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Abstract
Background: The progress through the eukaryotic cell division cycle is driven by an underlying
molecular regulatory network. Cell cycle progression can be considered as a series of irreversible
transitions from one steady state to another in the correct order. Although this view has been put
forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model
for the budding yeast cell cycle has identified only two different steady states (one for G1 and one
for mitosis) using cell mass as a bifurcation parameter. By analyzing the same model, using different
methods of dynamical systems theory, we provide evidence for transitions among several different
steady states during the budding yeast cell cycle.

Results: By calculating the eigenvalues of the Jacobian of kinetic differential equations we have
determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the
real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods.
During an excitation period, the cell cycle control system leaves a formerly stable steady state and,
accordingly, excitation periods can be associated with irreversible cell cycle transitions like START,
entry into mitosis and exit from mitosis. During relaxation periods, the control system
asymptotically approaches the new steady state. We also show that the dynamical dimension of the
Chen's model fluctuates by increasing during excitation periods followed by decrease during
relaxation periods. In each relaxation period the dynamical dimension of the model drops to one,
indicating a period where kinetic processes are in steady state and all concentration changes are
driven by the increase of cytoplasmic growth.

Conclusion: We apply two numerical methods, which have not been used to analyze biological
control systems. These methods are more sensitive than the bifurcation analysis used before
because they identify those transitions between steady states that are not controlled by a
bifurcation parameter (e.g. cell mass). Therefore by applying these tools for a cell cycle control
model, we provide a deeper understanding of the dynamical transitions in the underlying molecular
network.
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Background
The cell cycle is the sequence of events by which a growing
cell replicates all of its components and divides them into
two daughter cells [1]. Proliferating cells are repeating this
sequence therefore the process is periodic. The eukaryotic
cell division cycle is driven by an underlying molecular
network which centers around complexes of cyclin-
dependent kinases (Cdk's) and cyclins [2,3]. In proliferat-
ing cells the cell cycle engine is in periodic motion which
suggested to many theoreticians that it is driven by a limit
cycle oscillator [4-6]. In our view the cell cycle engine can
show limit cycle behavior but only under special develop-
mental contexts like early development [7,8]. In contrast,
the cell cycle of growing cells is controlled by checkpoint
mechanisms that generate stable steady states [9,10]. As a
consequence, the cell cycle progression of growing cells
can be viewed as irreversible transitions among stable
states [10,11]. The driving force for these transitions is
provided by the growth of cytoplasm and at the end of the
cycle the cell divides and the control system settles in a
steady state where it was starting from. In this paper we try
to illustrate this point by using one of the models for the
budding yeast cell cycle [12]. The "Chen model" [12] is
defined by a 13-variable set of ordinary differential equa-
tions (and related algebraic equations) and by 73 kinetic
parameters. The kinetic equations describe the dynamics
of the core cell cycle regulatory components: different
Cdk/cyclin complexes that drive bud formation, DNA rep-
lication and mitosis [2,3]; the regulators of cyclin degrada-
tion (Cdc20 and Cdh1/Hct1) and synthesis (SBF and
Mcm1) and a Cdk inhibitor (Sic1). There are several pos-
itive and negative feedback loops among cell cycle control
components in the model (Fig. 1). Both Cln2 and Clb2
cyclin synthesis are characterized by transcriptional posi-
tive feedback loops because the corresponding Cdk/cyclin
complexes (Cln2/Cdc28 and Clb2/Cdc28) activate their
own transcription factor (SBF and Mcm1) [13-15].
Another positive (or double-negative) feedback is
between Clb2/Cdc28 kinase and its G1 enemies (Sic1 and
Cdh1): they inactivate or promote the degradation of each
others [16-18]. All the positive feedbacks in the mecha-
nism are counteracted by negative feedback loops (Fig. 1).
Cdc28/Cln2 besides activating its transcription factor
(SBF) which is a positive feedback, initiates a sequence of
events that inhibits SBF: Cln2 -| (Sic1, Cdh1) -| Clb2 -|
SBF which is a time delayed negative feedback loop. Sim-
ilarly, Clb2 kinase which is activated by a transcriptional
positive feedback [13], activates Cdc20 that promotes
Clb2 degradation (negative feedback). The double-nega-
tive feedback is also regulated by a negative feedback,
because Clb2 activates Sic1 and Cdh1 via Cdc20: Clb2 →
Cdc20 → (Sic1, Cdh1) -| Clb2.

