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We investigate a nonlinear model of the interaction between phytoplankton and fish, which uses a pair of semicontinuous systems
with biological and artificial control. First, the existence of an order-1 periodic solution to the system is analyzed using a Poincaré
map and a geometric method. The stability conditions of the order-1 periodic solution are obtained by a theoretical mathematical
analysis. Furthermore, based on previous analysis, we investigate the bifurcation in the order-1 periodic solution and prove that
the order-1 periodic solution breaks up an order-1 periodic solution at least. In addition, the transcritical bifurcation of the system
is described. Finally, we provide a series of numerical results that illustrate the feasibility of the theoretical results. Based on the
theoretical and numerical results, we analyzed the feasibility of biological and artificial control, which showed that biological
and artificial methods can control phytoplankton blooms. These results are expected to be useful for the study of phytoplankton
dynamics in aquatic ecosystems.

1. Introduction

Phytoplankton plays an important role in ecology and the
climate because it participates in the global carbon cycle
as the base of the food chain [1]. A feature of plankton
populations is the occurrence of rapid population explosions
and almost equally rapid declines, which are separated by
periods of almost stationary high or low population levels
[2]. This phenomenon is known as a “bloom.” In specific
environmental conditions, lakes, reservoir, andmarinewaters
may experience plankton or algae blooms [3, 4]. For example,
eutrophication may cause blue-green algae, which are very
small plankton species with rapid rates of reproduction, to
bloom frequently in the Zeya Reservoir in Wenzhou, which
is located in a subtropical region.This may degrade the water
quality and could deprive millions of people of drinking
water. In particular, some types of phytoplankton are rich in
neurotoxins, which can cause substantial mortality in fish,
while the toxins absorbed by shellfishmay cause paralysis and
death in sea birds and humans [5]. Thus, it is very important
to control the growth of phytoplankton.

In general, physical methods (e.g., artificial refloata-
tion and removal using machines), chemical methods (e.g.,
adding chemical reagents to the water), and biological meth-
ods (e.g., releasing natural enemies or competitors) are used
to kill phytoplankton or restrain their growth when blooms
occur. However, physical methods are rarely effective in pre-
venting phytoplankton blooms, while chemical methodsmay
cause secondary pollution. Furthermore, the phytoplankton
continues to reproduce when the concentration of chemical
reagents in the water drops to certain levels. In particular,
when the chemical reagents beyond a certain level, the algae
removal rate may reach 100% within 24 h [6]. It may be
possible to break the ecological balance but this is not the
goal. In the present study, physical and chemical methods are
referred to as artificial methods.

In the food chain, phytoplankton is not the top trophic
level, and some higher trophic levels, such as filter-feeding
fish, capture and feed upon phytoplankton. Thus, biological
methods can be used to control the growth of phytoplankton
in an effective manner. Liu and Xie [7] conducted in situ
enclosure experiments in a lake over the course of three
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years and showed that intense stocking with filter-feeding
fishes, that is, silver carp (Hypophthalmichthys molitrix) and
bighead carp (Aristichthys nobilis), played a decisive role in
the elimination of blue algae blooms from the lake.The results
indicated that silver carp and bighead carp controlled the blue
algae blooms effectively, and the effective biomass required
to contain the blooms was determined to be 46–50 g/m3. In
another study [8], a mesocosm experiment was conducted to
assess the impact of a moderate silver carp biomass (41 g/m3

or 850 kg/ha) on the plankton community and the water
quality of the eutrophic Paranoá Reservoir (Braśılia, Brazil).
The results, as well as other successful examples of blue-green
control using silver carp in lakes and reservoirs [9–11], suggest
that the use of silver carp is a promising management tool for
suppressing excess filamentous blue-green algae, such as that
in Paranoá Reservoir, and for controllingMicrocystis blooms
in critical areas [8].

In addition, the use of biological methods can reduce
pollution, protect the ecological balance, and bring economic
benefits. However, the effects of biological method may
be very slow. Thus, we need to compare the suitability of
using biological methods and artificial methods at the same
time. The use of chemical reagents may be reduced with
biological method, thereby reducing the negative effects of
chemical methods. Based on previous research, we used the
theory of impulsive differential equations [12–14] to develop a
phytoplankton-fishmodel to investigate the feasibility of bio-
logical and artificial methods. Many researchers have studied
some ecological systemswith impulsive differential equations
[15–22], including the use of biological and chemical controls.

In our model, a logistic growth function represents the
gross rate of phytoplankton production. Based on previous
studies [2, 23, 24], a Holling type-III function represents
the interaction between the phytoplankton and the fish,
that is, predation of the phytoplankton. Furthermore, based
on the work of Wyatt and Horwood [25], Uye [26], and
Levin and Segel [27], Truscott and Brindley [2] discussed the
rationality of using a Holling type-III function to investigate
the interaction between phytoplankton and zooplankton.We
consider that the model is reasonable, although zooplankton
is replaced by fish in our model. It is known that some filter-
feeding fish feed on phytoplankton, so the population density
of phytoplankton can control the rate of fish production. In
this system, the loss of fish occurs via death and natural
predation by higher trophic levels in the food web. Thus, we
assume a linear loss of fish.

According to other studies [28, 29], some phytoplankton
blooms may be controlled within a short period of time
(<24 h) using artificial methods. In our model, we assume
that the time unit is a day and the artificial and biological
methods are modeled using impulsive differential equations.
The model is described as follows:
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Δ𝑦 = 𝑞𝑦 + 𝜏,
𝑥 = ℎ,

(1)

where 𝑥 denotes the phytoplankton population density, unit
𝜇g/L; 𝑦 denotes the fish population density, unit 𝜇g/L; 𝑟 is
the intrinsic growth rate of phytoplankton population, 𝑎 is
the maximum predation rate of the fish, 𝜀 is the conversion
efficiency, 𝐾 is the carrying capacity, 𝑏 is a half-saturation
constant, and 𝑚 is the mortality and respiration rate of fish,
while the termΔ𝑥 = −𝑝𝑥, whereΔ𝑥 = 𝑥(𝑡+)−𝑥(𝑡), represents
artificial control and the term Δ𝑦 = (1 + 𝑞)𝑦 + 𝜏, where Δ𝑦 =
𝑦(𝑡

+
) − 𝑦(𝑡), represents biological control. The parameters

𝑝 ∈ (0, 1) represent the control levels of artificial methods,
ℎ > 0 denotes the critical value of a phytoplankton bloom,
and 𝜏 ≥ 0, 𝑞 > 0 represents the release level of fish required
to control phytoplankton, and we set Δ𝑥 = 𝛼(𝑥, 𝑦) = −𝑝𝑥,
Δ𝑦 = 𝛽(𝑥, 𝑦) = 𝑞𝑦 + 𝜏.

The rest of this paper is organized as follows. In Section 2,
we provide some preliminary details, which are the theo-
retical basis of the following investigation. Next, we discuss
the existence of an order-1 periodic solution, attractor, and
bifurcation in Section 3, which provides a theoretical basis
for the study of the biological method. In addition, some
numerical results are presented in Section 4, which illustrate
the validity of the theory. In the final section, we discuss the
feasibility of the artificial and biological methods.

2. Preliminaries

Given the following autonomous system with impulsive
control:

𝑑𝑥

𝑑𝑡

= 𝑃 (𝑥, 𝑦) ,
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(2)

where 𝑡 ∈ 𝑅, (𝑥, 𝑦) ∈ 𝑅2, and 𝑃,𝑄, 𝑓, 𝑔 : 𝑅
2
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2

are the set of impulses, it is assumed that 𝑃, 𝑄, 𝑓, 𝑔 are all
continuous with respect to 𝑥, 𝑦 in 𝑅2, so the points in𝑁 ⊂ 𝑅

2

lie on a line. For each point 𝑆(𝑥, 𝑦) ∈ 𝑁, 𝐼 : 𝑅
2
→ 𝑅

2 is
defined:
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+
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+
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+
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2
,
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+
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+
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(3)

Let 𝑀 = 𝐼(𝑁) be the phase set of 𝑁, where 𝑁 ∩ 𝑀 = 𝜙.
System (2) is generally known as a semicontinuous dynamic
system.

Definition 1. Let Γ be an order-1 periodic solution of system
(2), where Γ is

(1) orbitally stable if ∀𝜀 > 0, ∃𝑝 ∈ 𝑁, 𝑝 ∈ Γ, and ∃𝛿 > 0
such that∀𝑝

1
∈ ∪(𝑝, 𝛿),𝜌(𝜋(𝑝

1
, 𝑡), Γ) < 𝜀when 𝑡 > 𝑡

0
;

(2) orbitally attractive if ∀𝜀 > 0 and ∀𝑝
2
∈ 𝑁, ∃𝑇 > 0

such that 𝜌(𝜋(𝑝
2
, 𝑡), Γ) < 𝜀 when 𝑡 > 𝑇 + 𝑡

0
;
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(3) orbitally asymptotically stable if it is orbitally stable
and orbitally attractive.

