9,144 research outputs found

    Why digital medicine depends on interoperability

    Get PDF
    Digital data are anticipated to transform medicine. However, most of today's medical data lack interoperability: hidden in isolated databases, incompatible systems and proprietary software, the data are difficult to exchange, analyze, and interpret. This slows down medical progress, as technologies that rely on these data - artificial intelligence, big data or mobile applications - cannot be used to their full potential. In this article, we argue that interoperability is a prerequisite for the digital innovations envisioned for future medicine. We focus on four areas where interoperable data and IT systems are particularly important: (1) artificial intelligence and big data; (2) medical communication; (3) research; and (4) international cooperation. We discuss how interoperability can facilitate digital transformation in these areas to improve the health and well-being of patients worldwide

    Ethical Implications of Predictive Risk Intelligence

    Get PDF
    open access articleThis paper presents a case study on the ethical issues that relate to the use of Smart Information Systems (SIS) in predictive risk intelligence. The case study is based on a company that is using SIS to provide predictive risk intelligence in supply chain management (SCM), insurance, finance and sustainability. The pa-per covers an assessment of how the company recognises ethical concerns related to SIS and the ways it deals with them. Data was collected through a document review and two in-depth semi-structured interviews. Results from the case study indicate that the main ethical concerns with the use of SIS in predictive risk intelli-gence include protection of the data being used in predicting risk, data privacy and consent from those whose data has been collected from data providers such as so-cial media sites. Also, there are issues relating to the transparency and accountabil-ity of processes used in predictive intelligence. The interviews highlighted the issue of bias in using the SIS for making predictions for specific target clients. The last ethical issue was related to trust and accuracy of the predictions of the SIS. In re-sponse to these issues, the company has put in place different mechanisms to ensure responsible innovation through what it calls Responsible Data Science. Under Re-sponsible Data Science, the identified ethical issues are addressed by following a code of ethics, engaging with stakeholders and ethics committees. This paper is important because it provides lessons for the responsible implementation of SIS in industry, particularly for start-ups. The paper acknowledges ethical issues with the use of SIS in predictive risk intelligence and suggests that ethics should be a central consideration for companies and individuals developing SIS to create meaningful positive change for society

    Data Management Roles for Librarians

    Get PDF
    In this Chapter:● Looking at data through different lenses● Exploring the range of data use and data support ● Using data as the basis for informed decision making ● Treating data as a legitimate scholarly research produc

    Results from the Clarify Study

    Get PDF
    Centro de Matemática e Aplicações, UID (MAT/00297/2020), Portuguese Foundation of Science and Technology. Publisher Copyright: © 2022 by the authors.Background: Artificial intelligence (AI) has contributed substantially in recent years to the resolution of different biomedical problems, including cancer. However, AI tools with significant and widespread impact in oncology remain scarce. The goal of this study is to present an AI-based solution tool for cancer patients data analysis that assists clinicians in identifying the clinical factors associated with poor prognosis, relapse and survival, and to develop a prognostic model that stratifies patients by risk. Materials and Methods: We used clinical data from 5275 patients diagnosed with non-small cell lung cancer, breast cancer, and non-Hodgkin lymphoma at Hospital Universitario Puerta de Hierro-Majadahonda. Accessible clinical parameters measured with a wearable device and quality of life questionnaires data were also collected. Results: Using an AI-tool, data from 5275 cancer patients were analyzed, integrating clinical data, questionnaires data, and data collected from wearable devices. Descriptive analyses were performed in order to explore the patients’ characteristics, survival probabilities were calculated, and a prognostic model identified low and high-risk profile patients. Conclusion: Overall, the reconstruction of the population’s risk profile for the cancer-specific predictive model was achieved and proved useful in clinical practice using artificial intelligence. It has potential application in clinical settings to improve risk stratification, early detection, and surveillance management of cancer patients.publishersversionpublishe
    corecore