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The Classification and New Trends of Shared
Control Strategies in Telerobotic Systems: A Survey

Gaofeng Li†, Qiang Li‡, Chenguang Yang§, Yuan Su†, Zuqiang Yuan], and Xinyu Wu],

Abstract—Shared control, which permits a human operator
and an autonomous controller to share the control of a telerobotic
system, can reduce the operator’s workload and/or improve
performances during the execution of tasks. Due to the great
benefits of combining the human intelligence with the higher
power/precision abilities of robots, the shared control archi-
tecture occupies a wide spectrum among telerobotic systems.
Although various shared control strategies have been proposed,
a systematic overview to tease out the relation among different
strategies is still absent. This survey, therefore, aims to provide
a big picture for existing shared control strategies. To achieve
this, we propose a categorization method and classify the shared
control strategies into 3 categories: Semi-Autonomous control
(SAC), State-Guidance Shared Control (SGSC), and State-Fusion
Shared Control (SFSC), according to the different sharing ways
between human operators and autonomous controllers. The
typical scenarios in using each category are listed and the
advantages/disadvantages and open issues of each category are
discussed. Then, based on the overview of the existing strategies,
new trends in shared control strategies, including the “auton-
omy from learning” and the “autonomy-levels adaptation”, are
summarized and discussed.

Index Terms—Shared Control Strategy, Telerobotic System,
Classification, Semi-Autonomous Control, Cooperative Control

I. INTRODUCTION

TELEROBOTICS, which can be traced back to 1940s
and 1950s, is perhaps one of the earliest research ar-

eas in robotics [1]. Generally, a telerobotic system consists
of at least one leader and one follower1 devices that are
connected via a communication network. It allows a human
operator to perform complex manipulations at a distance, in
order to avoid exposing the human operator to dangerous or
hazardous environments. An embryo of the telerobotic system
was designed by Goertz [2] to handle radioactive material from
behind shielded walls. This system is controlled by an array of
on-off switches to activate various motors and move various
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1Here the conventional “master” and “slave” are all replaced by “leader”

and “follower” to avoid the concern of association to racism and human
subjugation.

axes. However, it is slow and difficult to operate. After that,
Goertz designed a pair of leader-follower robots which are
mechanically linked by gears, linkages, and cables [3]. This
system can allow the operator to use natural hand motions and
transmit forces and vibrations via the connecting structure. It
is considered to be the first truly telerobotic system and laid
the foundations of modern telerobotics. However, limited by
the mechanical connection, this system is difficult to achieve
long-distance teleoperation.

With the development of computer networks, the internet
technology makes it possible to transmit information at a long
distance [4]. As a result, the telerobotic system can achieve
teleoperation beyond visual range [5]. But the time delay
introduced by long-distance communications brings challenges
to the stability of telerobotic systems. To deal with the effects
of time delay, several kinds of theories and methods have
been proposed, e.g., Lyapunov-based analysis [6], network the-
ory [7], wave variables-based method [8], energy tank-based
method [9], and so on. These outcomes enable the telerobotic
system to be applied in a wide spectrum of areas, ranging
from search and rescue [10], space/under-water exploration
[11], robot-assisted medical intervention [12], manipulation in
micro-nano environments [13], and so on.
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Figure 1. The spectrum of the control architectures in telerobotic systems. In
which, the direct control and the autonomous control fall at the two opposite
extremes and the shared control is between them.

As shown in Fig. 1, along with the evolution of telerobotic
systems, the control architecture spans a spectrum, in which
the Direct Control and the Autonomous Control fall at the two
opposite extremes and the Shared Control is between them
[1]. The direct control [14] implies that the remote robot is
directly controlled by the human operator and no intelligence
or autonomy is embedded in the system. Whereas the fully
autonomous control [15], [16] means that the robot is able
to fulfill tasks by relying on its own perception, decision-
making, planning, and executing abilities without any human
intervention. However, due to the unavoidable uncertainties
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and unpredictable events in real world, we are still far from
the fully autonomous robots, except for some extreme simple
tasks in extreme structured environments (e.g., pick-and-place
task in industrial factory). Understandably, the Supervisory
Control is often regarded as the substitution of autonomous
control in many literatures. The supervisory control [17], [18]
indicates that the user’s commands and feedback occur at a
very high level and the robot is required to have a substantial
local intelligence or autonomy.

The shared control [19]–[21], which is between the two
extremes, permits a human operator to share the control
of a robotic system with an autonomous controller. The
autonomous controller is embedded with some amount of
autonomy/intelligence to improve task performances or reduce
the operator’s workload. By sharing the control between a
human operator and an autonomous controller, the shared
control architecture allows to utilize the human’s high-level
intelligence to cope with unknown and unstructured environ-
ments, as well as taking advantage of the robots’ capabilities
in higher power, higher precision, and so on. Not surprisingly,
the shared control becomes an attractive topic since the birth
of telerobotic systems. Abbink et. al. [22] summarized the
common features of shared control across 4 different domains
and proposed a consensus definition for shared control. In
addition, they also provided 3 general axioms for design and
evaluation of shared control solutions. However, the detailed
strategies that how the control is shared between the human
operator and the autonomous controller was not involved.
Recently, various shared control strategies have been proposed
for different purposes. But, a systematic overview to tease out
their relations is still absent.

Among existing literatures, the surveys on other technolo-
gies in telerobotic systems have been provided. The first
group focuses on the control theories to guarantee stabil-
ity or improve transparency. For example, Hokayem and
Spong [23] summarized the historical development of con-
trol theoretic approaches for bilateral telerobotic systems.
Passenberg et. al. provided a classification of EOT-specific
(Environment-, Operator-, or Task-specific) controller in [24].
Zaad and Salcudean [25] analyzed the stability and trans-
parency performance for bilateral telerobotic systems with
impedance/admittance manipulators. However, the shared con-
trol is not involved in these literatures. Shahbazi et. al. [26]
provided a systematic review for multilateral teleoperation
systems. Si et. al. [27] provided an overview of immersive
teleoperation for manipulation skill learning and generali-
sation. Whereas the contents about shared control is still
missing. Losey et. al. [28] gave a review on intention detection,
arbitration, and communication aspects of shared controls for
physical Human-Robot Interaction (pHRI). But the shared
control strategies are also not mentioned.

However, the systematic review on shared control strategies
is demanded. In previous work, Selvaggio et. al. [29] have
collected the latest results in the field of shared control,
but with a special emphasis on the adaptation of autonomy-
levels in pHRI. More specifically, they distinguished the shared
control (SC) and the shared autonomy (SA) by the arbitration
way (The arbitration between operator’s and autonomous con-
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Figure 2. The organization of this survey. We classify the strategies into SAC
and CSC according to whether the controlled variables are separated or not.
The CSC is further divided into SGSC and SFSC according to where the
intentions are mixed. Then the new trends of shared control are summarized.

troller’s control signals is either tuned by the human operator -
SC - or by the autonomous controller - SA). Similarly, Chen et.
al. [30] summarized the development, the current challenges,
and the trends of shared control strategies, but with a special
focus on the ones based on telepresence technology (including
haptic rendering technology and virtual reality technology).
Anyhow, a systematic overview to provide a big picture for
existing shared control strategies is still missing.