In the present study, ∪(𝑝, 𝛿) denotes the 𝛿-neighborhood of
the point 𝑝 ∈ 𝑁, 𝜌(𝜋(𝑝

1
, 𝑡), Γ) is the distance from 𝜋(𝑝

1
, 𝑡) to

Γ, and 𝜋(𝑝
1
, 𝑡) is the solution of system (2) that satisfies the

initial condition 𝜋(𝑝
1
, 𝑡
0
) = 𝑝

1
.

Definition 2. The phase plane is divided into two parts based
on the trajectory of the differential equations that constitute
the order-1 cycle. The section that contains the impulse line
and the trajectory is known as the inside of the order-1 cycle.

Definition 3. Assuming that𝑀 and𝑁 are both straight lines,
we define a new number axis 𝑙 on 𝑁. It is assumed that 𝑁
intersects with the 𝑥-axis at point𝑄.The point𝑄 is the origin
on the number axis 𝑙, and both the positive direction and
unit length are consistent with the coordinate axis 𝑦. For
any point 𝐴 ∈ 𝑙, let 𝑙(𝐴) = 𝑎 be a coordinate of point 𝐴.
Furthermore, supposing that the trajectory through point 𝐴
via 𝑘th impulses intersects𝑁 at point 𝐵

𝑘
, then set 𝑙(𝐵

𝑘
) = 𝑏

𝑘
.

The point 𝐵
𝑘
is called the order-𝑘 successor point of point 𝐴,

and𝐹
𝑘
(𝐴) is known as the order-k successor function of point

𝐴, where 𝐹
𝑘
(𝐴) = 𝑙(𝐵

𝑘
) − 𝑙(𝐴) = 𝑏

𝑘
− 𝑎, 𝑘 = 1, 2, . . ..

Lemma 4 (see [16]). The order-1 successor function 𝐹
1
(𝐴) is

continuous.

Lemma 5 (see [30]). The 𝑇-periodic solution (𝑥, 𝑦) =

(𝜉(𝑡), 𝜂(𝑡)) of the system
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(4)
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and 𝑃, 𝑄, 𝜕𝛼/𝜕𝑥, 𝜕𝛼/𝜕𝑦, 𝜕𝛽/𝜕𝑥, 𝜕𝛽/𝜕𝑦, 𝜕𝜙/𝜕𝑥, 𝜕𝜙/𝜕𝑦,
which are calculated for the points (𝜉(𝑡

𝑘
), 𝜂(𝑡

𝑘
)),

𝑃
+

= 𝑃(𝜉(𝑡
+

𝑘
), 𝜂(𝑡

+

𝑘
)), and 𝑄

+
= 𝑄(𝜉(𝑡

+

𝑘
), 𝜂(𝑡

+

𝑘
)), where

𝜙(𝑥, 𝑦) is a sufficiently smooth function so grad 𝜙(𝑥, 𝑦) ̸= 0,
and 𝑡

𝑘
(𝑘 ∈ 𝑁) is the time of the kth jump.

Lemma 6 (see [31]). Let 𝐹 : 𝑅 × 𝑅 → 𝑅 be a one-parameter
family of the 𝐶2 map that satisfies

(i) 𝐹(0, 𝜇) = 0, (ii) (𝜕𝐹/𝜕𝑥)(0, 0) = 1, (iii) (𝜕2𝐹/𝜕𝑥𝜕𝜇)
(0, 0) > 0, (iv) (𝜕2𝐹/𝜕𝑥2)(0, 0) < 0.

𝐹 has two branches of fixed points for 𝜇 near zero. The first
branch is 𝑥

1
(𝜇) = 0 for all 𝜇. The second bifurcating branch

𝑥
2
(𝜇) changes its value from negative to positive as 𝜇 increases

through 𝜇 = 0 with 𝑥
2
(0) = 0. The fixed points of the first

branch are stable if 𝜇 < 0 and unstable if 𝜇 > 0, whereas those
of the bifurcating branch have the opposite stability.

3. Main Results

First, we consider the case of system (1) without an impulsive
effect.We set𝑃(𝑥, 𝑦) = 𝑟𝑥(1−𝑥/𝐾)−𝑎𝑥2𝑦/(𝑏+𝑥2),𝑄(𝑥, 𝑦) =
𝜀𝑎𝑥

2
𝑦/(𝑏+𝑥

2
)−𝑚𝑦, and the equilibriumof system (1) without

the impulsive effect implies 𝑃(𝑥, 𝑦) = 0, 𝑄(𝑥, 𝑦) = 0, so we
can obtain the following equilibrium under the conditions
𝜀𝑎 > 𝑚 and𝐾 > 𝑥

∗:

(i) 𝐸
0
= (0, 0) (total extinction);

(ii) 𝐸
1
= (𝐾, 0) (extinction of the fish);

(iii) 𝐸
2
= (𝑥

∗
, 𝑦

∗
) = (√𝑚𝑏/(𝜀𝑎 − 𝑚), 𝜀𝑏𝑟(𝐾 − 𝑥

∗
)/(𝜀𝑎 −

𝑚)𝑥
∗
𝐾) (coexistence of phytoplankton and fish).

Both 𝑥 = 0 and 𝑦 = 0 are the trajectory of system (1) without
an impulsive effect. Thus, the first quadrant is the invariant
set.

Indeed, according to biological studies, the phytoplank-
ton stable state 𝑥∗ should be smaller than the parameter
𝐾 because parameter 𝐾 is the maximum carrying capacity.
Thus, we only need to assume the condition 𝜀𝑎 > 𝑚. In system
(1) without an impulsive effect, 𝑎 is the maximum predation
rate of the fish, 𝜀 is the maximum conversion, and 𝜀𝑎 denotes
the maximum growth rate. If condition 𝜀𝑎 ≤ 𝑚 holds, that
is, the growth rate of the fishes is below the mortality rate of
the fishes, then the fishes may become extinct. In system (1)
without an impulsive effect, based on a direct calculation, the
equilibrium 𝐸

0
is always saddle. Thus, the equilibrium 𝐸

1
is

locally asymptotical stable when the condition 𝜀𝑎 ≤ 𝑚 holds.
Then, the solution of system (1) without an impulsive effect
will converge toward the equilibrium 𝐸

1
in a certain field;

that is, the fishes will become extinct and the phytoplankton
will bloom. Phytoplankton blooms are observed frequently,
but the growth rate of fishes being less than the mortality
rate of fishes is usually rare in real life. Therefore, we assume
that condition 𝜀𝑎 > 𝑚 holds in full. Obviously, 𝑦 = 𝑓(𝑥) =

𝑟(1−𝑥/𝐾)(𝑏+𝑥
2
)/𝑎𝑥

2 is a vertical line and𝑥 = √𝑚𝑏/(𝜀𝑎 − 𝑚)
is a horizontal isocline. By direct calculation, the equilibrium
𝐸
∗ is locally asymptotically stable under the condition (𝜀𝑎 −
2𝑚)𝐾 > −2𝑚𝑥

∗ and the index of the equilibrium 𝐸
∗ is +1.

Throughout this paper, we assume that the condition (𝑎𝜀 −
2𝑚)𝐾 > −2𝑚𝑥

∗ always holds based on ecological studies, and
we let𝑁(𝑥 = ℎ) and𝑀(𝑥 = (1−𝑝)ℎ) be the impulsive set and
phase set, respectively, with the point 𝑂 = 𝑁 ∩ {𝑦 = 𝑓(𝑥)},
the point 𝐻 = 𝑀 ∩ {𝑦 = 𝑓(𝑥)}, and ℎ < 𝑥

∗
. For the case

where 𝑥
∗
< ℎ < 𝐾, similar results can be obtained using the

same method.



4 Discrete Dynamics in Nature and Society

(−, −)

(−, +)

(+, −)

(+, +)E0

E2

E1

x = K

(dx/dt) = 0

(dy/dt) = 0

Figure 1: Direction of the trajectory in system (1) without an
impulsive effect in the first quadrant.

From 𝑓(𝑥), we know that the line 𝑥 = 0 is the asymptote
of the curve 𝑦 = 𝑓(𝑥), and 𝑦 > 0 when 𝑥 < 𝐾, 𝑦 = 0 when
𝑥 = 𝐾, 𝑦 < 0 when 𝑥 > 𝐾. In addition, when 𝑥 < 𝐾,
the function 𝑓(𝑥) is a monotonically decreasing function.
The first quadrant is split into four parts by the isocline (see
Figure 1).

3.1. Existence of an Order-1 Periodic Solution for System (1)

3.1.1. The Case Where 𝜏 = 0. In this subsection, we derive
some basic properties of the following subsystem of system
(1), where fish 𝑦(𝑡) are absent:

𝑑𝑥

𝑑𝑡

= 𝑟𝑥 (

𝐾 − 𝑥

𝐾

) 𝑥 < ℎ

Δ𝑥 = −𝑝𝑥 𝑥 = ℎ.

