38,252 research outputs found

    Dynamic Analysis of a Phytoplankton-Fish Model with Biological and Artificial Control

    Get PDF
    We investigate a nonlinear model of the interaction between phytoplankton and fish, which uses a pair of semicontinuous systems with biological and artificial control. First, the existence of an order-1 periodic solution to the system is analyzed using a Poincaré map and a geometric method. The stability conditions of the order-1 periodic solution are obtained by a theoretical mathematical analysis. Furthermore, based on previous analysis, we investigate the bifurcation in the order-1 periodic solution and prove that the order-1 periodic solution breaks up an order-1 periodic solution at least. In addition, the transcritical bifurcation of the system is described. Finally, we provide a series of numerical results that illustrate the feasibility of the theoretical results. Based on the theoretical and numerical results, we analyzed the feasibility of biological and artificial control, which showed that biological and artificial methods can control phytoplankton blooms. These results are expected to be useful for the study of phytoplankton dynamics in aquatic ecosystems

    Time scale and dimension analysis of a budding yeast cell cycle model

    Get PDF
    The progress through the eukaryotic cell division cycle is driven by an underlying molecular regulatory network. Cell cycle progression can be considered as a series of irreversible transitions from one steady state to another in the correct order. Although this view has been put forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model for the budding yeast cell cycle has identified only two different steady states (one for G1 and one for mitosis) using cell mass as a bifurcation parameter. By analyzing the same model, using different methods of dynamical systems theory, we provide evidence for transitions among several different steady states during the budding yeast cell cycle. By calculating the eigenvalues of the Jacobian of kinetic differential equations we have determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady state and, accordingly, excitation periods can be associated with irreversible cell cycle transitions like START, entry into mitosis and exit from mitosis. During relaxation periods, the control system asymptotically approaches the new steady state. We also show that the dynamical dimension of the Chen’s model fluctuates by increasing during excitation periods followed by decrease during relaxation periods. In each relaxation period the dynamical dimension of the model drops to one, indicating a period where kinetic processes are in steady state and all concentration changes are driven by the increase of cytoplasmic growth.We apply two numerical methods, which have not been used to analyze biological control systems. These methods are more sensitive than the bifurcation analysis used before because they identify those transitions between steady states that are not controlled by a bifurcation parameter (e.g. cell mass). Therefore by applying these tools for a cell cycle control model, we provide a deeper understanding of the dynamical transitions in the underlying molecular network

    Time scale and dimension analysis of a budding yeast cell cycle model

    Get PDF
    BACKGROUND: The progress through the eukaryotic cell division cycle is driven by an underlying molecular regulatory network. Cell cycle progression can be considered as a series of irreversible transitions from one steady state to another in the correct order. Although this view has been put forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model for the budding yeast cell cycle has identified only two different steady states (one for G1 and one for mitosis) using cell mass as a bifurcation parameter. By analyzing the same model, using different methods of dynamical systems theory, we provide evidence for transitions among several different steady states during the budding yeast cell cycle. RESULTS: By calculating the eigenvalues of the Jacobian of kinetic differential equations we have determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady state and, accordingly, excitation periods can be associated with irreversible cell cycle transitions like START, entry into mitosis and exit from mitosis. During relaxation periods, the control system asymptotically approaches the new steady state. We also show that the dynamical dimension of the Chen's model fluctuates by increasing during excitation periods followed by decrease during relaxation periods. In each relaxation period the dynamical dimension of the model drops to one, indicating a period where kinetic processes are in steady state and all concentration changes are driven by the increase of cytoplasmic growth. CONCLUSION: We apply two numerical methods, which have not been used to analyze biological control systems. These methods are more sensitive than the bifurcation analysis used before because they identify those transitions between steady states that are not controlled by a bifurcation parameter (e.g. cell mass). Therefore by applying these tools for a cell cycle control model, we provide a deeper understanding of the dynamical transitions in the underlying molecular network