Different from the aforementioned literatures, this survey
aims to provide a systematic overview on the shared control
strategies for telerobotic systems. Our main contributions are
summarized as:

• We propose a categorization method and classify
the shared control strategies into 3 categories: Semi-
Autonomous Control (SAC), State-Guidance Shared Con-
trol (SGSC), and State-Fusion Shared Control (SFSC),
according to the different sharing ways between human
operators and autonomous controllers.

• The typical scenarios in using each category are listed
and the advantages/disadvantages and open issues of each
category are also discussed.

• Based on the analysis on existing strategies, we conclude
the new trends of the shared control strategies, including
the “autonomy from learning” and the “autonomy-levels
adaptation”.

As shown in Fig. 2, the rest of this paper is organized as
follows. Section II gives our categorization principles. Section
III, IV, and V summarize the features and typical scenarios of
the SAC, SGSC, and SFSC category, respectively. The typical
scenarios and their advantages/disadvantages and open issues
are also discussed. Section VI summaries the new trends of
the share control strategies. Section VII concludes this survey.

II. THE CATEGORIZATION PRINCIPLE OF
SHARED CONTROL STRATEGIES

By introducing an autonomous controller, the shared con-
trol architecture can assist human operators to reduce phys-
ical/mental workloads and/or improve task performances.
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However, how to achieve effective assistances is non-trivial.
Rather than providing assistance, an inappropriate strategy
may conflict with the human operator’s intention and bring
negative impacts, which can deteriorate the human experience
significantly. Therefore, various strategies have been proposed
to provide better and effective assistance. In this survey,
we would like to provide a big picture for existing shared
control strategies and enumerate the typical scenarios in using
different strategies.

For the convenience of analysis, we propose a categorization
method according to the different sharing ways between the
human operator and the autonomous controller. In many exist-
ing literatures, the “Semi-Autonomous Control” and “Shared
Control” have been used interchangeable. However, we dis-
tinguish the two in this survey. We classify the shared control
strategies into Semi-Autonomous Control (SAC) and Coopera-
tive Shared Control (CSC) according to whether the controlled
variables are separated or not, in which the same distinction
is also adopted in [31]. Then the Cooperative Shared Control
is further divided into State-Guidance Shared Control (SGSC)
and State-Fusion Shared Control (SFSC) according to where
the intentions of the human operator and the autonomous
controller are mixed. As shown in Fig. 3, the 3 categories
and their distinctions are:

• Semi-Autonomous Control (SAC): The state variables
controlled by the autonomous controller and the human
operator are separated.

• State-Guidance Shared Control (SGSC): The con-
trolled variables of the autonomous controller and the
human operator are coupled. But the autonomous con-
troller would not control the robot directly. Instead, it
provide guidance to the human operator via a Human-
Robot Interface (HRI). The most common guidance is
the haptic cues rendered by a haptic HRI. The haptic
cues, which are often referred as Virtual Fixtures, can
indicate the intention of the autonomous controller by
constraining/guiding the human operator’s control inputs.

• State-Fusion Shared Control (SFSC): The state vari-
ables controlled by the human operator and the au-
tonomous controller are also coupled. But different to
SGSC, the intention of the human and the autonomous
controller in SFSC is fused by an arbitration mechanism
(e.g., weighted combination) after the HRI.

To make it more explicit, we would like to make a distinc-
tion for the “Shared Control” and “Shared Autonomy” after
giving the definition of SFSC. In many existing literatures,
these two terms have been used interchangeable. However,
according to [29], the paradigm is called Shared Autonomy
when the arbitration is tuned automatically by leveraging
information from the human, the tasks, and the environments.

It is also worth to note that the strategies of the 3 categories
are not incompatible. Sometimes, the same algorithm may
involve more than one category. For example, the system
is called “Haptic Shared Autonomy” according to [32] if
the haptic cues are provided to the human operator after an
arbitration mechanism. In this case, the states controlled by
the human and the autonomous controller would be fused
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Figure 3. The architectures of the 3 categories of shared control strategies.
(a) Semi-Autonomous Control (SAC): The state variables controlled by the
autonomous controller u1 and the human operator u2 are separated. (b) State-
Guidance Shared Control (SGSC). The controlled variables of the autonomous
controller and the human operator are coupled. But the robot is still fully
controlled by the human, while the autonomous controller provides guidance
(e.g., rendering haptic cues to constrain the human’s control inputs) to human
operators to indicate its intentions. (c) State-Fusion Shared Control (SFSC).
The controlled variables are also coupled. But the intention fusion is done by
an arbitration mechanism (e.g., weighted combination) after the HRI.

by an arbitration mechanism, while the haptic feedback can
also be rendered to the human operator to provide guidance
and/or indicate the intention of the autonomous controller.
More examples can be found in [33] and [34], as discussed
in Section III. In this survey, we would categorize all shared
strategies according to their distinctive features.

III. SEMI-AUTONOMOUS CONTROL (SAC)

In SAC, the state variables controlled by the autonomous
controller and the human operator are separated. The human
operator can focus on the intelligent part of a task, while the
autonomous controller can handle the trivial part to assist the
operator. In this section, the semi-autonomy is divided into
“Low-level Autonomy” and “Parallel Autonomy” to better
organize existing literatures. In the low-level autonomy, the
human operator makes decisions and commands the higher-
level variables, while the autonomous controller is used to
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handle the low-level constraints that are not intuitive to hu-
mans. In the parallel autonomy, the variables controlled by the
human operator and the autonomous controller are in parallel.
As shown in Table I, the typical scenarios in using the low-
level autonomy and the parallel autonomy are summarized.

In early stage, the semi-autonomy is generally implemented
as a Low-level Controller in a hierarchy architecture. To
cope with unavoidable time delay, the hierarchy architecture
is generally adopted in telerobotic systems. In which, the
human operator makes decisions and commands the macro-
task executions in the higher-layer control modules. While
the autonomous controller is equipped with a certain amount
of on-site autonomy to command the micro-task executions
and/or handle some nonintuitive constraints (e.g., Singularity
Avoidance, Joint-limits Avoidance) in the lower-layer control
modules. For example, in [35], the human operator commands
the task space position and velocity of the follower robot,
while the autonomous controller utilizes the redundancy of
the follower robot to achieve sub-task control goals, such
as singularity avoidance, joint limits avoidance, and collision
avoidance. In [36], a whole-body teleoperation system for a
underwater mobile manipulator was presented. In this system,
the operator’s whole-body motion is captured and mapped to
the mobile manipulator. The autonomous controller controls
the manipulator to track the operator’s command, while taking
into account the human-robot kinematic dissimilarity (e.g., the
robot’s joint limit, joint velocity limit, and singularity). In
[37], a switching technique-based adaptive control scheme is
proposed to handle the time-varying delays and input uncer-
tainties of a teleoperation system. The proposed teleoperation
framework can autonomously achieve additional subtasks to
ensure the safety and enhance the efficiency of the robot in

remote site. For a whiteboard cleaning task shown in [38], the
wrist position of the human operator is estimated to teleoperate
the end-effector of a robot, while a low-level admittance
controller is utilized to maintain contacts with the whiteboard.

