463,934 research outputs found

    Implementation of Data Abstraction Layer Using Kafka on SEMAR Platform for Air Quality Monitoring

    Get PDF
    Urbanization and fast-growing industries causing air quality in urban areas to be bad and even tend to be dangerous. In addition, the largest percentage of energy emissions come from the transportation sector, specifically on road transportation. Therefore, the need for a quality detection system that is capable of distributing and displaying large data information in real-time cannot be resolved by the system currently used by the government. This research offers a solution to the implementation of data abstraction in cloud computing which is built using the concept microservice architecture and integrated with mobile-based sensors to detect air quality in real-time. This solution consists of integrated cloud computing services using Smart Environment Monitoring and Analytical in Real-time (SEMAR) and Vehicles as Mobile Sensor Networks (VaaMSN) to detecting air quality. SEMAR was built with microservice references consist of data abstraction, communication, data analytical with business analytics proccess, data storage with Big data service and also real-time visualization in maps, chart, and table through dasboard website. Through the experiments that we did show that the microservice of data abstraction layer can be installed at the SEMAR stage indicating that the average delay in sending information is around 0.09 ms (90μs), this indicates that the system can be said to be real-time. With specific and real-time locations in data visualization, the government can use this method as an new alternative method of air quality

    Mobility as a Service (MaaS) within Smart City Planning

    Get PDF
    The terms ‘smart city’ and ‘smart urbanism’ are oftentimes followed by statements about an environmentally friendly, sustainable, and data-driven urban future. Statements as such can be quite assumptive and controversial because the smart city is not homogenous and can vary from location to location. However, a smart city strives to be a technologically driven urban environment that uses a collection of sensors, monitors, and devices to collect specific data and information from humans. The information collected, extracted, and analyzed within the smart city is highly dependent on human interactions with such smart technology. Once the data from the city dwellers and visitors is extracted through the use of smart technology, big corporations, companies, transit agencies, and municipalities can better predict overall usage, patterns, and flows within the smart city. Mobility-as-a-Service (MaaS) is an emerging form of public and private transportation that allows for MaaS users to book and pay for a trip via smartphone, website, or call centre all through a single platform. MaaS’ overarching goal is to shift away from personal modes of transportation and to reduce overall traffic congestion. MaaS covers a wide variety of public transportation options such as On-Demand Transit (ODT), Automated Vehicles (AV’s), Electric Scooters (e-scooters), etc. ODT and AV’s provide shuttle buses to connect urban dwellers to their destinations, whereas e-scooters are available for a single individual to complete their trip. Therefore, this paper intends to focus on the use of smart technology and IoT within our transportation system and the political divides transportation can create within our built environment. Additionally, this paper will explore how MaaS micromobility options are changing our urban public transportation system and how such change impacts the level of access city dwellers have to such services

    An Efficient Algorithm in Computing Optimal Data Concentrator Unit Location in IEEE 802.15.4g AMI Networks

    Get PDF
    With a view to achieve several goals in the smart grid (SG) such as making the production and delivery of electricity more cost-effective as well as providing consumers with available information which assists them in controlling their cost, the advanced metering infrastructure (AMI) system has been playing a major role to realize such goals. The AMI network, as an essential infrastructure, typically creates a two-way communication network between electricity consumers and the electric service provider for collecting of the big data generated from consumer’s smart meters (SM). Specifically, there is a crucial element called a data concentrator unit (DCU) employed to collect the boundless data from smart meters before disseminating to meter data management system (MDMS) in the AMI systems. Hence, the location of DCU has significantly impacted the quality of service (QoS) of AMI network, in particular the average throughput and delay. This work aims at developing an efficient algorithm in determining the minimum number of DCUs and computing their optimum locations in which smart meters can communicate through good quality wireless links in the AMI network by employing the IEEE 802.15.4g with unslotted CSMA/CA channel access mechanism. Firstly, the optimization algorithm computes the DCU location based on a minimum hop count metric. Nevertheless, it is possible that multiple positions achieving the minimum hop count may be found; therefore, the additional performance metric, i.e. the average throughput and delay, will be utilized to select the ultimately optimal location. In this paper, the maximum throughput with the acceptable averaged delay constraint is proposed by considering the behavior of the AMI meters, which is almost stationary in the AMI network. In our experiment, the algorithm is demonstrated in different scenarios with different densities of SM, including urban, suburban, and rural areas. The simulation results illustrate that the smart meter density and the environment have substantially impacted on a decision for DCU location, and the proposed methodology is significantly effective. Furthermore, the QoS in urban area, i.e. a highly populated area for SM, of the AMI network is better than those in the suburban and rural areas, where the SM density is quite sparse, because multiple available hops and routes created by neighboring meters in the dense area can help improve the average throughput and delay with the minimum hop count