A series of mathematical and computational methods
have been developed for the analysis of complex reaction

kinetic models (e.g. in combustion and atmospheric
chemistry [19]). Some of these tools are applied here to
the Chen's budding yeast cell cycle model in order to illus-
trate that the growing cell undergoes a series of irreversible
transitions among cell cycle states.

Results
Excitation and relaxation periods during the budding yeast 
cell cycle
The extension of linear stability analysis to non-stationary
systems tells us whether the trajectories of perturbed and
unperturbed systems are converging or diverging in time
(see methods). This analysis must be done all over the tra-
jectory of the unperturbed system, because the reference
point is changing in non-stationary systems [19]. If the
real parts of all the eigenvalues of the linearized system are
negative then the distance between the original and the
perturbed systems are decreasing. If the real part of at least
one of the eigenvalues is positive, then the distance
between the original and the perturbed point is increasing
in time. In chemical systems a positive real part eigenvalue
is a sign for an autocatalytic regime when the system is in
an excitation phase. In contrast when all the real part of
eigenvalues are negative the system is in a relaxation
period approaching to a stable steady state [19] indicating
that the perturbed system approaches the unperturbed
one. The imaginary part of an eigenvalue is also informa-
tive, because it determines the way (e.g. monotonous or
damped oscillations) how the perturbed and the original
trajectories are converging to or diverging from each
other. Since we were not interested in these local charac-
teristics of the trajectories, we have analyzed the real parts
of the eigenvalues only. Therefore, in the following text
term eigenvalue always refers to the real part of the com-
plex eigenvalue.

The eigenvalues of the Jacobian for the Chen [12] model
was calculated during the simulation of the budding yeast
cell cycle (Fig. 2). There are four periods (indicated by gray
shading) during the cycle (between two successive cell
divisions at 0 min and at 145 mins) where at least one of
the eigenvalues is positive which indicates an excitation in
the underlying cell cycle control system. Excitation peri-
ods E4a and E4b are very close to each other at the end of
the cycle and they are well distinguishable only on the
small inlet (Fig. 2). In the middle of excitation period E2
another eigenvalue of the Jacobian becomes positive,
which is indicated by dark grey shading (E3). Each excita-
tion period is followed by a relaxation period (R1...4)
where all the eigenvalues are negative.

At the beginning of the cell cycle all the eigenvalues are
negative and the control system is in a stable state which
is called G1 phase of the cell cycle (Fig. 3). In this cell cycle
phase all the major cyclins (Cln2, Clb5 and Clb2) are
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absent, but the level of G1 stabilizers (Sic1 and Cdh1) is
high (Cdh1 is not shown). Although G1 is a stable state in
the model, it is not a unique steady state, because the cell
is growing in its cytoplasmic mass, which causes a slow
but steady accumulation of Cdk/Cyclin activities. This is
reflected in the slow decrease of Sic1 level during relaxa-
tion period R1 (Table 1) because Sic1 gets degraded due
to Cdk dependent phosphorylation [17].

Just before 80 mins the stable G1 state looses its stability
and the control system enters into excitation period E1
(Fig. 3). The positive eigenvalue of the Jacobian is the con-
sequence of the transcriptional positive feedback loop
between SBF and Cdk/Cyclin activities [14,15]. During
this excitation period SBF jumps from very low value to
one, which causes an increase in the rate of Cln2 and Clb5
synthesis (Table 1). Because of this positive feedback loop
the cell cycle control system leaves the stable G1 state dur-
ing excitation period E1 in an irreversible manner. All of

these characteristics of excitation period E1 leads us to
associate it with start transition of the cell cycle (Table 1).