(7)

Setting 𝑥
0
= 𝑥(0) = (1 − 𝑝)ℎ produces the following solution

of system (7): 𝑥(𝑡) = 𝐾(1 − 𝑝)ℎ exp(𝑟(𝑡 − 𝑛𝑇))/(𝐾 − (1 −

𝑝)ℎ+ (1 −𝑝)ℎ exp(𝑟(𝑡 − 𝑛𝑇))). If we let 𝑇 = (1/𝑟) ln((𝐾− (1−
𝑝)ℎ)/(𝐾 − ℎ)(1 − 𝑝)), 𝑥(𝑇) = ℎ, and 𝑥(𝑇+) = (1 − 𝑝)ℎ, this
means that system (1) has the following semitrivial periodic
solution:

𝑥 (𝑡) =

𝐾 (1 − 𝑝) ℎ exp (𝑟 (𝑡 − 𝑛𝑇))
𝐾 − (1 − 𝑝) ℎ + (1 − 𝑝) ℎ exp (𝑟 (𝑡 − 𝑛𝑇))

𝑦 (𝑡) = 0,

(8)

where 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ 𝑁, which is implied by (𝜉(𝑡), 0).
Thus, the following theorem is obtained.

Theorem 7. There exists a semitrivial periodic solution (8) to
system (1), which is orbitally asymptotically stable if

0 < 𝑞 < Ψ
−1
− 1, (9)

where Ψ = ((𝐾 − (1 − 𝑝)ℎ)/(𝐾 − ℎ)(1 − 𝑝))
−𝑚/𝑟

𝜂
1
𝜂
2

𝜂
1
= (

(𝐾 − (1 − 𝑝) ℎ)
2
(𝑏 + ℎ

2
)

(𝑏 + ((1 − 𝑝) ℎ)
2
) (𝐾 − ℎ)

2
)

𝜀𝑎𝐾
2
/2𝑟(𝑏+𝐾

2
)

,

𝜂
2
= exp(− 𝜀𝑎𝐾√𝑏

𝑟 (𝑏 + 𝐾
2
)

× (arctan( (ℎ𝐾 + 𝑏)

√𝑏 (𝐾 − ℎ)

)

− arctan(
𝐾 (1 − 𝑝) ℎ + 𝑏

√𝑏 (𝐾 − (1 − 𝑝) ℎ)

))) .

(10)

Proof. It is known that 𝑃(𝑥, 𝑦) = 𝑟𝑥(1 − 𝑥/𝐾) − 𝑎𝑥
2
𝑦/(𝑏 +

𝑥
2
), 𝑄(𝑥, 𝑦) = 𝜀𝑎𝑥

2
𝑦/(𝑏 + 𝑥

2
) − 𝑚𝑦, 𝛼(𝑥, 𝑦) = −𝑝𝑥,

𝛽(𝑥, 𝑦) = 𝑞𝑦, 𝜙(𝑥, 𝑦) = 𝑥 − ℎ, (𝜉(𝑇), 𝜂(𝑇)) = (ℎ, 0),
and (𝜉(𝑇+), 𝜂(𝑇+)) = ((1 − 𝑝)ℎ, 0). Using Lemma 5 and a
straightforward calculation, it is possible to obtain

𝜕𝑃

𝜕𝑥

= 𝑟 (1 −

2

𝐾

𝑥) −

2𝑎𝑏𝑥𝑦

(𝑏 + 𝑥
2
)
2
,

𝜕𝑄

𝜕𝑦

=

𝜀𝑎𝑥
2

𝑏 + 𝑥
2
− 𝑚;

𝜕𝛼

𝜕𝑥

= −𝑝,

𝜕𝛼

𝜕𝑦

= 0;

𝜕𝛽

𝜕𝑥

= 0,

𝜕𝛽

𝜕𝑦

= 𝑞;

𝜕𝜙

𝜕𝑥

= 1,

𝜕𝜙

𝜕𝑦

= 0,

Δ
1
= (𝑃

+
(

𝜕𝛽

𝜕𝑦

𝜕𝜙

𝜕𝑥

−

𝜕𝛽

𝜕𝑥

𝜕𝜙

𝜕𝑦

+

𝜕𝜙

𝜕𝑥

)

+ 𝑄
+
(

𝜕𝛼

𝜕𝑥

𝜕𝜙

𝜕𝑦

−

𝜕𝛼

𝜕𝑦

𝜕𝜙

𝜕𝑥

+

𝜕𝜙

𝜕𝑦

))

× (𝑃

𝜕𝜙

𝜕𝑥

+ 𝑄

𝜕𝜙

𝜕𝑦

)

−1

,

=

𝑃
+
(𝜉 (𝑇

+
) , 𝜂 (𝑇

+
)) (1 + 𝑞)

𝑃 (𝜉 (𝑇) , 𝜂 (𝑇))

= (1 − 𝑝) (1 + 𝑞)

𝐾 − (1 − 𝑝) ℎ

𝐾 − ℎ

.

(11)

Furthermore,

exp [∫
𝑇

0

(

𝜕𝑃

𝜕𝑥

(𝜉 (𝑡) , 𝜂 (𝑡)) +

𝜕𝑄

𝜕𝑦

(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡]

= exp[∫
𝑇

0

(𝑟 (1 −

2

𝐾

𝜉 (𝑡)) +

𝜀𝑎(𝜉 (𝑡))
2

𝑏 + (𝜉 (𝑡))
2
− 𝑚)𝑑𝑡]
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Figure 2: The proof of Theorems 9 and 10.

= (

𝐾 − (1 − 𝑝) ℎ

(𝐾 − ℎ) (1 − 𝑝)

)

𝑟−𝑚/𝑟

(

𝐾 − ℎ

𝐾 − (1 − 𝑝) ℎ

)

2

𝜂
1
𝜂
2
,

𝜂
1
= (

(𝐾 − (1 − 𝑝) ℎ)
2
(𝑏 + ℎ

2
)

(𝑏 + ((1 − 𝑝) ℎ)
2
) (𝐾 − ℎ)

2
)

𝜀𝑎𝐾
2
/2𝑟(𝑏+𝐾

2
)

,

𝜂
2
= exp( − 𝜀𝑎𝐾√𝑏

𝑟 (𝑏 + 𝐾
2
)

× ( arctan( (ℎ𝐾 + 𝑏)

√𝑏 (𝐾 − ℎ)

)

− arctan(
𝐾 (1 − 𝑝) ℎ + 𝑏

√𝑏 (𝐾 − (1 − 𝑝) ℎ)

))) .

(12)

Therefore, it is possible to obtain the Floquet multiplier 𝜇
by direct calculation as follows:

𝜇 =

𝑛

∏

𝑘=1

Δ
𝑘

× exp [∫
𝑇

0

(

𝜕𝑃

𝜕𝑥

(𝜉 (𝑡) , 𝜂 (𝑡)) +

𝜕𝑄

𝜕𝑦

(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡]

= (1 + 𝑞)Ψ.

(13)

Thus, |𝜇| < 1, if (9) holds. This completes the proof.

Remark 8. If 𝑞∗ = Ψ
−1
− 1, a bifurcation may occur when

𝑞 = 𝑞
∗ for |𝜇| = 1, whereas a positive periodic solution may

emerge if 𝑞 > 𝑞∗.

Theorem 9. There exists a positive order-1 periodic solution to
system (1) if 𝑞 > 𝑞

∗, where the semitrivial periodic solution is
orbitally unstable.

Proof. Because ℎ < 𝑥∗, both𝑀 and𝑁 are in the left 𝐸
2
. The

trajectory that passes through point 𝐴, where 𝐴 = 𝑀 ∩ {𝑦 =

𝑓(𝑥)}, tangents to𝑀 at point 𝐴 and intersects 𝑁 at point 𝐵.
Thus, there may be three possible cases for the phase point
(𝐵+) for point 𝐵, as follows (see Figure 2(a)).

Case 1 (𝑦
𝐴
= 𝑦

𝐵
+). In this case, it is obvious that 𝐴𝐵𝐴 is an

order-1 periodic solution.

Case 2 (𝑦
𝐴
< 𝑦

𝐵
+).The point 𝐵+ is the order-1 successor point

of point 𝐴, so the order-1 successor function of point 𝐴 is
greater than zero; that is, 𝐹

1
(𝐴) = 𝑦

𝐵
+ − 𝑦

𝐴
> 0. In addition,

the trajectory with the initial point 𝐵+ intersects impulsive
set𝑁 at point 𝐶 and reaches 𝐶+ via the impulsive effect. Due
to the disjointedness of the trajectory and impulsive line in
system (1), it is easy to see that point𝐶+ is located below point
𝐵
+. Therefore, the successor function 𝐹

1
(𝐵

+
) < 0. According

to Lemma 4, there exists a point 𝐺 ∈ 𝑀, such that 𝐹
1
(𝐺) = 0;

hence, there exists an order-1 periodic solution.

Case 3 (𝑦
𝐴

> 𝑦
𝐵
+). According to 𝑦

𝐴
> 𝑦

𝐵
+ , the order-

1 successor point of point 𝐴 is located below point 𝐴, so
𝐹
1
(𝐴) < 0. If we suppose that 𝑝

0
is a crossover point of

the semitrivial periodic solution and impulsive set, because
the semitrivial periodic solution is orbitally unstable, then
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there exists a point 𝐻
0
∈ ∪(𝑝

0
, 𝛿) such that 𝐹

1
(𝐻

0
) > 0.