More examples can be found in the teleoperation of Vehicles
or Mobile Robots. In these works, the human operator com-
mands and/or navigates the vehicles while the autonomous
controller takes care of the vehicle dynamics or other con-
straints. For example, in [39], the human operator can navigate
a high-speed unmanned ground vehicle (UGV) freely, while
the autonomous controller takes care of the safety and vehicle
dynamics constraints to avoid hazards and loss of stability.
To reduce the operator’s workload in teleoperating a tracked
vehicle, Okada et. al. [40] developed an autonomous controller
for generating terrain-reflective motions of flippers. In this
way, the human operator only needs to navigate the robot,
while the autonomous control can automatically regulate the
flipper’s motion according to the terrain information. In [41],
a semi-autonomous framework was proposed for wheelchair
mobility assistance. The proposed system utilized a local
motion planner driven by the operator’s intention to provide
progressive assistance, whenever the user is in danger of
collision or at risk of disturbance to other humans. Simi-
larly, an autonomous controller was introduced in [42] to
avoid collisions with static and/or dynamic obstacles. In this
framework, the autonomous controller is used to handle the
vehicle dynamics by using a model predictive control (MPC)
formulation.

Another group of examples can be found in the Formation
Control. In these works, the human operator teleoperates
the behaviors of the whole formation and the autonomous
controller is designed to adjust the motion of each robot to

Table I
THE TYPICAL SCENARIOS IN USING THE SAC STRATEGY

Scenarios Ref. States (u1) Controlled by the Human States (u2) Controlled by the Auto. Controller

Low-level
Autonomy

Manipulators

[35] Cartesian Position and Velocity Singularity Avoidance, Joint Limits Avoidance,
and Collision Avoidance, etc.

[36] whole-body Motion of the
Underwater Mobile Manipulator Handling the Human-Robot Kinematic Dissimilarity

[37] Cartesian Position and Velocity Additional Subtasks, e.g., Joint Limits Avoidance
[38] Cartesian Position Contact Maintenance to the Whiteboard

Vehicles or
Mobile Robots

[39] Navigating the UGV Vehicle Dynamics Constraints
[40] Navigating the Tracked Vehicle The Flipper’s Motion
[41] Navigating the Wheelchair Collision Avoidance
[42] Navigating the Vehicle Vehicle Dynamics Constraints, Collision Avoidance

Formation Control

[43] The Motion of the Whole Formation The Position Adjustment of Each Unit for
Collision Avoidance and Formation Maintenance

[44] The Motion of a Leader robot The Motion of the Other Robots for Formation Maintenance

[45] The Virtual Point (VP) of the Formation The VPs Adjustment of Each Unit for
Collision Avoidance and Formation Maintenance

Parallel
Autonomy

Orientation
Regulation

[46], [47] Cartesian Position Cartesian Position and Orientation
[48] Cartesian Position Cartesian Position and Orientation, the Object’s Orientation
[49] Cartesian Position, and Velocity Position, Orientation, and Velocity Adjustment
[50] Cartesian Position Orientation Adjustment for Grasping
[51] Cartesian Position Orientation Adjustment for Moving and Grasping

Impedance
Regulation

[33] Motion Command Impedance Regulation according to Payload Conditions
[52] Motion Command Appropriate Impedance Selection

Dual-Arm
System

[53] The Motion of Robot A for Task Execution The Motion of Robot B
for Occlusion-free Visual Feedback

[34] The Position of Robot A The Orientation of Robot A and
the Pose of Robot B for Bimanual Manipulation

[54] The Human Movements and Gestures The Desired Positions and Impedances for Robot A and B
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handle the dynamic constraints, obstacle avoidance, and/or
formation maintenance, and so on. For a human-led multi-
robot system (MRS), Parker et. al. [43] proposed an assistive
formation maintenance method to automatically allocate for-
mation positions to each unit, which can allow a soldier to
efficiently tele-operate the MRS in a cluttered environment.
Cheung et. al. [44] proposed a leader-follower system that
one of the robots is teleoperated by an operator and the other
robots are autonomously coordinated to make a formation to
perform a variety of tasks. In [45], Cho et. al. presented a semi-
autonomous system composed of multiple omni-directional
mobile robots. In which, the human operator commands the
Virtual Points (VPs) of the formation and the autonomous parts
adjust the VPs of each robot (to avoid collision and maintain
formation) and control each robot to track their own VPs.

With the emerging of various strategies, the semi-
autonomous control is no longer limited to the low-level
autonomy. As shown in Fig. 3(a), the Parallel Autonomy, i.e.,
the variables controlled by the autonomous controller (u1)
and the human operator (u2) are in parallel, has emerged.
In this way, the autonomous controller can provide high-level
assistance to the human operator.

The Orientation Regulation is the first typical example of
parallel autonomy. The orientation regulation means that the
autonomous controller can regulate the operators’ orientation
command automatically [46]–[48]. For example, considering
a drilling task, the human operator controls the position of
the end-effector while the autonomous controller regulates the
orientation automatically to constrain the tool direction being
perpendicular to a wall [31]. Owing to the semi-autonomous
controller, the operator can focus on the intelligent part of a
task – deciding where to drill – while the autonomous con-
troller handles the trivial part – the perpendicular constraint. In
this way, the physical and mental workload of human operators
are significantly reduced, resulting in a longer working time.

Kinds of orientation regulation approach have been de-
veloped. For example, Sun et. al. [46], [47] provided an
orientation regulation algorithm that allows the operator to
solely use the operator’s position command to simultaneously
control the follower’s position and orientation. To implement
the nonprehensile object transportation, Selvaggio et. al. [48]
proposed a shared-control approach to automatically modulate
the user-specified inputs and the object’s orientation to prevent
the object from sliding over and/or possible falling from a
tray. Gao et. al. [49] proposed a unified motion mapping
method to regulate the operator’s position, orientation, and
velocity profiles automatically, based on the poses of objects
of interest in the operator and robot workspaces. Khokar et.
al. [50] presented an algorithm for orientation assistance in
the execution of a grasping task, according to the recognized
human intentions. In [51], the position of a robotic hand was
continuously controlled by the user, while a semi-autonomy
was designed to determine its orientation to assist the user for
moving and grasping.

The Impedance Regulation is another typical example. With
the development of technology, more and more researchers
start to realize the importance of impedance in robotic manipu-
lation [55]–[57]. However, the ways to identify the impedance

intention are still inadequate for existing techniques. There-
fore, it is natural to regulate the impedance by an autonomous
controller. For example, in [33], the proposed autonomous
controller can blend the operator’s motion commands to avoid
physical obstacles during manoeuvring and/or reduce inter-
action forces during contacts, which is a strategy belongs to
SFSC. Beyond that, the proposed controller can also regulate
the robot’s impedance, which is separated to the operator’s
motion commands, according to different payload conditions.
Thus the proposed controller also belongs to the SAC category.
In [52], the autonomous controller exploits robot vision to
detect the environment and select the appropriate impedance,
e.g., a lower impedance for fragile objects.

Another interesting semi-autonomy is presented in Dual-
Arm Systems. In [53], the proposed system is composed of two
robot arms where one is for task execution, while the other
is equipped with an eye-in-hand camera. The human operator
commands the motion of one robot to fulfill a given task and
the autonomous controller commands the motion of the other
one to provide occlusion-free visual feedback. Selvaggio et.
al. [34] proposed a dual-arm system that one robot is partially
controlled by the operator and the other one is controlled by
an autonomous controller to perform a bimanual task. Also,
the autonomous controller is able to regulate the orientation
of the teleoperated robot to keep the gripper oriented toward
the object (Orientation Regulation). In [54], a bimanual tele-
manipulation system that can be switched between a direct
control mode and a shared control mode was proposed. In
the shared control mode, an autonomous controller can take
the movements and gestures of just one arm as inputs and
generate the desired position references and impedances for
the two individual end-effectors of the bimanual manipulator.