Excitation period E1 is followed by a relaxation period
(white area – R2 on Fig. 2) when the system approaches a
new stable state, which is qualitatively different from G1.
Since SBF is high which activates the synthesis of Cln2 and
Clb5 cyclins, the level of Cln2/Cdc28 and Clb5/Cdc28
complexes is increasing. Both of these Cdk/Cyclin com-
plexes down-regulate the G1 stabilizers (Sic1 and Cdh1)
[16,18], therefore Sic1 and active Cdh1 levels are decreas-
ing during this relaxation period (Table 1). The activity of
Cln2/Cdc28 appears first which is responsible for initia-
tion of bud formation. Since Clb5/Cdc28 is inhibited by
Sic1[16], its activity appears and triggers DNA replication
only after Sic1 has dropped to very low value (Fig. 3). The
two cell cycle events during relaxation period R2 are initi-
ation of bud formation and DNA replication, which are
coincident during budding yeast cell cycle [3]. Therefore,

Molecular interaction map of the budding yeast cell cycleFigure 1
Molecular interaction map of the budding yeast cell cycle. The network corresponds to the Chen paper [12]. Lines 
with arrowheads represent activations, ones with -| represent inhibitory effect. See text for details.
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we associate the state corresponding to relaxation period
R2 with high SBF, Cln2, Clb5 and low Cdh1, Sic1 levels
with S phase of the cell cycle (Table 1).

Relaxation period R2 is very short (12.6 mins) because the
system soon enters into a new excitation period (E2).

Since both Cdh1 and Sic1 are negative regulators of
Cdc28/Clb2 kinase, the decrease of Sic1 and active Cdh1
levels help to activate the transcriptional positive feedback
loop between Clb2/Cdc28 and Mcm1 [13]. It is true again
that the transcription factor (Mcm1) for cyclin synthesis
changes faster than the corresponding cyclin (Clb2) level.

The eigenvalues of the Jacobian during the budding yeast cell cycleFigure 2
The eigenvalues of the Jacobian during the budding yeast cell cycle. A small daughter cell was simulated from birth 
(time = 0) until its subsequent cell division (time = 144.92). The grey areas mark the periods, where there is at least one posi-
tive eigenvalue. The dark grey area marks the location of a sharp positive eigenvalue peak. Cell cycle phases are noted and 
enlarged inlets of the positive eigenvalue regimes are attached.
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By entering into the second excitation period the control
system shoots for states where SBF, Cln2, Clb5, Mcm1 and
Clb2 levels are high, while Sic1 and active Cdh1 levels are
low. Therefore we associate excitation period E2 with the
irreversible decision to enter into mitosis. This excitation
period interrupts relaxation period R2 (where S phase
starts) which reflects the fact that budding yeast cells enter
into mitosis during S phase and they do not have a real G2
phase between S and M phases [3].

There is a narrow excitation period (E3, indicated by dark
grey area) in the middle of the second excitation period,

which is caused by turning off the SBF-Cln2 transcrip-
tional positive feedback loop [20]. This positive feedback
was turned on during excitation period E1 at start transi-
tion. However, high Cdc28/Cln2 kinase activity – besides
activating SBF (positive feedback) – also initiates a time
delayed negative feedback loop: Cdc28/Cln2 down-regu-
lates Sic1 and Cdh1, which help Cdc28/Clb2 activation
which inhibits the transcription factor for Cln2 (SBF).
When the rising Cdc28/Clb2 level during excitation
period E2 crosses the inhibitory threshold, SBF turns off
abruptly. Turning off SBF causes decrease in both Cln2
and Clb5 levels after excitation period E3 (Table 1). Since

Fluctuation in concentrations of key cell cycle regulators in the simulation of the Chen model [12]Figure 3
Fluctuation in concentrations of key cell cycle regulators in the simulation of the Chen model [12]. (a) Cln2 and 
SBF appear together just like Clb2 comes with Mcm1. (b) Concentrations of other key cell cycle regulators also changes at the 
time of positive eigenvalue periods. Background shading shows the same autocatalytic periods as on Fig. 2.
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Cln2 kinase is responsible for polarized growth driving
bud formation [21], this excitation changes the growth
characteristic of the cell [22]. The polarized growth started
at E1 by Cdc28/Cln2 switches to isotropic growth result-
ing in bud expansion in all directions (Table 1).