According to Lemma 4, there exists a point 𝐾
0
∈ 𝑀, such

that 𝐹
1
(𝐾

0
) = 0. Therefore, there exists an order-1 periodic

solution in system (1).
This completes the proof.

3.1.2.The Case 𝜏 > 0. In this case, we suppose that ℎ < 𝑥∗ and
the following theorem is described.

Theorem 10. There exists a positive order-1 periodic solution
for system (1) if 𝜏 > 0 and ℎ < 𝑥∗.

Proof. The method for this proof is similar to the method
for Theorem 9 (see Figure 2(b)). The main difference is the
proof for the case 𝑦

𝐴
> 𝑦

𝐵
+ . Suppose that point 𝐷 is a

crossover point for a semitrivial periodic solution and a phase
set.The trajectorywith initial point𝐷 intersects the impulsive
set at point 𝐸. Obviously, 𝑦

𝐷
= 𝑦

𝐸
= 0. Because 𝜏 > 0,

𝑦
𝐹
= (1 + 𝑞)𝑦

𝐸
+ 𝜏 > 0 = 𝑦

𝐷
. Thus, there exists a positive

order-1 periodic solution for system (1), which completes the
proof.

Remark 11. If there exists a positive order-1 periodic solution
Γ for system (1) when ℎ < 𝑥

∗, set point 𝑆 = Γ ∩ 𝑁, then
𝑦
𝑆
< 𝑦

𝑂
.

In summary, system (1) has a stable semitrivial periodic
solution or a positive order-1 periodic solution when 𝜏 ≥ 0.
Furthermore, using the analogue of the Poincaré criterion,
the stability of the positive order-1 periodic solution is
obtained.

Theorem 12. For any 𝜏 > 0, 𝑞 > 0 or 𝜏 = 0, 𝑞 ≥ 𝑞∗, the order-1
periodic solution of system (1) is orbitally asymptotically stable
if the following condition holds:
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑃 ((1 − 𝑝) ℎ, (1 + 𝑞) 𝜂
0
+ 𝜏)

𝑃 (ℎ, 𝜂
0
)

(1 + 𝑞) exp(∫
𝑇

0

𝐺 (𝑡) 𝑑𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1,

(14)

where 𝐺(𝑡) = (𝜕𝑃/𝜕𝐴)(𝜉(𝑡), 𝜂(𝑡)) + (𝜕𝑄/𝜕𝐹)(𝜉(𝑡), 𝜂(𝑡)).

Proof. We suppose that the period of the order-1 periodic
solution is 𝑇, so the order-1 periodic solution intersects with
the impulsive set at 𝑃(ℎ, 𝜂

0
) and the phase set at 𝑃+((1 −

𝑝)ℎ, (1 + 𝑞)𝜂
0
+ 𝜏). Let (𝜉(𝑡), 𝜂(𝑡)) be the expression of

the order-1 periodic solution. The difference between this
case and the case in Theorem 7 is that (𝜉(𝑇), 𝜂(𝑇)) =

(ℎ, 𝜂
0
),(𝜉(𝑇+), 𝜂(𝑇+)) = ((1 − 𝑝)ℎ, (1 + 𝑞)𝜂

0
+ 𝜏), while the

others are the same. Thus, we have

Δ
1
=

𝑃 ((1 − 𝑝) ℎ, (1 + 𝑞) 𝜂
0
+ 𝜏)

𝑃 (ℎ, 𝜂
0
)

(1 + 𝑞)

𝜇
2
= Δ

1
exp(∫

𝑇

0

𝐺 (𝑡) 𝑑𝑡) .

(15)

According to condition (14), |𝜇
2
| < 1, so the order-1 periodic

solution is orbitally stable according to the analogue of the
Poincaré criterion. This completes the proof.

Theorem 13. In system (1), if the conditions (1+𝑞)𝑦
𝑂
+𝜏 < 𝑦

𝐻

and ℎ < 𝑥
∗ hold, then the set Ω, where Ω = [(1 − 𝑝)ℎ, ℎ] ×

[0, 𝑓(𝑥)](𝑥 ∈ [(1 − 𝑝)ℎ, ℎ]), is an attractor. There is also no
order-𝑘 (𝑘 ≥ 2) periodic solution.

Proof. In the region Φ = (0, ℎ] × (0, +∞), ∀(𝑥
0
, 𝑦

0
) ∈ Φ,

there exists a time 𝑡
1
such that the trajectory 𝜑(𝑡; 𝑥

0
, 𝑦

0
) of

system (1) reaches the impulsive set𝑁 at point 𝐿 when 𝑡 = 𝑡
1

and 𝑦
𝐿
< 𝑦

𝑂
. Via the impulsive effect, the trajectory reaches

the phase set 𝑀, and then lim
𝑡→+∞

inf 𝑥(𝑡) ≥ (1 − 𝑝)ℎ; in
addition, lim

𝑡→+∞
sup 𝑥(𝑡) ≤ ℎ. Because (1 + 𝑞)𝑦

𝑂
+ 𝜏 <

𝑦
𝐻
, (1 + 𝑞)𝑦

𝐿
+ 𝜏 < 𝑦

𝐻
. Furthermore, the trajectory of the

differential equation is not intersectant. From system (1), we
know that the impulsive line is also not intersectant. Thus,
lim

𝑡→+∞
sup𝑦(𝑡) ≤ 𝑓(𝑥), (𝑥 ∈ [(1 − 𝑝)ℎ, ℎ]). Therefore, the

set Ω is a global attractor in the regionΦ.
Supposing that there exists an order-𝑘 (𝑘 ≥ 2) periodic

solution to system (1), the initial point of the order-𝑘 periodic
solution must be above the point 𝐻. We set the initial point
as 𝐽 andthen 𝑦

𝐽
> 𝑦

𝐻
, and we suppose that the 𝑘th point of

the order-𝑘 periodic solution that reaches the impulsive set is
point 𝑍. Then, (1 + 𝑞)𝑦

𝑍
+ 𝜏 = 𝑦

𝐽
and 𝑦

𝑍
< 𝑦

𝑂
. However,

(1 + 𝑞)𝑦
𝑂
+ 𝜏 < 𝑦

𝐻
. Therefore, this is a contradiction. Hence,

there is no order-𝑘 (𝑘 ≥ 2) periodic solution.
This completes the proof.

3.2. The Bifurcation

3.2.1. Transcritical Bifurcation. In this subsection, we discuss
the bifurcation near the semitrivial periodic solution. The
following Poincaré map 𝑃 is used:

𝑦
+

𝑘
= (1 + 𝑞) 𝜎 (𝑦

+

𝑘−1
) , (16)

where we choose section 𝑆
0
= (1 − 𝑝)ℎ as a Poincaré section.

If we set 0 ≤ 𝑢 = 𝑦+
𝑘
at a sufficiently small value, the map can

be written as follows:

𝑢 󳨃󳨀→ (1 + 𝑞) 𝜎 (𝑢) ≡ 𝐺 (𝑢, 𝑞) . (17)

Using Lemma 6, the following theorem can be obtained.

Theorem 14. A transcritical bifurcation occurs when 𝑞 = 𝑞
∗,

𝜏 = 0. Correspondingly, system (1) has a stable positive periodic
solution when 𝑞 ∈ (𝑞∗, 𝑞∗ + 𝛿) with 𝛿 > 0.

Proof. Thevalues of𝜎󸀠(𝑢) and𝜎󸀠󸀠(𝑢)must be calculated at𝑢 =
0 where 0 ≤ 𝑢 ≤ 𝑢

0
. In this case, 𝑢

0
= 𝑟(1 − ℎ/𝐾)(𝑏 + ℎ

2
)/𝑎ℎ.

Thus, system (1) can be transformed as follows:

𝑑𝑦

𝑑𝑥

=

𝑄 (𝑥, 𝑦)

𝑃 (𝑥, 𝑦)

, (18)

where 𝑃(𝑥, 𝑦) = 𝑟𝑥(1 − 𝑥/𝐾) − 𝑎𝑥
2
𝑦/(𝑏 + 𝑥

2
), 𝑄(𝑥, 𝑦) =

𝜀𝑎𝑥
2
𝑦/(𝑏 + 𝑥

2
) − 𝑚𝑦.

Let (𝑥, 𝑦(𝑥; 𝑥
0
, 𝑦

0
)) be an orbit of system (18) and 𝑥

0
=

(1 − 𝑝)ℎ, 𝑦
0
= 𝑢, 0 ≤ 𝑢 ≤ 𝑢

0
. Then,

𝑦 (𝑥; (1 − 𝑝) ℎ, 𝑢) ≡ 𝑦 (𝑥, 𝑢) ,

(1 − 𝑝) ℎ ≤ 𝑥 ≤ ℎ, 0 ≤ 𝑢 ≤ 𝑢
0
.