    Exploring the influence of big data on city transport operations: a Markovian approach

    Get PDF
    © 2017, © Emerald Publishing Limited.Purpose: The purpose of this paper is to advance knowledge of the transformative potential of big data on city-based transport models. The central question guiding this paper is: how could big data transform smart city transport operations? In answering this question the authors present initial results from a Markov study. However the authors also suggest caution in the transformation potential of big data and highlight the risks of city and organizational adoption. A theoretical framework is presented together with an associated scenario which guides the development of a Markov model. Design/methodology/approach: A model with several scenarios is developed to explore a theoretical framework focussed on matching the transport demands (of people and freight mobility) with city transport service provision using big data. This model was designed to illustrate how sharing transport load (and capacity) in a smart city can improve efficiencies in meeting demand for city services. Findings: This modelling study is an initial preliminary stage of the investigation in how big data could be used to redefine and enable new operational models. The study provides new understanding about load sharing and optimization in a smart city context. Basically the authors demonstrate how big data could be used to improve transport efficiency and lower externalities in a smart city. Further how improvement could take place by having a car free city environment, autonomous vehicles and shared resource capacity among providers. Research limitations/implications: The research relied on a Markov model and the numerical solution of its steady state probabilities vector to illustrate the transformation of transport operations management (OM) in the future city context. More in depth analysis and more discrete modelling are clearly needed to assist in the implementation of big data initiatives and facilitate new innovations in OM. The work complements and extends that of Setia and Patel (2013), who theoretically link together information system design to operation absorptive capacity capabilities. Practical implications: The study implies that transport operations would actually need to be re-organized so as to deal with lowering CO2 footprint. The logistic aspects could be seen as a move from individual firms optimizing their own transportation supply to a shared collaborative load and resourced system. Such ideas are radical changes driven by, or leading to more decentralized rather than having centralized transport solutions (Caplice, 2013). Social implications: The growth of cities and urban areas in the twenty-first century has put more pressure on resources and conditions of urban life. This paper is an initial first step in building theory, knowledge and critical understanding of the social implications being posed by the growth in cities and the role that big data and smart cities could play in developing a resilient and sustainable transport city system. Originality/value: Despite the importance of OM to big data implementation, for both practitioners and researchers, we have yet to see a systematic analysis of its implementation and its absorptive capacity contribution to building capabilities, at either city system or organizational levels. As such the Markov model makes a preliminary contribution to the literature integrating big data capabilities with OM capabilities and the resulting improvements in system absorptive capacity

    A Framework for Integrating Transportation Into Smart Cities

    Get PDF
    In recent years, economic, environmental, and political forces have quickly given rise to “Smart Cities” -- an array of strategies that can transform transportation in cities. Using a multi-method approach to research and develop a framework for smart cities, this study provides a framework that can be employed to: Understand what a smart city is and how to replicate smart city successes; The role of pilot projects, metrics, and evaluations to test, implement, and replicate strategies; and Understand the role of shared micromobility, big data, and other key issues impacting communities. This research provides recommendations for policy and professional practice as it relates to integrating transportation into smart cities

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    Big Cities. Big Water. Big Challenges: Water in an Urbanizing World.

    Get PDF
    This paper applies the water footprint methodology to six megacities across Africa, Asia, and Latin America to explore the effect of urbanization on water use and demand and determine what measures need to be taken to meet this demand. Key threats to water resources in many or all of the cities studied include: water stress or scarcity, pollution and decreasing water quality, and vulnerability to extreme weather caused by climate change
    corecore