Excitation period E3 changes the characteristics of the
mitotic state induced by the control system during excita-
tion period E2. In period R3 the system relaxes to a state
where Clb2 and Mcm1 levels are high, while SBF, Cln2
and Clb5 levels are low (Fig. 3 and Table 1). The excita-
tions (E4a and E4b) drives the cells out of the mitotic state
when the spindle checkpoint is released [23]. This signal
stimulates Cdc20 activation that induces Clb2 degrada-
tion [24]. The drop in Clb2 level causes a decrease in
Cdc28/Clb2 activity, which gets further amplified by turn-
ing off the positive feedback loop between Cdc28/Clb2
and Mcm1. Reduction of Cdc28/Clb2 kinase activity also
turns the double negative feedback loop between Cdc28/
Clb2 and Cdh1 to the G1 regulators side. Activation of
Cdh1 causes further Clb2 degradation and an irreversible
exit from mitosis. The stoichiometric Cdk inhibitor (Sic1)
also gets up-regulated in an autocatalytic manner but only
after some delay and it is responsible for excitation E4b.
The two excitations (E4a and E4b) drive the system to a
G1 state with low Clb2 level (Fig. 3 and Table 1).

Cell cycle transitions shifted in cell cycle mutants
The cell cycle transitions described in the previous section
for wild type cells are shifted in certain cell cycle mutants.
The analysis of eigenvalues during simulations when the
level of certain cell cycle regulators were changed helped
us to understand the role of feedback loops in irreversible
cell cycle transitions.

The SBF-Cln2 transcriptional positive feedback loop can
be cancelled out by reducing SBF inhibition (kisbf' and
kisbf") to zero. This parameter change corresponds to the

deletion of SBF inhibitory component, Whi5, which is a
viable cell [25,26]. Both E1 and E3 excitations are abol-
ished (Fig. 4b) supporting that these excitations are the
consequences of turning on and off the SBF-Cdc28/Cln2
positive feedback loop. The Cdc28/Clb2-Mcm1 transcrip-
tional positive feedback can be eliminated by constitutive
Clb2 expression which simulates a Gal-Clb2 strain, which
is a viable cell [27]. Ectopic Clb2 expression eliminates
excitations E2 and one of E4 (at mitotic exit) indicating
that synthesis of mitotic cyclin (Clb2) is turned on and off
at these excitation periods (Fig. 4c). The prediction is that
in the combined double mutant, whi5Δ Gal-Clb2, four
excitations should disappear, leaving one excitation
period at mitotic exit intact. In contrast to our expecta-
tions, we found two excitation periods in the double
mutant (see Fig. 4d). Simulations revealed that the first
excitation period marks the G1/S transition where Cdh1
and Sic1 are turned off or degraded by appearing Clb2
kinase activity (not showed). This antagonism between
Cdc28/Clb2 and Cdh1, Sic1 does not produce a positive
eigenvalue in wild-type cells because Cdh1 and Sic1 are
inactivated by Cln2 and Clb5 before Clb2 cyclin appears
[18]. The situation is different in this double mutant,
which cycles at a reduced cell size because of the elevated
Clb2 synthesis. Although SBF is fully active, Cln2 level is
small and roughly constant because the rate of synthesis is
cell size dependent. As a consequence, in the double
mutant it is Cdc28/Clb2 which turns off Cdh1 and elimi-
nates Sic1 giving rise for a new excitation not observable
in wild type.