(19)
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Using (19),

𝜕𝑦 (𝑥, 𝑢)

𝜕𝑢

= exp[∫
𝑥

(1−𝑝)ℎ

𝜕

𝜕𝑦

(

𝑄 (𝑠, 𝑦 (𝑠, 𝑢))

𝑃 (𝑠, 𝑦 (𝑠, 𝑢))

) 𝑑𝑠] ,

𝜕
2
𝑦 (𝑥, 𝑢)

𝜕𝑢
2

=

𝜕𝑦 (𝑥, 𝑢)

𝜕𝑢

∫

𝑥

(1−𝑝)ℎ

𝜕
2

𝜕𝑦
2
(

𝑄 (𝑠, 𝑦 (𝑠, 𝑢))

𝑃 (𝑠, 𝑦 (𝑠, 𝑢))

)

𝜕𝑦 (𝑠, 𝑢)

𝜕𝑢

𝑑𝑠,

(20)

it can be deduced simply that 𝜕𝑦(𝑥, 𝑢)/𝜕𝑢 > 0 and

𝜎
󸀠
(0)

=

𝜕𝑦 (ℎ, 0)

𝜕𝑢

= exp(∫
ℎ

(1−𝑝)ℎ

𝜕

𝜕𝑦

(

𝑄 (𝑠, 𝑦 (𝑠, 0))

𝑃 (𝑠, 𝑦 (𝑠, 0))

) 𝑑𝑠)

= exp(∫
ℎ

(1−𝑝)ℎ

(𝜀𝑎𝑠
2
/ (𝑏 + 𝑠

2
)) − 𝑚

𝑟𝑠 (1 − (𝑠/𝐾))

𝑑𝑠)

= (

𝐾 − (1 − 𝑝) ℎ

(𝐾 − ℎ) (1 − 𝑝)

)

−𝑚/𝑟

× (

(𝐾 − (1 − 𝑝) ℎ)
2
(𝑏 + ℎ

2
)

(𝑏 + ((1 − 𝑝) ℎ)
2
) (𝐾 − ℎ)

2
)

𝜀𝑎𝐾
2
/2𝑟(𝑏+𝐾

2
)

× exp( −𝜀𝑎𝐾√𝑏

𝑟 (𝐾
2
+ 𝑏)

× (arctan( (ℎ𝐾 + 𝑏)

√𝑏 (𝐾 − ℎ)

)

− arctan(
𝐾 (1 − 𝑝) ℎ + 𝑏

√𝑏 (𝐾 − (1 − 𝑝) ℎ)

))) .

(21)

Thus, 𝜎󸀠(0) = Ψ.
Furthermore,

𝜎
󸀠󸀠
(0) = 𝜎

󸀠
(0) ∫

ℎ

(1−𝑝)ℎ

𝑚(𝑠)

𝜕𝑦 (𝑠, 0)

𝜕𝑢

𝑑𝑠, (22)

where 𝑚(𝑠) = (𝜕
2
/𝜕𝑦

2
)(𝑄(𝑠, 𝑦(𝑠, 0))/𝑃(𝑠, 𝑦(𝑠, 0))) =

(𝜀𝑎𝑠
2
/(𝑏+𝑠

2
))−𝑚/(𝑟𝑠(1 − (𝑠/𝐾)))

3, 𝑠 ∈ [(1−𝑝)ℎ, ℎ]. Because
𝑠 ≤ ℎ < 𝑥

∗, it can be determined that 𝑚(𝑠) < 0, 𝑠 ∈

[(1 − 𝑝)ℎ, ℎ]. Therefore,

𝜎
󸀠󸀠
(0) < 0. (23)

Thenext step is to checkwhether the following conditions
are satisfied.

(a) It is easy to see that 𝐺(0, 𝑞) = 0, 𝑞 ∈ (0, ∞).

(b) Using (21), 𝜕𝐺(0, 𝑞)/𝜕𝑢 = (1 + 𝑞)𝜎
󸀠
(0) = (1 + 𝑞)Ψ,

which yields 𝜕𝐺(0, 𝑞∗)/𝜕𝑢 = 1.Thismeans that (0, 𝑞∗)
is a fixed point with an eigenvalue of 1 in map (16).

(c) Because (21) holds, 𝜕2𝐺(0, 𝑞∗)/𝜕𝑢𝜕𝑞 = 𝜎󸀠(0) > 0.
(d) Finally, inequality (23) implies that 𝜕2𝐺(0, 𝑞∗)/𝜕𝑢2 =

(1 + 𝑞
∗
)𝜎

󸀠󸀠
(0) < 0.

These conditions satisfy the conditions of Lemma 6. This
completes the proof.

In the region Φ = (0, ℎ] × (0, +∞), 𝑑𝑦/𝑑𝑡 < 0 always
holds. Thus, ∀(𝑥

0
, 𝑦

0
) ∈ Φ, the trajectory 𝜑(𝑥; 𝑥

0
, 𝑦

0
) first

intersects the phase set 𝑀 at point 𝜌 and the impulsive set
𝑁 at point 𝜋, respectively; then, 𝑦

𝜋
< 𝑦

𝜌
. Therefore, there is

always a certain pair of (𝑞, 𝜏), such that 𝑦
𝜌
= (1 + 𝑞)𝑦

𝜋
+ 𝜏

for 𝑞 > 0, 𝜏 ≥ 0. Thus, in the region Φ, there exists an
order-1 periodic solution in system (1). In addition, the order-
1 periodic solution is unique when the initial point of the
order-1 periodic solution in the phase set is above point 𝐻.
This is obvious because of the disjointedness of the trajectory
of the differential equation.

3.2.2. The Bifurcation of the Order-1 Periodic Solution. In this
subsection, we discuss the bifurcation of an order-1 periodic
solution with variable parameters. The following theorem is
required.

Theorem 15. The rotation direction of the pulse line is clock-
wise when 𝑞 changes from 𝑞 = 0 to 𝑞 > 0.

Proof. Let 𝜃 be the angle of the pulse line and the x-
axis. Then, tan 𝜃 = Δ𝑦/Δ𝑥 = 𝛽(𝑥, 𝑦)/𝛼(𝑥, 𝑦), so 𝜃 =

tan−1(𝛼(𝑥, 𝑦)/𝛽(𝑥, 𝑦)). Furthermore, 𝜕𝜃/𝜕𝑞 = (1/(𝛼
2
+

𝛽
2
))

󵄨
󵄨
󵄨
󵄨
󵄨

𝛼 𝛽

𝜕𝛼/𝜕𝑞 𝜕𝛽/𝜕𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
= 1/(𝛼

2
+ 𝛽

2
)(−𝑝𝑥𝑦) < 0. Therefore, 𝜃 is

a monotonically decreasing function of 𝑞. This completes the
proof.

The existence of an order-1 periodic solution was proved
in the previous analysis, so we assume that there exists an
order-1 periodic solution Γ

∗
when 𝑞 = 𝑞

1
and 𝜏 ≥ 0, where

the crossover points of Γ
∗
for𝑀 and 𝑁 are points 𝑅 and 𝑍,

respectively. Thus, the following theorem can be stated.

Theorem 16. In system (1), supposing that there exists an
order-1 periodic solution when 𝑞 = 𝑞

1
, 𝜏 > 0 and 𝑦

𝑅
> 𝑦

𝐻
,

then there exists a unique order-1 periodic solution Γ
∗∗

inside
the order-1 periodic solution Γ

∗
when 𝑞 = 𝑞

1
− 𝜗, if 𝜗 > 0 is

sufficiently small. In addition, if Γ
∗
is orbitally asymptotically

stable, then Γ
∗∗

is orbitally asymptotically stable.

Proof. The order-1 periodic solution breaks when 𝑞 changes
(see Figure 3(a)). According to Theorem 15, point 𝐵

1
, which

is the phase point of point 𝑍, is located below point 𝑅 when
𝑞 = 𝑞

1
− 𝜗 and 𝜗 > 0 is sufficiently small. Because 𝑦+ =

𝑦 + 𝑞𝑦 + 𝜏 (in this case, 𝑦 > 0) is a monotonically increasing
and continuing function of 𝑞, there exists 𝜗

1
> 0 such that

𝑦
𝐶
1

< 𝑦
𝐻
< 𝑦

𝐵
1

< 𝑦
𝑅
when 𝑞 = 𝑞

1
−𝜗

1
. Figure 3(a) shows that

point 𝐵
1
is the order-1 successor point of point 𝑅, while point

𝐴
1
is the order-1 successor point of point 𝐵

1
, so 𝐹

1
(𝑅) < 0,
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Figure 3: The proof of Theorem 16.

𝐹
1
(𝐵

1
) > 0.Therefore, there exists a point𝐾

1
between point𝑅

and 𝐵
1
such that 𝐹

1
(𝐾

1
) = 0. According to the disjointedness

of the differential trajectories, the order-1 periodic solution
Γ
∗∗

is inside the order-1 periodic solution 𝑅𝐶
1
𝑍𝑅.

Next, the orbital stability can be established based on the
following proof (see Figure 3(b)).