By controlling separate variables, the SAC can provide
auxiliary assistance to human operators. The SAC is a straight-
forward way in combining the human’s cognitive skills (e.g.,
perception of the complex environment, decision-making) and
the higher power/precision abilities of robots. Therefore, the
SAC attracts a lot interest in the field of shared control.

However, there are still many challenges in SAC. In the
low-level autonomy, the autonomous controller is usually used
to handle the low-level constraints that are not intuitive to
humans. In this way, the human operator can better focus
on the task itself, without paying extra efforts to the limits
of the robot or the environments. Then the open questions
are: How does the semi-autonomy affect the user’s experience
because it reduces the human operator’s control authority
over the robot? What are the effects of the semi-autonomy
to the stability and transparency?, and so on. In the parallel
autonomy, the autonomous controller can take over parts of
the mission objectives and introduce higher-level intelligence
to the system. But it also opens some questions: How to
automatically determine which variables are controlled by the
human operator and which variables are controlled by the au-
tonomous controller? How to evaluate the user’s satisfactions
and correspondingly adjust the autonomy levels seamlessly?
And, the most important one (according to our opinion) is:
how to provide the expected assistance according to the op-
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erator’s intentions, i.e., assistance-as-needed. To address these
problems, an essential challenge is how to correctly recognize
the operator’s intentions according to the user’s inputs, the
tasks, and the environments. Although kinds of case-by-case
solutions have been proposed for intention cognition (e.g.,
hybrid gaze-brain machine interface-based [58], EEG-based
[59], and learning-based [60] methods, etc.), an efficient,
universal, and robust human intention detection method with
situation-awareness (environment and/or task situations) is still
an open research field.

IV. STATE-GUIDANCE SHARED CONTROL (SGSC)

Different to the strategies adopted in SAC, the controlled
variables of the autonomous controller in SGSC are the same
as the ones of the human operator. But the autonomous con-
troller would not control the robot directly. Instead, it provide
guidance to the human operator via a HRI. The guidance can
be designed in different modalities, such as visual, auditory,
vibrotactile, haptic cues, and so on, as summarized in Table
II.

The visual and/or auditory feedback are the classical and
most commonly used guidance. In early stage, these guidances
are limited to some low-level and discrete warning signals, to
indicate that the human’s actions are wrong or the system
has reached to limits of the task domains, and to remind
the operator to change his/her behaviors for maintaining
system stability. Examples for warning signals can be found
in the Advanced Driver Support Systems (ADAS) [61] in
providing parking assistance or cruise control for a intelligent
car/vehicles. Gradually, researches start to realize the impor-
tance of continuous communications between human operators
and autonomous controllers. Therefore, kinds of visual inter-
faces are designed to display the intended behaviors of the
autonomous controllers to human. For example, Seppelt et. al.
[62] created a visual representation approach to continuously
indicate the intended behaviors of an Adaptive Cruise Control
(ACC) to the human driver, rather than providing imminent
crash warnings when the ACC fails. This design can promote
faster and more consistent braking responses when braking
algorithm limits were exceeded, resulting in safe following
distances and no collisions. Kofman et. al. [63] presented
a robot vision guidance system to perform fine alignment
and centering of the gripper with the object by using the
continuously acquired images from the end-effector-mounted
camera. Once the alignment and centering are completed, the
system is transformed into a semi-autonomous mechanism that
the operator can only control the motion along the image-
depth direction to move toward or away from the object,
while the other motions are controlled by an autonomous
controller. With the development of virtual/augumented reality
technologies, the visual guidance become more intuitiveness
and friendly to human operators. Fichtinger et. al. [64] pre-
sented an image overlay system which can display the CT
image to a semitransparent mirror and make the CT image float
“inside” the patient with correct size and position. Thus the
optimal path for a needle can be identified from the CT image
and rendered to the mirror to provide guidance for physicians.

Huegel et. al. [65] introduced a visual guidance scheme for
target hitting tasks in a virtual environment. The guidance
is rendered as two colored regions (to indicate the target
axis and the trajectory error, respectively) whose intensities
diminish independently as performance improves in each of
the two measures. The colored regions eventually fade to
the background color when the progression of the guidance
diminishes to zero. Caccianiga et. al. [66] investigated and
compared the training performances of a needle insertion
task in virtual reality environment by using visual, haptic
and visuo-haptic guidance, respectively. In this work, the
visual guidance is represented by a multi directional real-time
visual cue carrying information about the displacement of the
controlled rings. The experimental results validated that the
visual and haptic guidance both played a significant role in
error reduction.

With the development of wearable devices, the cutaneous
guidance by using vibrotactile feedback has been risen as
another important modality [86]. For example, Tanaka et.
al. [67] designed a vibrotactile guidance mechanism for a
collaborative operation system, in order to improve the col-
laborative operations. In this system, a 7-DoF robotic arm
with a gripper is collaboratively controlled by two users, with
one user (Operator A) controlling the arm and the other one
(Operator B) controlling the gripper. The cutaneous guidance,
which promotes the recognition of the actions of a partner, is
given to the wrist of Operator B based on the position data of
operator A. Kim et. al. [68] developed a vibrotactile device,
called ErgoTac, to provide a directional guidance at the body
segments to adjust its wearer’s pose towards a more ergonomic
and healthy posture when performing heavy lifting or forceful
exertion tasks. Bai et. al. [69] designed a wearable vibrotactile
glove and constructed a vibrotactile potential field to generate
vibration stimulus for guiding the operators in teleoperation
and virtual environments. Basu et. al. [70] proposed to use
vibrotactile motors to provide cutaneous guidance cues for the
training of percutaneous needle insertion tasks. Brygo et. al.
[71] applied the cutaneous guidance to the balance control of
a teleoperated humanoid robot. These examples have demon-
strated the effectiveness and benefits of cutaneous guidance
by using vibrotactile feedback. However, the above examples
are still case-by-case studies. How to determine the layout
position, the stimulus pattern, and the vibration magnitude,
etc., of vibrotactile motors, is still an open problem.

Recently, the haptic guidance is attracting more and more
interests with the development of haptic technologies. A
wide variety of haptic devices have been developed [87]–
[91], including many commercial ones, e.g., the Omega.x
series produced by Force Dimension [92], the Phantom
Omni/Desktop/Premium produced by 3D SYSTEMS [93], and
the Virtuose 6D produced by Haption [94]. These available
haptic devices make it possible to achieve continuous and
direct physical human-robot interaction (pHRI), which can be
used to provide more intuitive and friendly communication
between human and robots. In addition, compared with the
visual and vibrotactile guidance, the physical interaction can
directly change the human operator’s behaviors/actions. Not
surprisingly, more and more work has shown the benefits of
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Table II
DIFFERENT MODALITIES USED IN THE SGSC STRATEGY

Modality Typical Scenarios Ref. Main Features

Visual/Auditory

Driver Support System [61] Discrete warning signals to indicate human’s wrong actions or system’s limits
Adaptive Cruise Control [62] Visual representation to continuously display the intended behaviors of ACC

Object Grasping [63] Vision guidance to perform fine alignment and centering of gripper with the object
Medical Needle Insertion [64] Overlay the CT image and the optimal path with the patient
Target Hitting Training [65] Two colored regions to show guidances for target axis and trajectory error