In the absence of Cln2, START (E1) is delayed compared
to wild type cells (Fig. 4e), because the transcriptional
positive feedback loop responsible for START is compro-
mised. This delay in START is fully compensated and
START is even advanced in a cln2Δ sic1Δ background (Fig.
4g). Elimination of Sic1 helps Cdc28/Clb5 to activate the
transcriptional positive feedback. Observe that Sic1 dele-

Table 1: Detailed changes in variables at excitation (E) and relaxation (R) periods of the cell cycle

R1 G1 E1 START R2 S E2 M entry E3 growth change E2 M entry R3 M E4a Ana R4 Telo E4b Exit

Clb2T — — — • / / / / • ↓ ↓ ↓
Sic1T ∩ \ \ • — — — — • / / /
Cdh1 — — • \ — — — — • ↑ / —
Cdc20T \ — — — — • / / • ∩ \ \
Cdc20 \ — — • ↓ — — / • ↑ / ∩
Cln2 — • ↑ / / • ∩ \ \ — — —
Clb5T ∪ — •/ / • ∩ \ \ \ \ \
SWI \ — — • ↓ — — — — • ↑ / /
SBF / • ↑ — — • ↓ ↓ \ — — — • /
MCM — — — •/ / / / / • ↓ ↓ ↓

• major transition — no change / slow increase \ slow decrease
∩ maxima ∪ minima ↑ abrupt increase ↓ abrupt decrease
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Positive eigenvalue periods in mutant cellsFigure 4
Positive eigenvalue periods in mutant cells. (a) wild-type (same as Fig 2); (b) whi5Δ (parameter changes: kisbf' = 0, kisbf" = 
0); (c) Gal-Clb2 (ksb2' = 0.15); (d) whi5Δ Gal-Clb2 (see changes above); (e) cln1Δ cln2Δ (ksn2" = 0); (f) sic1Δ (ksc1' = 0, ksc1" = 0); (g) 
cln1Δ cln2Δ sic1Δ (see changes above). Excitation periods are labeled with same numbers as on Fig. 2 (1* stands for a new 
START related excitation period, details in text).
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tion on its own does not have an effect on the cell cycle
position of START (Fig. 4f).

Dimension of the manifold
The dimension of the manifold of a dynamical system
identifies how many variables are changing independ-
ently of the others at a certain time. Figure 5 shows the
change of the dimension of the manifold during a cycle.
The dimension was estimated using the theory described
in methods using threshold value zthres = 7.0 × 10-5. The
dimension of the manifold changes between one and
seven during the cycle. The dimension usually increases in
each excitation period, where one of the eigenvalues
becomes positive. During excitation period E4 the dimen-
sion increases to 7 and then gradually decreases to 1; in
excitation period E1 the dimension increases from 1 to 3,
and there is a further a rise in dimension (up to 7) at the
time of entry into mitosis, which is associated with E2 (Fig
5). The general picture is that the dimension of the mani-
fold increases in excitation periods and then decreases in
the subsequent relaxation periods. However, the dimen-
sion of the manifold never drops to zero during relaxation
periods but rather to one. The minimum dimension is
one because cell mass continuously increases during the
cycle. Therefore, the cell cycle control system never
reaches a real steady state during the cell cycle, but it is
rather pulled by increasing cell mass. The fact that the
model has a maximal dynamical dimension of 7 does not
mean that an explicit 7-variable equivalent model could
be constructed. It rather suggests that a locally valid model
can be constructed with no more than 7 variables at any
time point.

Discussion
Dynamical models for natural phenomena are usually
studied by computer simulations using numerical meth-
ods. The temporal patterns provided by this approach are
often directly comparable to experimental data, which is a
real advantage. However, computer simulations do not
provide the modeler with any inside view why the mech-
anism works in a particular way. This disadvantage can be
eliminated by using other tools of dynamical systems the-
ory like bifurcation analysis. Bifurcation analysis provides
us with recurrent solutions (steady states and oscillations)
of the control system, which could be stable or unstable.
The number, the nature (steady or oscillatory) and the sta-
bility of recurrent solutions are dependent on parameter
values. A change in the number or the characteristic of
recurrent solutions is called bifurcations. Both methods
(simulations and bifurcation analysis) have been exten-
sively used for analysis of cell cycle models. Cytoplasmic
mass has an influence on the cell cycle progression, but its
change is much slower than the molecular changes in the
control system. Therefore cellular mass is often consid-
ered as a bifurcation parameter [7,10,28,29] which helps

us to identify cell cycle states and cell cycle transitions
dependent on cellular mass. However, those cell cycle
transitions that are not dependent on reaching a critical
cellular mass cannot be identified by bifurcation analysis.