The order-1 periodic solution 𝑅𝐶
1
𝑍𝑅 is orbitally asymp-

totically stable, so, according to, the disjointedness of the
pulse line, there exists a point 𝑆 between point 𝑅 and𝐻 such
that 𝐹

1
(𝑆) > 0, 𝐹

2
(𝑆) > 0. We suppose that the reduction in

𝑞
1
is 𝜗 > 0.
If 𝜗 = 0, point 𝐵

2
is the order-1 successor point of point 𝑆

andpoint𝐷
2
is the order-2 successor point of point 𝑆. Because

of 𝑦
𝐵
2

= (1 + 𝑞
1
)𝑦

𝐺
2

+ 𝜏, 𝑦
𝐷
2

= (1 + 𝑞
1
)𝑦

𝐻
2

+ 𝜏, 𝐹
1
(𝑆) =

𝑦
𝐵
2

− 𝑦
𝑆
= (1 + 𝑞

1
)𝑦

𝐺
2

+ 𝜏 − 𝑦
𝑆
> 0, 𝐹

2
(𝑆) = 𝑦

𝐷
2

− 𝑦
𝑆
=

(1 + 𝑞
1
)𝑦

𝐻
2

+ 𝜏 − 𝑦
𝑆
> 0.

If 𝜗 > 0, the order-1 and order-2 successor points of point
𝑆 are points 𝐴

2
and 𝐶

2
, respectively, where 𝑦

𝐴
2

= (1 + 𝑞
1
−

𝜗)𝑦
𝐺
2

+ 𝜏, 𝑦
𝐶
2

= (1 + 𝑞
1
− 𝜗)𝑦

𝐸
2

+ 𝜏. Therefore, 𝐹
1
(𝑆) =

𝑦
𝐴
2

− 𝑦
𝑆
= (1 + 𝑞

1
− 𝜗)𝑦

𝐺
2

+ 𝜏 − 𝑦
𝑆
, 𝐹

2
(𝑆) = 𝑦

𝐶
2

− 𝑦
𝑆
= 𝜏 −

𝑦
𝑆
+ (1+𝑞

1
− 𝜗)𝑦

𝐸
2

, and in order to distinguish the successor
functions between 𝜗 = 0 and 𝜗 > 0, we set 𝐹

1
(𝑆) = 𝐹

1

1
(𝑆) and

𝐹
2
(𝑆) = 𝐹

2

2
(𝑆).

Therefore, we have the following: 𝐹1
1
(𝑆) = (1+𝑞

1
−𝜗)𝑦

𝐺
2

+

𝜏−𝑦
𝑆
= (1+𝑞

1
)𝑦

𝐺
2

+𝜏−𝑦
𝑆
−𝜗𝑦

𝐺
2

, because (1+𝑞
1
)𝑦

𝐺
2

+𝜏−𝑦
𝑆
>

0, so 𝐹1
1
(𝑆) > 0when 0 < 𝜗 < ((1+𝑞

1
)𝑦

𝐺
2

+𝜏−𝑦
𝑆
)/𝑦

𝐺
2

define
󳨀󳨀󳨀󳨀→

𝜗
11
.
In addition,

𝐹
2
(𝑆) − 𝐹

2

2
(𝑆)

= (1 + 𝑞
1
) 𝑦

𝐻
2

+ 𝜏 − 𝑦
𝑆
− (1 + 𝑞

1
− 𝜗) 𝑦

𝐸
2

− 𝜏 + 𝑦
𝑆
.

(24)

Obviously, 𝐹
2
(𝑆) − 𝐹

2

2
(𝑆) < 0 when 0 < 𝜗 < (1 +

𝑞
∗
)(𝑦

𝐸
2

− 𝑦
𝐻
2

)/𝑦
𝐻
2

define
󳨀󳨀󳨀󳨀→ 𝜗

22
, where 𝑦

𝐸
2

> 𝑦
𝐻
2

from

Figure 3(b). If we set 𝜗∗ = min(𝜗
11
, 𝜗

22
), then 𝐹1

1
(𝑆) > 0

and 𝐹2
2
(𝑆) > 0 when 𝜗 ∈ (0, 𝜗

∗
). Next, we will prove that

the trajectory initialization point 𝑆 is attracted by Γ
∗∗
. We set

𝑑
𝑛
= 𝐹

2𝑛−1

2𝑛−1
(𝑆) − 𝐹

2𝑛

2𝑛
(𝑆)(𝑛 ∈ 𝑁), where 𝐹2𝑛

2𝑛
(𝑆) denotes the

order-2n successor of point 𝑆.
Because 𝐹1

1
(𝑆) > 0 and 𝐹2

2
(𝑆) > 0, the following results

hold:

𝐹
1

1
(𝑆) > 𝐹

3

3
(𝑆) > ⋅ ⋅ ⋅ > 𝐹

2𝑛−1

2𝑛−1
(𝑆) , (25a)

𝐹
2

2
(𝑆) < 𝐹

4

4
(𝑆) < ⋅ ⋅ ⋅ < 𝐹

2𝑛

2𝑛
(𝑆) , (25b)

𝐹
2𝑛−1

2𝑛−1
(𝑆) > 𝐹

2𝑛

2𝑛
(𝑆) , (25c)

0 < 𝑑
𝑛
= 𝛼

𝑛−1
𝑑
𝑛−1
, (0 < 𝛼

𝑛
< 1) . (25d)

When 𝑛 = 1, 2, 3, the expression (25a), (25b), (25c), (25d)
obviously holds. Suppose that (25a), (25b), (25c), (25d) holds
when 𝑛 = 𝑗. Now, we set 𝑛 = 𝑗 + 1. For the trajectory
initialization point order-2𝑗 − 1 successor point of point 𝑆,
its order-1 successor point is the order-2𝑗 successor point
of point 𝑆, its order-2 successor point is the order-2𝑗 + 1

successor point of point 𝑆, and its order-3 successor point
is the order-2𝑗 + 2 successor point of point 𝑆. Thus, it is
obvious that 𝐹2𝑗−1

2𝑗−1
> 𝐹

2𝑗+1

2𝑗+1
, 𝐹2𝑗

2𝑗
< 𝐹

2𝑗+2

2𝑗+2
, 𝐹2𝑗+1

2𝑗+1
(𝑆) > 𝐹

2𝑗+2

2𝑗+2
(𝑆),

and 𝑑
𝑗+1

< 𝑑
𝑗
. Therefore, (25a), (25b), (25c), (25d) holds.

Moreover, based on 0 < 𝑑
𝑛
= 𝛼

𝑛−1
𝑑
𝑛−1

, (0 < 𝛼
𝑛
< 1), it is

known that 𝑑
𝑛
= 𝛼

1
, . . . , 𝛼

𝑛−1
𝑑
1
. Because 0 < 𝛼

𝑛
< 1, then

lim
𝑛→+∞

𝑑
𝑛
= 0. Thus, 𝜋(𝑡, 𝑆) → Γ

∗∗
, 𝑡 → +∞, where

𝜋(𝑡, 𝑆) is the trajectory initialization point 𝑆 in system (1).
Similarly, if𝑦

𝑆
> 𝑦

𝑅
, then there exist 𝜗

∗∗
such that𝐹1

1
(𝑆) <

0 and 𝐹2
2
(𝑆) < 0 when 𝜗 ∈ (0, 𝜗

∗∗
). The following results

hold.

𝐹
1

1
(𝑆) < 𝐹

3

3
(𝑆) < ⋅ ⋅ ⋅ < 𝐹

2𝑛−1

2𝑛−1
(𝑆) , (26a)
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Figure 4: (a) Trajectories based on the initial point (0.5, 0.1) in system (1), where the black symbol denotes the initial point (0.5, 0.1); the red
curve denotes the trajectory when 𝑞 = 0.1; the blue curve denotes the trajectory when 𝑞 = 0.01; and the arrow denotes the direction of the
trajectory. (b) Bifurcation diagram of system (1), where the red symbol denotes the bifurcation point; the dashed line implies the instability
of the semitrivial solution; and the black solid line represents the maximum value of population 𝑦, which is stable, where 𝑝 = 0.8, 𝜏 = 0.