Medical Needle Insertion [66] Compare visual guidance with haptic and visuo-haptic guidance

Vibrotactile

Collaborative Operation [67] Indicate Operator A’s actions to Operator B for better collaboration
Ergonomic Posture Adjustment [68] Provide directional guidance to adjustment worker’s posture to reduce fatigue and injury

Vibrotactile Glove [69] Vibration Stimulus for guiding the operators in teleoperation or virtual environment
Medical Needle Insertion [70] Training of percutaneous needle insertion tasks

Balancing of Humanoid Robots [71] Indicate the status of a teleoperated humanoid robot to operators

Haptic

Target Pursuing and
Obstacle Avoidance

[72] Repulsors for obstacles and attractors for target
[73] Generate escape points to drive robots away from obstacles

[74], [75] Generate virtual fixtures automatically by using a stereo camera system

Object Grasping

[76] Attractor to drive the operator toward the target object
[77] Best grasp candidate is selected as an attractor based on a ranking metric
[78] Smooth and continuous switching among multiple grasp candidates
[79] Set grasp candidates as attractors and obstacles as repulsors

Desired Trajectory
Tracking Task

[80] Set a reference trajectory learned by GMM as attracting field
[81] Set reference trajectories learned from experts as attracting field for peg-in-hole

Others

[82] Impedance virtual fixtures for needle passing and knot typing tasks in surgical system
[83] Steer the manipulator away from its kinematic constraints
[84] Provide haptic support to minimize the operator’s workload
[85] A feature-based user interface to specify the virtual fixture components

haptic guidance and various haptic SGSC strategies have been
proposed to assist human operators.

To achieve effective assistance, the haptic SGSC strategies
usually set some attractors or repulsors to guide or constrain
the operator’s commands. The attractors can assist the operator
in moving the robot towards desired points or along desired
paths/surfaces. The repulsors can prevent the robot from enter-
ing into forbidden regions of the workspace. These attractors
or repulsors are often referred as virtual fixtures [95], [96].
Metaphorically, a virtual fixture plays a role of ruler when the
human operator draws a straight line. With the help of a ruler,
a human can draw faster and straighter [1].

The first typical scenario in using virtual fixtures is the
Target Pursuing and Obstacle Avoidance. For example, Luo et.
al. [72] exploited an artificial potential field for a mobile robot
to avoid obstacles according to the repulsive force and attrac-
tive force. The force feedback can drive the human partners
to update their control intention with predictability. Gottardi
et. al. [73] presented a haptic shared control framework by
utilizing an improved artificial potential field, in which the
escape points, which are dynamically generated around the
obstacles, are set as virtual attractors to drive the robot away
from obstacles. Another interesting example is presented in
[74] and [75]. In this work, the authors made use of a stereo
camera system, which can provide accurate pose estimations
of objects, to generate virtual fixtures automatically. A great
benefit is that it can fast adapt to different manipulation tasks
without the need of tedious programming job. Therefore, the
methods to set virtual fixtures automatically are attracting a
rising interest in the field of shared control.

The Object Grasping Task is another common scenario
in using virtual fixtures. In early stage, Howard et. al. [76]
presented a haptic rendering algorithm to generate forces that
drive the operator toward the target object, whose position

is extracted from a visual image. Gradually, researchers try
to select the grasping configurations as attractors to improve
the success rate of grasping. For example, in [77], to assist
the object grasping task, a best grasp candidate is selected
based on a ranking metric. Then the haptic forces are provided
to human operators for reach-to-grasp trajectory guidance.
Also, the end-effector orientation is automatically corrected
by the autonomous controller while reaching towards the grasp
(Semi-Autonomy). In [78], the guiding haptic cues are gener-
ated for a set of potential grasp candidates to assist the operator
in approaching and grasping the objects from a cluttered and
unknown environment. The goal of this work is to provide
smooth and continuous feedback as the user switches from a
grasp candidate to the next one, or from one object to another
one. Another example for using virtual fixtures is found in
[79]. To avoid collisions during a grasping, Parse et. al.
proposed a shared control system that can provide the operator
with force cues during reach-to-grasp phase. And then it can
also provide force cues informing the operator of grasping
configuration which allows a collision-free autonomous post
grasp movement.

The third typical scenario in using virtual fixtures is the
Desired Trajectory Tracking Task. For example, Ewerton et. al.
[80] proposed to construct a potential field, which determines
the haptic cues, for a reference trajectory plan based on
Gaussian Mixture Model (GMM) over demonstrated trajec-
tories. The learned GMM can be updated smoothly based on
the updated belief over the plans. And new plans can also
be learned when the operator does not follow any of the
proposed plans or after changes in the environment. Similarly,
in [81], a force-based haptic guidance reference trajectories for
peg-in-hole insertion task can be extracted from the expert’s
demonstrations by imitation learning method. The guidance
trajectories are superimposed to the inputs of the operator and
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Desired Traj. 
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Figure 4. The typical scenarios in using the haptic SGSC strategy. The
attractors or repulsors are usually set to guide or constrain the operator’s
commands. The guidances are marked by red springs (attractors) or arrows
(repulsors).

used to generate haptic feedback to assist the operator.
The virtual fixtures can also be found in kinds of tasks.

For example, Chen et. al. [82] provided an impedance virtual
fixture framework in Surgical System. By introducing virtual
plane fixture and virtual circle fixture, which are designed
based on the frequently used motion patterns in suturing,
the performance on task execution time and accuracy are
improved a lot in the needle passing and knot typing sub-
tasks. In [83], the haptic guidance is embedded in a task-
prioritized control architecture to steer the manipulator away
from its kinematic constraints for a redundant manipulator.
Rahal et. al. [84] proposed to provide haptic support to
minimize the operator’s workload and improve the operator’s
comfort during a teleoperated manipulation task. To achieve
this goal, the authors proposed an estimation approach to
evaluate the operator’s comfort by using an inverse kinematic
model of the human arm. Then the active haptic constraints
are provided to operators along the directions that can improve
their posture and increase their comfort. Another important
work is recently presented in [85]. To overcome the limitations
of pre-defined or hand-coded virtual fixtures, an interactive
virtual fixture generation method, which represents virtual
fixtures as a composition of components, are presented. A
feature-based user interface allows the human operator to
intuitively specify the virtual fixture components. These works
mean that the “autonomy from learning” and the “autonomy-
levels adaptation” are new trends in the filed of shared control.

The typical scenarios in using the haptic SGSC strategies
are summarized in Fig. 4. Compared with other strategies,
the haptic SGSC strategies can provide physical interactions
with human operators, which brings many benefits: 1) The au-
tonomous controller can indicate its intentions to the operator
and modify the operator’s behaviors directly. 2) It can provide

physical support to the human operator, which is helpful
in reducing the operator’s workload both in physical (e.g.,
relieving muscle fatigue) and mental (e.g., task cognition) as-
pects. However, the SGSC strategies also suffer the following
disadvantages: 1) A haptic device, which is unavailable in
many scenarios, is essential in the SGSC strategies. 2) Due
to the haptic interaction with human operators, the stability
problem may arise when time delay occurs in the system. 3)
Although the haptic guidance is beneficial for task execution
when no inaccuracies are presented in the guidance model,
the inaccuracies and uncertainties are unavoidable in real
applications. As revealed in [97], the inaccuracies may degrade
task execution significantly. Therefore, how to handle the un-
avoidable inaccuracies and uncertainties in the guidance model
is still an open issue. 4) The defining of virtual guidance model
is often a laborious work requiring expert knowledge. Also the
wide variety of tasks make the manual coding a daunting work.
Any changes in the tasks would lead to substantial strategy
modifications and bring tedious interruptions and setting up
times. Therefore, how to automatically define the guidance
model is still a worthy problem.