We have tried to overcome this problem by applying a
new method which has not been used for analyzing mod-
els of biological systems before. The time scale analysis
applied here is a frequently applied tool for the investiga-
tion of complex chemical reaction networks (see e.g.
[19]). This approach is applicable for any models which
are represented by ordinary differential equations. Based
on the sign of Jacobian's eigenvalues the temporal evolu-
tion of the system can be divided into excitation and relax-
ation periods. In addition, considering the eigenvectors of
the Jacobian, the dynamical dimension of the system can
also be calculated. During relaxation periods all the eigen-
values are negative and system approaches to a stable
steady state. In contrast during excitation periods at least
one of the eigenvalues is positive which leads to a devia-
tion from a stable state. By applying time scale analysis to
the Chen's cell cycle model [12] we have identified four
excitation and four relaxation periods during the budding
yeast cell cycle. The relaxation periods correspond to well
known cell cycle phases like G1, S and M phases. The exci-
tations represent the irreversible cell cycle transitions
driven by activation or inactivation of positive feedback
and double-negative feedback loops. The first excitation
period at START transition flips the control system from a
G1 state into S phase with a concomitant initiation of bud
growth. The second excitation is responsible for the initi-
ation of mitosis, which is premature in budding yeast. The
third excitation changes the morphology of bud growth
from polarized to isotropic. Finally the last excitation at
mitotic exit pushes the system back to G1 phase. By ana-
lyzing cell cycle mutants we could determine which feed-
back loop is responsible for a certain excitation and cell
cycle transition.

Dimension analysis revealed that the dynamical dimen-
sion of the system never exceeds seven. This finding sug-
gests that the 13-dimensional Chen's model can be
reduced to a seven dimension system at any given time
point. The maximal dimension was always reached during
the excitation periods and the dimension was reduced
during the subsequent relaxation periods always to one.
Dynamical dimension one indicates that all chemical
reactions are in stationary state, and the change of the sys-
tem is dictated by the increase of cell mass only.

Although limit cycle oscillators can be constructed with-
out excitation (positive feedback) mechanisms, most
examples for limit cycles are characterized by excitation-
relaxation periods. In general, the dynamical dimension
can be high during the whole cycle. A special category of
Page 8 of 11
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limit cycles is based on sequential destabilization of
attracting stationary points. This is the case in the Chen
model, where during the relaxation periods the dimen-
sion always decreases to one. If the dimension is one, all
chemical concentrations are in steady state, which is mov-
ing due to the increase of the cell mass only. Comparison
of Figures 2 and 5 clearly indicates that the Chen model
can be interpreted as switching between steady states.

Conclusion
We applied mathematical tools, which have been used to
investigate complex chemical reaction models before, for
the analysis of a biological regulatory network. The analy-
sis of a budding yeast cell cycle model revealed the pres-
ence of autocatalytic excitation and subsequent relaxation

periods in the cell cycle and these excitation periods can
be connected to major cell cycle transitions. We propose
that this technique can be very useful to detect the timing
and length of dynamical transitions in any mathematical
model of complex regulatory biological networks.

Methods
Theory of the analysis
A dynamical model can be characterized by the following
initial value problem

d Y/d t = f(Y,p),  Y(0) = Y0  (1)

where t is time, Y is the n-vector of variables, p is the m-
vector of parameters, Y0 is the vector of the initial values

Change of the estimated dimension of the manifold during a cell cycleFigure 5
Change of the estimated dimension of the manifold during a cell cycle. Background shading shows the same autocat-
alytic periods as on Fig 2.
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of the variables, and f is the right-hand-side of the differ-
ential equations. Lam and Goussis [30] and Maas and
Pope [31] investigated the response of dynamical systems
to the simultaneous perturbations in the values of several
variables. Local characterization of a dynamical system
can be based on the eigenvalue-eigenvector decomposi-
tion of the Jacobian:

Λ = W J V  (2)

where J = ∂f/∂Y is the Jacobian, W and V are the matrices
of left and right eigenvectors, respectively; Λ is a diagonal
matrix and its diagonal elements are the eigenvalues of the
Jacobian. Denote Re(λj) the real part of the j-th eigenvalue
of the Jacobian, and wj the corresponding left eigenvector.
If the values of the variables are changed by Δy'0 =αwj,
where α is a small scalar, then the relaxation of the varia-
bles to the original values can be described by the follow-
ing exponential function:

According to this local linear approximation, the rate of
response can be related to n orthogonal perturbation
directions. In non-stationary systems, the reference point
belonging to the unperturbed system is continuously
moving in the space of variables. If Re(λj) is negative, then
the distance between the reference and the perturbed
point is decreasing. The response is faster if |Re(λj)| is
larger. If Re(λj) is zero, the trajectories of the original and
perturbed systems run parallel. If Re(λj) is positive, then
the distance between the original and the perturbed point
is increasing. Presence of at least a single positive eigen-
value is characteristic for a feedback regime, like the auto-
catalytic regime in chemical kinetic systems. For example,
in models describing explosions the highest eigenvalue of
the Jacobian is positive during the fast change of concen-
trations and all eigenvalues are negative during the subse-
quent relaxation period. Measures 1/|Re(λj)| are called the
timescales of dynamical systems. In nonlinear dynamical
systems, the timescales depend on the values of variables
and therefore on time.

Lam and Goussis [30] have investigated the presence of
time scales of very different magnitude for a series of sin-
gle points in the variable space. Roussel and Fraser [32]
described the evolution of chemical kinetic systems in
connection with slow manifolds. They stated that the
existence of very different time scales in these systems
causes the trajectory of the solution to move onto attract-
ing slow manifolds. Starting from any point in the space
of variables, the trajectory originally moves on a given n'
dimensional manifold, but as time advances in the relax-
ation period (when all eigenvalues of the Jacobian are
negative), the dynamical dimension of the movement

decreases, and after some time the trajectory moves close
to a two-dimensional surface (curved plate), then close to
a one-dimensional curve, and finally arrives to the zero-
dimensional equilibrium or stationary point if it exists. It
was found [33] that in excitation periods (when at least
one eigenvalue of the Jacobian is positive) the dynamical
dimension of the system increases.

A simple method was suggested for the calculation of the
dimension of the manifold [33,34]. In a dynamical sys-
tem of n variables, the degree of freedom of the movement
in the space of variables is n1 = n - nc, where nc is the
number of conservation relations, which is equal to the
number of zero eigenvalues of the Jacobian. The columns
of matrix W indicate the basic excitation directions (called
modes) in a dynamical system at a given point in the
space of variables. In all these directions, distance from
the stationary state in this direction can be calculated by
equation

Δzj = wjf/Re(λj)  (4)

If the system is close to the stationary state with respect to
mode j, that is if Δzj is smaller than threshold zthres, the sys-
tem is in the stationary point of the corresponding direc-
tion. Let nr denote the number of such so called relaxed
modes. The actual dynamical dimension of the system is
nD = n - nc - nr. For a justification and details see [34].

Simulation methods
The cell cycle model was simulated using the equations,
parameters and initial values given by Chen et al. [12].
Due to the zero initial values for several enzyme concen-
trations, the beginning of the first period was different
from the others, but the concentration changes during all
subsequent periods were identical. In all simulations the
daughter cell was followed [12]. Following the original
model, we used variable Cln2 representing the sum of
Cdc28/Cln1 and Cdc28/Cln2 complexes, Clb5 for Cdc28/
Clb5 and Cdc28/Clb6, and Clb2 for Cdc28/Clb1 and
Cdc28/Clb2.

In all figures in this paper, the time dependent values were
plotted for a whole cell cycle (144.92 minutes) plus ten
minutes before and after that period. Time zero marked
the division of the cell. The results presented here were
calculated by specific goal oriented Fortran codes derived
from the KINAL and KINALC packages [35], which is
downloadable from our website [36].

Abbreviations
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