    A dynamic model of typhoid fever with optimal control analysis

    Get PDF
    In this study, a deterministic mathematical model of Typhoid fever dynamics with control strategies; vaccination, hygiene practice, sterilization and screening is studied. The model is first analyzed for stability in terms of the control reproduction number, Rc,  with constant controls. The disease-free equilibrium and endemic equilibrium of the model exist and are shown to be stable whenever Rc1  respectively. The model by investigation shows a forward bifurcation and the sensitivity analysis conducted revealed the most biological parameters to be targeted by policy health makers for curtailing the spread of the disease. The optimal control problem is obtained through the application of the Pontryagin maximum principle with respect to the above-mentioned control strategies. Simulations of the optimal control system and sensitivity of the constant control system confirm that hygiene practice with sterilization could be the best strategy in controlling the disease

    Dynamics of Phytoplankton, Zooplankton and Fishery Resource Model

    Get PDF
    In this paper, a new mathematical model has been proposed and analyzed to study the interaction of phytoplankton- zooplankton-fish population in an aquatic environment with Holloing’s types II, III and IV functional responses. It is assumed that the growth rate of phytoplankton depends upon the constant level of nutrient and the fish population is harvested according to CPUE (catch per unit effort) hypothesis. Biological and bionomical equilibrium of the system has been investigated. Using Pontryagin’s Maximum Principal, the optimal harvesting policy is discussed. Chaotic nature and bifurcation analysis of the model system for a control parameter have been observed through a numerical simulation

    Tracking bifurcating solutions of a model biological pattern generator

    Get PDF
    We study heterogeneous steady-state solutions of a cell-chemotaxis model for generating biological spatial patterns in two-dimensional domains with zero flux boundary conditions. We use the finite-element package ENTWIFE to investigate bifurcation from the uniform solution as the chemotactic parameter varies and as the domain scale and geometry change. We show that this simple cell-chemotaxis model can produce a remarkably wide and surprising range of complex spatial patterns

    The Operating Diagram for a Two-Step Anaerobic Digestion Model

    Full text link
    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its analytical study. Here, we consider the two-step reduced model of anaerobic digestion (AM2) which is a four-dimensional system of ordinary differential equations. The AM2 model is able to adequately capture the main dynamical behavior of the full anaerobic digestion model ADM1 and has the advantage that a complete analysis for the existence and local stability of its steady states is available. We describe its operating diagram, which is the bifurcation diagram which gives the behavior of the system with respect to the operating parameters represented by the dilution rate and the input concentrations of the substrates. This diagram, is very useful to understand the model from both the mathematical and biological points of view

    Multi-agent decision-making dynamics inspired by honeybees

    Full text link
    When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multi-agent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics we show how the designed agent-based dynamics recover the high performing value-sensitive decision-making of the honeybees and rigorously connect investigation of mechanisms of animal group decision-making to systematic, bio-inspired control of multi-agent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms

    Theoretical Study of Pest Control Using Stage Structured Natural Enemies with Maturation Delay: A Crop-Pest-Natural Enemy Model

    Full text link
    In the natural world, there are many insect species whose individual members have a life history that takes them through two stages, immature and mature. Moreover, the rates of survival, development, and reproduction almost always depend on age, size, or development stage. Keeping this in mind, in this paper, a three species crop-pest-natural enemy food chain model with two stages for natural enemies is investigated. Using characteristic equations, a set of sufficient conditions for local asymptotic stability of all the feasible equilibria is obtained. Moreover, using approach as in (Beretta and Kuang, 2002), the possibility of the existence of a Hopf bifurcation for the interior equilibrium with respect to maturation delay is explored, which shows that the maturation delay plays an important role in the dynamical behavior of three species system. Also obtain some threshold values of maturation delay for the stability-switching of the particular system. In succession, using the normal form theory and center manifold argument, we derive the explicit formulas which determine the stability and direction of bifurcating periodic solutions. Finally, a numerical simulation for supporting the theoretical analysis is given.Comment: 28 pages, 9 figure
    • …
    corecore