V. STATE-FUSION SHARED CONTROL (SFSC)

In SFSC, the state variables controlled by the human oper-
ator and the autonomous controller are fused by an arbitration
mechanism after the HRI. Compared with the SGSC, the
autonomous controller in SFSC does not rely on rendered
haptic cues to indicate its intention. Instead, the arbitration
mechanism is crucial for SFSC strategies [98]. We summarized
the existing arbitration mechanisms in Fig. 5 and Table III.

(a) Weighted Combination (b) Probabilistic Fusion

Robot 
Autonomy

(c) Input Correction (d) Phase-Switching

Figure 5. (a) The Weighted Combination Mechanism. The inputs from the
human (uh) and the autonomous controller (ua) are superimposed linearly
to determine the control signal (u), according to their authority weights (α).
The authority weights can be tuned either manually or automatically. (b)
The Probabilistic Fusion Mechanism. The inputs from the human and the
autonomous controller are modelled as probabilistic distributions. They are
fused together by a probabilistic model. (c) The Input Correction Mechanism.
The robot autonomy accepts the human’s commands as inputs, and then
supervises and corrects them according to a certain autonomy. (d) The Phase-
Switching Mechanism. The robot is controlled by the human operator or the
autonomous controller, respectively, in different phases. The switching can be
done either manually or automatically.
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The most straightforward arbitration mechanism in mixing
the state variables is the Weighted Combination Mechanism.
The weighted combination means that the inputs from the
human operator and from the autonomous controller are super-
imposed linearly according to their authority weights. Many
ways to allocate the authority weights have been proposed.
For example, Kim et. al. [99] described a telerobotic shared
control framework for micro-injection task, in which the
authority weight between the operator and the controller is
determined by a quantitative evaluation method using a model
of speed/accuracy trade-offs in human movement. Malysz
et. al. [100] introduced an application specific task-space
weighting matrix to adjust the relative weight of autonomous
control with respect to manual control. Balachandran et. al.
[101] proposed an adaptive authority allocation method based
on Bayesian filters. The adaptation was established based on a
metric derived from an adaptive EKF’s state covariance which
depended on the real sensor measurements. The metric can be
used to evaluate the manipulation performance. This allows the
autonomous controller to execute the tasks and yield control
authority to the operator only when the performance degrades.

Among existing methods, a notable way to allocate the
authority weights is the trust-based method proposed by Saeidi
et. al. in [102] and [103]. They introduced a computational
two-way trust model to enable a trust-based weighted com-
bination scheme for a mobile robotic system. The inputs of
the manual and the autonomous controller are scaled with a
function of computational human-to-robot trust. And then the
haptic force feedback is dynamically scaled with a function
of computational robot-to-human trust. Furthermore, in [104],
the authors from the same team also designed a decision
pattern correction algorithm based on a nonlinear MPC. This
algorithm is used to help a human operator gradually adapt
to the authority allocation pattern to improve the overall per-
formance. However, how to build an appropriate trust model
is still an open field. Many factors related to the human, the
tasks, and the environments, need to be considered. Also, how
to maintain the computational tractability of the trust model,
is another exciting area.

Another group of examples for weighted combination mech-
anism can be found in dual-user systems. For example, Liu et.
al. [105] proposed a dual-user teleoperation system for hands-
on medical training. In this system, the robot is cooperatively
controlled by an expert surgeon and a trainee one. The control
authority between the two users, which is represented by a
dominance factor α (0 ≤ α ≤ 1), is chosen according to
their relative levels of skills and experience. The dominance
factor α can be adjusted manually/automatically in 3 modes:
training mode (α = 1), guidance mode (0 < α < 1) and
evaluation mode (α = 0). Motaharifar et. al. [106] also
presented an online authority adjustment method for a surgical
training haptic system. This system can work in two modes
(trainee-dominant and trainer-dominant modes) and allow the
trainer to transfer the task authority to and from the trainee in
real-time. Although the control in dual-user system is shared
between two human operators, the similar authority allocation
mechanism can be shifted to the case that the control is shared
between a human operator and an autonomous controller.

Except for the weighted combination mechanism, another
important arbitration mechanism is the Probabilistic Fusion
Mechanism. In probabilistic fusion mechanism, the inputs
from the human operator and the autonomous controller are
both modelled as probabilistic distributions and described
by probability density functions. The arbitration of the two
inputs are replaced by the fusion of the two probability
density functions according to Bayes rules. A common density
function is the normal/Gaussian distribution which can be
totally characterized by a mean and a variance. Here the mean
indicates the desired values for the controlled variables and
the variance is used to depict the human operator or the au-
tonomous controller’s confidence to the task. Of course, other
probabilistic distributions, e.g., exponential distribution, can
also be chosen depending on the requirements of applications.
Ezeh et. al. [107] proposed a probabilistic fusion mechanism to
combine the human’s intended trajectory and the autonomous
planner’s trajectory for a wheelchair. The proposed approach
works by modelling the two trajectories as a joint probability
distribution, rather than the weighted combination of the two

Table III
EXISTING ARBITRATION MECHANISMS USED IN THE SFSC STRATEGY

Arbitration
Mechanism Sub-Category Ref. Main Features

Weighted
Combination

Authority Allocation

[99] Authority weight is determined by a quantitative evaluation method using human movement data
[100] A task-space weighting matrix to adjust the relative weight between human and robot autonomy
[101] A Bayesian filter-based allocation method depending on manipulation performance

[102]–[104] A weighed combination scheme based on human-to-robot and robot-to-human trust model

Dual-User System [105] A dominance factor is chosen according to users’ levels of skills/experience to determine authority
[106] Online authority adjustment method depending on training performance

Probabilistic
Fusion −− [107] Model the input trajectories from human and autonomous planner as a joint probability distribution

[108] A similar work with considering the wheelchair’s dynamics

Input
Correction

Predict-then-Act

[109] Correct human’s input to automatically handle obstacles avoidance via a MPC

[110] Predict the manipulation target by learned manipulation skills and correct the human’s input to
accelerate the approaching task

[111] Detect the reaching intention and accelerate the reaching and grasping behaviors;
Determine the single- or dual-arm coordinated movements based on object size

Workspace Limits [112] Correct human’s position inputs to avoid unreachable commands
[113], [114] A partial orientation regulation method for rotational DoF deficiency in remote side

Phase
Switching −− [115] Direct control in approaching phase and Autonomous control for sub-task

[116] Human can determine the intervention level at different situations
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values. The velocity probabilities in the next time is generated
by a dynamic window approach (DWA) according to the joint
probability distribution in current time. A similar work, which
came from the same team, was provided in [108] to consider
the wheelchair’s dynamics.