𝐹
2

2
(𝑆) > 𝐹

4

4
(𝑆) > ⋅ ⋅ ⋅ > 𝐹

2𝑛

2𝑛
(𝑆) , (26b)

𝐹
2𝑛

2𝑛
(𝑆) > 𝐹

2𝑛−1

2𝑛−1
(𝑆) , (26c)

0 > 𝑑
𝑛
= 𝛼

𝑛−1
𝑑
𝑛−1
, (0 < 𝛼

𝑛
< 1) . (26d)

Then, 𝜋(𝑡, 𝑆) → Γ
∗∗
, 𝑡 → +∞, where 𝜋(𝑡, 𝑆) is the

trajectory initialization point 𝑆 in system (1).
Similarly, using the disjointedness of the trajectory of the

differential equation and the impulsive line, we set 𝑆
∗
as the

arbitrary point between point𝑅 and point 𝑆 in phase line, and
we can prove 𝜋(𝑡, 𝑆) → Γ

∗∗
, 𝑡 → +∞. Thus, Γ

∗∗
is orbitally

attractive.
Because Γ

∗∗
is unique and orbitally attractive, there exists

a 𝑇
0
such that 𝜌(𝜋(𝑡, 𝑝

0
), Γ

∗∗
) < 𝜀

0
for ∀𝜀

0
> 0 and 𝑝

0
∈

𝑀(𝑝
0
> 𝑦

𝐻
), set 𝑝

∗∗
= Γ

∗∗
∩ 𝑀. In addition, there must

be a 𝑇
1
≥ 𝑇

0
, such that 𝜋(𝑇

1
, 𝑝

0
) = 𝜋(𝑇

1
, 𝑝

0
) ∩ 𝑀, if we set

𝜋(𝑇
1
, 𝑝

0
) = 𝑝

1
.We arbitrarily take the point𝑝

2
between point

𝑝
∗∗

and point𝑝
1
, then 𝜌(𝜋(𝑡, 𝑝

2
), Γ

∗∗
) < 𝜀

0
when 𝑡 ≥ 𝑡

0
. If

we set 𝛿 = |𝑦
𝑝
1

− 𝑦
𝑝
∗∗

|, clearly only 𝛿 is determined by 𝜀
0
.

Therefore, ∀𝜀
0
> 0, ∃𝛿(𝜀

0
), such that 𝜌(𝜋(𝑡, 𝑝), Γ

∗∗
) < 𝜀

0
for

∀𝑝 ∈ 𝑈(𝑝
∗∗
, 𝛿) when 𝑡 ≥ 𝑡

0
. Thus, Γ

∗∗
is orbitally stable.

Then, Γ
∗∗

is orbitally asymptotically stable.
This completes the proof.

Note 1. Theorem 16 means that an order-1 periodic solution
moves toward the inside of the order-1 periodic solution Γ

∗

along the phase set and the impulsive set when 𝑞 changes
appropriately from 𝑞 = 𝑞

1
to 𝑞 < 𝑞

1
.

Similar to the method used for the proof of Theorem 16,
the following theorem exists (the proof is omitted).

Theorem 17. In system (1), supposing that there exists an
order-1 periodic solution when 𝑞 = 𝑞

2
, 𝜏 ≥ 0, and 𝑦

𝑅
< 𝑦

𝐻
,

then there exists an order-1 periodic solution Γ
∗∗∗

inside the
order-1 periodic solution Γ

∗
when 𝑞 = 𝑞

1
+ 𝜗, where 𝜗 > 0 is

sufficiently small. In addition, if Γ
∗
is orbitally asymptotically

stable, then Γ
∗∗∗

is orbitally stable at least.

Note 2. Theorem 17 means that an order-1 periodic solution
moves toward the inside of the order-1 periodic solution Γ

∗

along the phase set and the impulsive set when 𝑞 changes
appropriately from 𝑞 = 𝑞

1
to 𝑞 > 𝑞

1
.

4. Numerical Simulation and Analysis

In this section, numerical simulations are presented that
verify the correctness of the theoretical results. In particular,
using these results, we analyze the feasibility of the artificial
and biological methods, and the role of the controlling factor
is also discussed. The zooplankton population in the original
model was replaced with a fish population in our model
[2], but the parameter values used were still those from the
previous study [2]; that is, 𝑟 = 0.3/day, 𝐾 = 108 𝜇g/L,
𝑎 = 0.7/day, 𝑏 = 32.49 𝜇g/L, 𝜀 = 0.05, and 𝑚 = 0.012/day.
Therefore, 𝐸

2
= (𝑥

∗
, 𝑦

∗
) ≈ (4.1172, 4.9503), which is a

stable focus. Thus, ℎ = 3.8 𝜇g/L was assumed.

4.1. Numerical Simulation. In this subsection, assuming that
𝑝 = 0.8, the semitrivial solution of system (1) is described as
follows:

𝑥 (𝑡) =

82.08 exp (0.3𝑡 − 1.638𝑛)
107.24 + 0.76 exp (0.3𝑡 − 1.638𝑛)

𝑦 (𝑡) = 0,

(27)
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Figure 5: (a) An order-1 periodic solution to system (1). (b)The time-series that corresponds to the order-1 periodic solution, where the blue
curve denotes population 𝑦 and the red curve denotes population 𝑥 (𝑞 = 1, 𝜏 = 0, 𝑝 = 0.8).

where 𝑡 ∈ (5.46𝑛, 5.46(𝑛 + 1)], 𝑛 ∈ 𝑁, and the period
𝑇 ≈ 5.46 day. According to Theorem 7, the semitrivial
solution is orbitally asymptotically stable when 0 < 𝑞 <

0.0456. From Theorem 14, a transcritical bifurcation occurs
when 𝑞 = 𝑞

∗
≈ 0.0456; that is, the semitrivial solution is

unstable when 𝑞 ≥ 𝑞
∗
. Thus, an order-1 periodic solution

appears. Figure 4 verifies the correctness of these results. In
Figure 4(a), the trajectory is far from the semitrivial solution
(red curve) when 𝑞 = 0.1 > 𝑞

∗
, while the trajectory

converges towards the semitrivial solution (blue curve) when
𝑞 = 0.01 < 𝑞

∗
, where their initial points are the same. In

Figure 4(b), we can see that a transcritical bifurcation occurs
when 𝑞 ≈ 0.0456. When 0 < 𝑞 < 0.0456, the semitrivial
solution is stable. If 𝑞 > 0.0456, however, an order-1 periodic
solution emerges that coexists with the semitrivial solution.
However, the semitrivial solution is unstable, whereas the
order-1 periodic solution is stable.

According to Theorems 9 and 12, there should be an
order-1 periodic solution to system (1) when 𝜏 > 0 or 𝜏 =

0 and 𝑞 > 0.0456. This is shown in Figures 5 and 6(a).
Figure 5 shows an order-1 periodic solution when 𝑞 = 1 and
𝜏 = 0. Figure 5(a) is the phase diagram and Figure 5(b) is
the time series plot with respect to Figure 5(a). In Figure 5,
we can see that population 𝑦 reaches its minimum value
when population 𝑥 reaches its maximum value. However,
population 𝑥 does not reach its minimum value when
population 𝑦 reaches its maximum value. In Figure 5(b),
when population 𝑦 reaches its maximum value, population 𝑥
reaches the value represented by the cyan line, which is clearly
not the minimum value.

Figure 6(a) shows that there exists an order-1 periodic
solution to system (1) when 𝜏 = 0.8 and 𝑞 = 1. In Figure 6(a),
the black trajectory is an order-1 periodic solution.The yellow
curve is the trajectory of system (1). Clearly, these trajectories

are attracted by the order-1 periodic solution.The trajectories
of the differential equation do not meet each other in system
(1), so Figure 6(a) implies that the order-1 periodic solution
is orbitally stable. Thus, the proof of Theorem 16, where the
order-1 periodic solution is orbitally asymptotic stable if a
trajectory of system (1) is attracted by an order-1 periodic
solution, is correct. From 𝑓(ℎ)(1 + 𝑞) + 𝜏 = 𝑓((1 − 𝑝)ℎ),
we can obtain 𝑞 ≈ 2.625 when 𝜏 = 0. Thus, according
to Theorem 14, there exists an attractor in system (1) when
𝑞 < 2.625. Figure 6(b) shows an attractor of system (1), where
𝑞 = 0.005.

From Theorems 16 and 17, there is an order-1 periodic
solution when 𝑞 = 𝑞

1
, while an order-1 periodic solution

splits away from the order-1 periodic solutionwhen 𝑞 > 𝑞
1
. In

Figure 7(a), when 𝑞
1
= 10, the ordinate of the order-1 periodic

𝑦
𝑅
≈ 55 > 18.5 ≈ 𝑦

𝐻
. Thus, according to Theorem 16, there

exists a unique order-1 periodic solution inside the order-1
periodic solution when 𝑞 = 𝑞

1
− 𝜗. We set 𝜗 as equal to

2 and 5, respectively. The results are shown in Figure 7(a).
From the expression 𝑞 = 𝑞

1
− 𝜗 and Theorem 16, an order-

1 periodic solution moves toward the inside of the order-1
periodic solution along the phase set and the impulsive set
when 𝑞 changes appropriately from 𝑞 = 𝑞

1
to 𝑞 < 𝑞

1
. This is

shown clearly in Figure 7(a). Figure 7(b) shows the validity of
Theorem 17, where 𝑦

𝑅
≈ 9 < 18.5 ≈ 𝑦

𝐻
, 𝜏 = 0.1.

These numerical simulations prove that the theoretical
result is correct. Next, we analyze the feasibility of an
approach including artificial and biological methods using
the theoretical results and the numerical simulation.

