.1109/TITS.2016.2573921Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B (2016) A review of simulators with haptic devices for medical training. J Med Syst 40(4):104. https://doi.org/10.1007/s10916-016-0459-8Coles TR, Meglan D, John NW (2011) The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans Haptics 4(1):51–66. https://doi.org/10.1109/TOH.2010.19Okamura AM, Verner LN, Reiley CE, Mahvash M (2010) Haptics for robot-assisted minimally invasive surgery. In: Kaneko M, Nakamura Y (eds) Robotics research. Springer tracts in advanced robotics, vol 66. Springer, Berlin, pp 361–372. https://doi.org/10.1007/978-3-642-14743-2_30Ehrampoosh S, Dave M, Kia MA, Rablau C, Zadeh MH (2013) Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Comput Aided Surg 18(5–6):129–141. https://doi.org/10.3109/10929088.2013.839744Ju Z, Yang C, Li Z, Cheng L, Ma H (2014) Teleoperation of humanoid Baxter robot using haptic feedback. In: 2014 international conference on multisensor fusion and information integration for intelligent systems (MFI). IEEE, pp 1–6. https://doi.org/10.1109/MFI.2014.6997721Clark JP, Lentini G, Barontini F, Catalano MG, Bianchi M, O’Malley MK (2019) On the role of wearable haptics for force feedback in teleimpedance control for dual-arm robotic teleoperation. In: International conference on robotics and automation (ICRA), pp 5187–5193. https://doi.org/10.1109/ICRA.2019.8793652Gracia L, Solanes JE, Muñoz-Benavent P, Miro JV, Perez-Vidal C, Tornero J (2018) Adaptive sliding mode control for robotic surface treatment using force feedback. Mechatronics 52:102–118. https://doi.org/10.1016/j.mechatronics.2018.04.008Zhu D, Xu X, Yang Z, Zhuang K, Yan S, Ding H (2018) Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol Int 120:93–98. https://doi.org/10.1016/j.triboint.2017.12.043Smith C, Karayiannidis Y, Nalpantidis L, Gratal X, Qi P, Dimarogonas DV, Kragic D (2012) Dual arm manipulation—a survey. Robot Auton Syst 60(10):1340–1353. https://doi.org/10.1016/j.robot.2012.07.005Girbés-Juan V, Schettino V, Demiris Y, Tornero J (2021) Haptic and visual feedback assistance for dual-arm robot teleoperation in surface conditioning tasks. IEEE Trans Haptics 14(1):44–56. https://doi.org/10.1109/TOH.2020.3004388Tunstel EW Jr, Wolfe KC, Kutzer MD, Johannes MS, Brown CY, Katyal KD, Para MP, Zeher MJ (2013) Recent enhancements to mobile bimanual robotic teleoperation with insight toward improving operator control. Johns Hopkins APL Tech Digest 32(3):584García A, Solanes JE, Gracia L, Muñoz-Benavent P, Girbés-Juan V, Tornero J (2021) Bimanual robot control for surface treatment tasks. Int J Syst Sci. https://doi.org/10.1080/00207721.2021.1938279Jasim IF, Plapper PW, Voos H (2014) Position identification in force-guided robotic peg-in-hole assembly tasks. Proc CIRP 23((C)):217–222. https://doi.org/10.1016/j.procir.2014.10.077Song HC, Kim YL, Song JB (2016) Guidance algorithm for complex-shape peg-in-hole strategy based on geometrical information and force control. Adv Robot 30(8):552–563. https://doi.org/10.1080/01691864.2015.1130172Kramberger A, Gams A, Nemec B, Chrysostomou D, Madsen O, Ude A (2017) Generalization of orientation trajectories and force-torque profiles for robotic assembly. Robot Auton Syst 98:333–346. https://doi.org/10.1016/j.robot.2017.09.019Pliego-Jiménez J, Arteaga-Pérez MA (2015) Adaptive position/force control for robot manipulators in contact with a rigid surface with unknown parameters. In: European control conference (ECC), pp 3603–3608. https://doi.org/10.1109/ECC.2015.7331090Gierlak P, Szuster M (2017) Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot Auton Syst 95:80–101. https://doi.org/10.1016/j.robot.2017.05.015Solanes JE, Gracia L, Muñoz-Benavent P, Miro JV, Girbés V, Tornero J (2018) Human–robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Trans 80:528–541. https://doi.org/10.1016/j.isatra.2018.05.013Ravandi AK, Khanmirza E, Daneshjou K (2018) Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl Soft Comput 70:864–874. https://doi.org/10.1016/j.asoc.2018.05.048Solanes JE, Gracia L, Muñoz-Benavent P, Esparza A, Miro JV, Tornero J (2018) Adaptive robust control and admittance control for contact-driven robotic surface conditioning. Robot Comput Integr Manuf 54:115–132. https://doi.org/10.1016/j.rcim.2018.05.003Perez-Vidal C, Gracia L, Sanchez-Caballero S, Solanes JE, Saccon A, Tornero J (2019) Design of a polishing tool for collaborative robotics using minimum viable product approach. Int J Comput Integr Manuf 32(9):848–857. https://doi.org/10.1080/0951192X.2019.1637026Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2019) Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot Comput Integr Manuf 57:391–403. https://doi.org/10.1016/j.rcim.2018.12.019Mohammad AEK, Hong J, Wang D, Guan Y (2019) Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications. Robot Comput Integr Manuf 55:65–75. https://doi.org/10.1016/j.rcim.2018.07.005Waldron KJ, Schmiedeler J (2016) Kinematics. Springer, Cham, pp 11–36. https://doi.org/10.1007/978-3-319-32552-1_2Featherstone R, Orin DE (2016) Dynamics. Springer, Cham, pp 37–66. https://doi.org/10.1007/978-3-319-32552-1_3Wen K, Necsulescu D, Sasiadek J (2008) Haptic force control based on impedance/admittance control aided by visual feedback. Multimed Tools Appl 37(1):39–52. https://doi.org/10.1007/s11042-007-0172-1Tzafestas C, Velanas S, Fakiridis G (2008) Adaptive impedance control in haptic teleoperation to improve transparency under time-delay. In: IEEE international conference on robotics and automation, pp 212–219. https://doi.org/10.1109/ROBOT.2008.4543211Chiaverini S, Oriolo G, Maciejewski AA (2016) Redundant robots. Springer, Cham, pp 221–242. https://doi.org/10.1007/978-3-319-32552-1_10Ogata K (1987) Discrete-time control systems. McGraw-Hill, New YorkGarcía A, Girbés-Juan V, Solanes JE, Gracia L, Perez-Vidal C, Tornero J (2020) Human–robot cooperation for surface repair combining automatic and manual modes. IEEE Access 8:154024–154035. https://doi.org/10.1109/ACCESS.2020.301450
    • …
    corecore