The third arbitration mechanism is the Input Correction
Mechanism. The input correction means that the autonomous
controller accepts the commands of the human operator as
inputs, and supervises the commands, and modifies the com-
mands when it is necessary. Generally, the robot autonomy
is used to handle constraints that are non-intuitive to human
operators. But different to the low-level controllers in SAC,
the robot autonomy in SFSC controls the same variables
with the human operator. For example, in [109], the human
operator’s position references are corrected in real time by
an autonomous controller to consider obstacles avoidance
constraints via a MPC. In [110], a method was proposed
to assist the human operator in manipulation tasks. In this
method, the task-parameterized hidden semi-Markov model
is used to extract the manipulation skill from several human
demonstrations. The learned skills is utilized to predict the
manipulation target and then correct the input of the operator
to provide manipulation assistance. In order to increase the
task execution efficiency for prolonged and repetitive oper-
ations, Laghi et. al. [111] presented a shared-autonomy to
assist the operators in reaching and manipulation of objects.
In this work, a visual perception system is introduced to
monitor the operator’s actions. When the reaching intention
of an operator towards a target object is detected, the robot
trajectory is corrected autonomously to accelerate the reaching
and grasping behaviors. In addition, based on the detected size
of a target object, single- or dual-arm coordinated movements
are autonomously generated without the need for additional
human interventions. These methods are all based on a predict-
then-act paradigm. Thus an essential presupposition for these
methods is the correct prediction of the user’s goals. However,
when the prediction is with less accuracy or lower confidence,
they may not assist the user or give little assistance.

Another group of examples in using the input correction
mechanism is the Workspace Limits. The robot autonomy in
these examples plays a role of legitimacy inspector. When the
inputs are illegitimate for the remote robot, the robot autonomy
would correct the inputs to avoid dangerous behaviors. For
example, Li et. al. [112] proposed a real-time motion mapping
approach that can correct the operator’s position inputs when
the commands are out the scope of the robot’s reachable
workspace. The resultant commands can guarantee the safe
and smooth motion of the follower robot. Also, to address the
telerobotic systems with rotational DoF deficiency in remote
side, they proposed a partial orientation regulation method
[113], [114] to automatically prevent the rotational motion
along the missing DoF, while persevering the remaining
motions. Please note that the partial orientation regulation
shown in [113], [114] is different to the orientation regulation
methods discussed in Section III. For SAC strategies, the
orientation is fully controlled by the autonomous controller.
However, the partial orientation regulation means that the
orientation command is still governed by the operator, while

the autonomous controller is used to discard the unreachable
components. In another word, the orientation is collaboratively
determined by the operator and the autonomous controller.
Therefore, the partial orientation regulation is classified into
the SFSC category in this survey.

The fourth arbitration mechanism is the Phase-Switching
Mechanism, in which the robot is controlled by the human
operator or the autonomous controller, respectively, in different
phases. For example, in [115], the operator can command the
robot to reach the desired location via direct control at the
initial phase. Then, depending on the recognized intention, the
sub-task is recognized and finally the robot itself takes over the
control to accomplish the task. Yu et. al. [116] reported another
example that the human can determine the intervention level
at different situations. Different to conventional telerobotic
system that the autonomous controller is designed to assist the
human operator, in this work the robot is mainly controlled by
the autonomous controller. The human operator can intervene
to assist the autonomous controller when it is necessary. The
autonomous controller adopts the potential field method to
achieve target pursuing and obstacle avoidance. However, the
goals of target pursuing and obstacle avoidance may conflict
with each other and lead to the stuck in some certain posi-
tions (deadlock zone). When the robot gets stuck, the human
intervention is introduced to guide the robot in departing the
deadlock zone. In this work, the human intervention and the
robot autonomy were smoothly fused together through an
impedance/admittance model. Besides, the human operator is
able to adjust the invention levels to provide flexible assistance.

According to the arbitration is done manually or automati-
cally, the probabilistic fusion mechanism and input correction
mechanism can be classified as “Shared Autonomy”, and the
weighted combination mechanism and the phase-switching
mechanism can also be classified as “Shared Autonomy” if
the weights/switching is done automatically by leveraging
information extracted from the human, the tasks, and the
environments. Further, the haptic cues can also be embedded
into a shared autonomy paradigm and result in a “haptic
shared autonomy” framework. As revealed in [32], haptic cues
are great helpful in improving the system legibility and the
situation awareness of the human, which may increase the
trust toward the system. Therefore, our intuition is that the
haptic shared autonomy would be a worthy explored field in
telerobotic systems.

Although some arbitration mechanisms have been proposed
for specific tasks, the design of a general arbitration mech-
anism is still a bottleneck in SFSC. There are still many
open challenges in the designing of a arbitration mechanism.
When the arbitration is manually tuned by the human
operator, the following questions arise: how to inform the
operator the intentions of the autonomous controller? How to
evaluate the human’s trust and confidence? How to adjust the
behaviors of the autonomous controller exploiting the human’s
understanding of the tasks/environments? How to provide
effective assistance to improve the human’s experience, and
so on. When it is automatically tuned by the autonomous
controller, the open questions are: how to determine the
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required amount of robot autonomy in the system? how
to adjust the autonomy-levels by leveraging the information
extracted from the human, the task, and/or the environment?
how to predict the human’s future behaviors and goals? how to
let users be aware of what the system is doing, why, and what
it will do next? how does the arbitration mechanism affect the
user’s trust and their willingness to use the system? and so on.

Compared with the SAC that provides auxiliary assistance
to human operators, the autonomy in SFSC can be more
diverse and in a higher level. Compared with the SGSC, the
SFSC leaves room for vision-based user-interfaces since the
haptic cues are not essential in the SFSC. Moreover, the SFSC
has an innate and essential advantage in seamless autonomy-
levels adaptation. Therefore, the SFSC architecture provides
a promising intermediate to promote the evolution from a
teleoperation system to a fully autonomous system.

VI. NEW TRENDS IN SHARED CONTROL STRATEGIES

The shared control architecture is designed to combine
the cognition skills of the human with the robustness and
precision abilities of robots. However, our ultimate goal is
to promote the evolution from a teleoperation system to a
fully autonomous system. Although this goal is still far away,
a cheerful phenomenon is that the autonomy level in shared
control is increasing, e.g., from low-level autonomy to parallel
autonomy, from auxiliary assistance to cooperative assistance.

In addition, we collect, merge, and cluster the current open
questions of the 3 categories as two groups, as shown in Fig. 6.
To pave the evolution from a teleoperation system to a fully
autonomous system, more and more efforts are required to
perform to reduce the dependency on human intervention and
make the robot behavior more like a human. To achieve this
goal, the following two questions are especially important: 1)
How to automatically design or acquire the autonomy; 2) How
to automatically and seamlessly adapt the different autonomy
levels as needed. Therefore, we summarize the following de-
sirable trends in the development of shared control strategies:
1) Autonomy from Learning: The robot autonomy tends to be

1. How to
automatically 

maintain the stability 
and safety 

2. How to automatically 
determine which 

variables are controlled 
by the autonomy

4. How to
automatically design 

or acquire the 
autonomy

3. How to 
automatically 
determine the 

desired autonomy 
level

8. How to let the users 
be aware of what the 

autonomy is doing, why, 
and what it will do next

7. How to evaluate the 
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satisfactions

6. How does the 
autonomy affect the 

user s experience

9. How to predict the 
user s intentions

5. How to 
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Lowering the dependency 
on human interventions

Better understanding between 
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Figure 6. We collect, merge, and cluster the open questions of the 3 categories
as two groups. In the first group, the goal is to lower the dependency of the
telerobotic system on human interventions. In the second group, the goal
is to promote the better understanding between human and the autonomous
controller and make the robot behavior more like a human.

acquired automatically based on learning methods, rather than
being manually encoded. 2) Autonomy-levels Adaptation: The
autonomy level tends to be adapted seamlessly by leveraging
information extracted from the human, the tasks, and/or the
environments.