4.2. Numerical Analysis. The question we need to answer
is whether artificial and biological methods can control
phytoplankton blooms. We also need to know which method
is better. Figure 8 illustrates the difference. In Figure 8(a),
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Figure 6: (a) The black curve denotes an order-1 periodic solution to system (1), where the yellow curve denotes the trajectory in system (1)
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an attractor in system (1), where the green curve denotes the trajectory of system (1) and the black symbol denotes the initial point, 𝑞 = 0.005,
𝜏 = 0, 𝑝 = 0.8.
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Figure 7: Bifurcation of an order-1 periodic solution. (a) 𝑦
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only the biological method is considered, where the red curve
corresponds to the right vertical axis, while the blue curve
and the green curve correspond to the left vertical axis, where
the initial densities of phytoplankton and fish are 3𝜇g/L and
5 𝜇g/L, respectively. In Figure 8(a), when 𝑞 equals 2 and 5,
respectively, the biological method alone cannot control the
growth of phytoplankton.When the density of phytoplankton
is below the critical value ℎ, phytoplankton blooms occur.
When 𝑞 = 40, the growth of phytoplankton is controlled.

However, the density of fish released is 40 times the existing
density of fish, but we do not knowwhether all of the released
fish can be accommodated by the current environment. In
addition, when 𝑞 = 40, we find that blooms occur from the
200th day in Figure 8(a).

In Figure 8(b), only the artificial method is considered
and the initial densities of the phytoplankton and fish
are 3 𝜇g/L and 5 𝜇g/L, respectively. Clearly, the density of
phytoplankton remains below the critical value ℎ because of
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Figure 8: Time-series of system (1). (a) Only with the biological method, 𝑝 = 0, 𝜏 = 0; (b) only with the artificial method, 𝑞 = 0, 𝜏 = 0; (c)
with the biological and artificial methods, 𝑝 = 0.8, 𝜏 = 0, where the red curve denotes the case without control.

artificial control. However, too many phytoplankton blooms
occur within 600 days. Figure 8(b) shows that too much
artificial control is required when only the artificial method
is used. Indeed, if the density of fish is much lower and
certain conditions are satisfied, such as the nutrient levels and
sufficient illumination, phytoplankton blooms occur again
after several days of artificial control. These phenomena have
been observed in reality.

In Figure 8(c), both the artificial and biological methods
are considered, where the initial densities of phytoplankton
and fish are 3𝜇g/L and 5 𝜇g/L, respectively, and 𝑝 = 0.8. The
red curve represents the change in the phytoplankton density
without artificial and biological control. From Figure 8(c), it
is clear that the density of phytoplankton remains above the
critical value ℎ several times during the 600-day period when
the artificial and biological methods are not implemented.
Figure 8(c) shows that a phytoplankton bloom occurs three
timeswhen 𝑞 = 10 and twice in about 500 days.When 𝑞 = 20,
there are two phytoplankton blooms, with one in about 500

days. Compared with Figures 8(a) and 8(b), it is clear that the
results shown in Figure 8(c) are much better. Thus, both the
artificial and biological methods should be used.

According to Theorem 7, when 0 < 𝑞 < 𝑞
∗
, the

semitrivial periodic solution is orbitally asymptotically stable.
From Figure 4(a), however, we find that the time interval of
phytoplankton blooms is much shorter when 0 < 𝑞 < 𝑞

∗
.

This suggests that too much artificial control is needed.Thus,
𝑞 should be larger than 𝑞

∗
and the value of 𝑞

∗
with respect to

𝑝 and ℎ is given in Figure 9(a). In addition, fromTheorem 14,
when 0 < 𝑞 < ((𝐾 − (1 − 𝑝)ℎ)(𝑏 + ((1 − 𝑝)ℎ)

2
)/(1 −

𝑝)(𝐾 − ℎ)(𝑏 + ℎ
2
)) − (𝑎𝐾ℎ𝜏/𝑟(𝐾 − ℎ)(𝑏 + ℎ

2
)) − 1

define
󳨀󳨀󳨀󳨀→ 𝑞

+
,

there exists an attractor in system (1). In Figure 6(b), when
artificial and biological controls are implemented, although
the phytoplankton blooms are contained, the density of
phytoplankton still increases, because the released fish cannot
control the growth of phytoplankton. In Figure 7(a), the
released fish controlled the growth of phytoplankton only
when the value of 𝑞 is beyond a certain value. Indeed,
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Figure 9: (a) Relationship between 𝑞
∗
with respect to 𝑝 and ℎ fromTheorem 7, 𝜏 = 0. (b) The relationship between 𝑞

+
with respect to 𝑝 and

ℎ fromTheorem 14, 𝜏 = 0. (c) The relationship of the time interval between two controls with respect to 𝑞, 𝑝 = 0.8, ℎ = 3.8, 𝜏 = 0.

from Theorem 14, we know that the value is 𝑞
+
. Figure 9(b)

shows the relationships among the value 𝑞
+
, 𝑝, and ℎ. The

released fish always controlled the growth of phytoplankton
within a certain period of time when 𝑞 > 𝑞

+
. We set the

values of ℎ, 𝜏, and 𝑝 to 3.8 𝜇g/L, 0 𝜇g/L, and 0.8 𝜇g/L,
respectively.The relationship between 𝑞 and the average time
interval 𝑇, which is the time between two implemented
controls, is shown in Figure 9(c) for 1000 days, where the
initial densities of phytoplankton and fish are 3 𝜇g/L and 5
𝜇g/L, respectively. Figure 9(c) shows that the time interval
𝑇 also increases when 𝑞 increases; that is, the frequency of
phytoplankton blooms decreases with increased biological
control. Indeed, according to Theorems 16 and 17, the order-
1 periodic solution moves the phase set and the impulse
moves from the bottom to top with the increase in 𝑞. If the
order-1 periodic solution is stable, the trajectorywill converge
toward the order-1 periodic solution. It is clear that the time
required to reach 𝑥 = ℎ increases, which is exactly what
we hoped. Thus, phytoplankton blooms can be controlled
using artificial and biologicalmethods together.Therefore, we
should replace the artificial method with biological methods
as much as possible. This is feasible according to a previous
analysis.

5. Conclusion and Discussion

In this study, we developed a phytoplankton-fish model with
artificial and biological control, which we studied analytically
and numerically. To investigate the feasibility of artificial and
biological methods, theoretical mathematical results were
required. Thus, we studied the existence and stability of a
semitrivial periodic solution and an order-1 periodic solution
of system (1) initially, and we proved that a positive periodic
solution emerged from the semi-trivial periodic solution via
transcritical bifurcation using bifurcation theory. In addition,
we discussed the bifurcation of an order-1 periodic solution.
We proved that an order-1 periodic solution emerged from
the existing order-1 periodic solution. These results are very
useful when studying the biological and artificial control of
phytoplankton blooms. We also described several numerical
simulations, which verified the theoretical results.

Based on previous theoretical and numerical results,
we showed that phytoplankton blooms can be controlled
using artificial and biological methods. In particular, we
demonstrated the feasibility of amethodwhere asmany fishes
as possible are released and as little phytoplankton is removed
as possible; that is, the artificial method should be replaced
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by biological methods as much as possible. However, the
results were not very good when we only used a biological
method. Likewise, if only the artificial method was used,
too much artificial control was required. Thus, our study
demonstrated that artificial and biological methods should
be used, that is, integrated management. Furthermore, we
suggest that fish (or zooplankton) should be released when
the density of phytoplankton reaches a critical biological
value. Moreover, when the density of phytoplankton reaches
the bloom’s critical value, phytoplankton should be removed
using the artificial method. The results may be better using
this approach. The corresponding theoretical results were
obtained using the method proposed in the present study.

Although ourmodel is simple and it can only abstract real
world phenomena, the model reproduced many real-world
features. First, when only artificial method is considered in
our model, the density of phytoplankton can be restrained.
In reality, artificial method is the main method controlling
phytoplankton bloom at present, so the method is effective.
Second, when only biological method is considered in our
model, the density of phytoplankton cannot be below critical
value right now. In reality, when phytoplankton bloom
occurs, biological method is hardly applied. Third, in recent
years, people control phytoplankton bloom occurs using
fish-farming. When phytoplankton bloom occurs, people
remove the phytoplankton using chemical reagent.The result
is better. While our model shows that adopting biological
method and artificial method at the same is much better.
Furthermore, our model predicts that the intensity of bio-
logical method and artificial method is beyond a certain
level;then, the phytoplankton bloom can be controlled. Based
on the analysis of our model, we can obtain many results that
agreed with reality.These results are expected to be useful for
studying algae in Zeya Reservoir and other ecosystems.

Conflict of Interests

The authors declare that they have no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant no. 31170338), by the Key
Program of Zhejiang Provincial Natural Science Foundation
of China (Grant no. LZ12C03001), and by the National Key
Basic Research Program of China (973 Program, Grant no.
2012CB426510).

References

[1] R. Reigada, R. M. Hillary, M. A. Bees, J. M. Sancho, and
F. Sagués, “Plankton blooms induced by turbulent flows,”
Proceedings of the Royal Society B, vol. 270, no. 1517, pp. 875–880,
2003.

[2] J. E. Truscott and J. Brindley, “Ocean plankton populations as
excitable media,” Bulletin of Mathematical Biology, vol. 56, no.
5, pp. 981–998, 1994.
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