A. Autonomy from Learning

In early stage, the robot autonomy is pre-defined or man-
ually encoded according to a specific tasks. However, as
stated before, the design and implementation of the pre-
defined or manually encoded autonomy is often a laborious
work requiring expert knowledge [98]. Also, the diversity of
tasks makes the manual coding a daunting work since any
changes in the tasks/environments would lead to substantial
modifications and bring tedious interruptions and setting up
times [31]. Therefore, the autonomy learning becomes an at-
tractive research field with the development of various learning
methods [27].

The research on manipulation skill learning and general-
isation in robotics has gained increasing attention over past
decades [117]. Especially, the imitation learning (or Learning
from Demonstration, LfD), which is an important branch
in skill learning, has achieved many important progresses
[118]. The existing imitation learning methods include: the
Gaussian Mixture Model (GMM) or Gaussian Mixture Re-
gression (GMR) [119], the Hidden (Semi-)Markov Model
(HMM/HSMM) [120], [121], the Dynamic Movement Primi-
tives (DMP) [122], the Stable Estimator of Dynamical Systems
(SEDS) [123], the Probabilistic Movement Primitives (ProMP)
[124], the Task-Parameterized GMM (TPGMM) [125], and
the Kernelized Movement Primitives (KMP) [126], etc.. These
methods have been applied to the autonomy learning for shared
control. Several examples had been stated above, e.g., the
[80] and [81] given in Section IV (SGSC), the [110] given
in Section V (SFSC).

More examples can also be found. For example, Raiola et.
al. [127] proposed a framework that can enable non-expert
users to design virtual guides through demonstrations based
on GMM (Although the proposed framework was designed for
a co-manipulation robot instead of a telerobotic system, it can
be transferred to a shared control strategy easily). In [18] and
[128], Havoutis and Calinon presented an autonomy learning
method based on the task-parametrized hidden semi-Markov
models (TP-HSMM) method. The autonomy is extracted from
demonstrated motions and then it is used to assist the operator
in an underwater teleoperation scenario. Furthermore, Tanwani
et. al. [129] presented an imitation learning framework based
on TP-HSMM that can learn the sequential structure in the
demonstrations. Lu et. al. [130] proposed a DMP-based skill
learning and transfer framework for the generalization between
two or more different tools.

Other learning methods can also be found in the autonomy
acquisition. For example, Odroodgar et. al. [131] presented
a controller which can enable a rescue robot to continuously
learn from its own experiences based on a hierarchical re-
inforcement learning (RL) method. The proposed learning
method can improve the overall performance in exploration of
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unknown disaster scenes. Rahman et. al. [132] proposed to use
a supervised machine learning method to learn the dexterous
surgical skill knowledge from a DESK dataset, which includes
a wide variety of compact image representations with kine-
matic features. Liu et. al. proposed a learning method to learn
the Chinese cooking art stir-fry skills from demonstrations.
[133].

Learning methods make it easier to design, implement, and
set a robot autonomy, especially for non-experts. We believe
that the autonomy acquisition from learning is a desirable
trend and can speed up the development of shared control
significantly. It also pave the way for the evolution towards a
fully autonomous robot. But it also raises new challenges for
safety and stability certification, which is still an open field
to be further studied in the future. Moreover, although the
learning-based methods have achieve great success in learning
skills in linear space (e.g., position space), there are still
many difficulties and challenges in learning skills in non-linear
space (e.g., orientation [134], impedance [135], etc.). Thus the
extension for autonomy acquisition from linear space to non-
linear space would be another important topic.

B. Autonomy-levels Adaptation

Although robot autonomy can provide great assistance to
human operator, the intuitiveness of the system would be
reduced owing to the concession in control authority from
human to robots. To provide contextual or personalize assis-
tance, the level of the robot autonomy is desirable to be able to
change seamlessly based on internal/external information. The
importance of seamless autonomy-levels adaptation had also
been discussed in many comprehensive literatures [136], [137].
Therefore, we believe that the autonomy-levels adaptation is
a key step to be taken in the future.

However, how to trigger the adaptation is non-trivial. As
stated before, the SFSC has an innate and essential advantage
in seamless autonomy-levels adaptation owing to the arbi-
tration mechanism. The arbitration can be either manually
tuned by the human operator or automatically tuned by the
autonomous controller. When it is manually tuned, the user-
friendly interface may be a key technology for the implemen-
tation of the autonomy-levels adaptation. For example, Pruks
et. al. [85] presented a feature-based user interface that allows
the human operator to intuitively specify the virtual fixture
components to generate desired virtual fixtures. When it is
automatically tuned, the adaptation is performed by leverag-
ing information extracted from the human, the tasks, and/or
environments. In [29], the adaptation approaches are divide
into two categories according to the source of information that
triggers the adaptation: 1) The ones that extract information
from the human [138], [139]; and 2) The other ones that
extract information from the environment (including the task)
[18], [101]. More details can be found in [29]. In summary,
we believe that the design of a more advanced arbitration
mechanism may be a promising solution for the seamless
autonomy-levels adaptation.

How to determine the desired autonomy level in a teler-
obotic system is another complex problem. There are cases

that the human operator wants to get more guidance during
the task execution, e.g., the desired trajectory tracking task.
However, there are also cases that human operator hope to
have more control authority over the system, e.g., the tele-
surgical operation for an expert surgeon. The desired autonomy
level may depend on many factors, including the operator’s
experience/skill level/ability (e.g., [84], [99]), the different
types/phases of the tasks (e.g., [115]), the environmental
information (e.g., [101]), and so on. This is still an open
problem with no unique answer, but worthy to be explored
in the future work.

The implementation of seamless autonomy-levels adaptation
will bring many benefits to the evolution of the telerobotic
system. This adaptation may make robots behave more like a
human and promote the human-robot interaction much closer
to the human-human collaboration. Thus, although there are
still many challenges in this field, we believe it will be another
desirable trend.

VII. CONCLUSION

To this end, the literatures discussed in this survey is
visualized as Fig. 7. We classified the existing shared con-
trol strategies into 3 categories: Semi-Autonomous Control
(SAC), State-Guidance Shared Control (SGSC), and State-
Fusion Shared Control (SFSC), according to their distinctive
features. The typical scenarios in using each category are
summarized and the advantages/distantages and open issues of
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Figure 7. The existing strategies are classified into 3 categories: SAC, SGSC,
and SFSC. The representative literatures are listed in each category. Two trends
(Autonomy from Learning and Autonomy-levels Adaptation) are summarized.
(VF: Virtual Fixtures. AM: Arbitration Mechanism.)
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each category were discussed. Two desirable trends, “auton-
omy from learning” and “autonomy-levels adaptation”, were
also summarized after a systematic review. We believe that this
survey captured the most important features in shared control.
In addition, for some terms that have been used interchange-
able in many literatures, e.g., the “Semi-Autonomous Control”
versus “Shared Control”, the “Shared Control” versus “Shared
Autonomy”, we summarize and clarify their fine distinctions to
provide a unified understanding on the same term and facilitate
discussions in robotic society.
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