3,471 research outputs found

    Random network coding for secure packet transmission in SCADA networks

    Get PDF

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Power‐Over‐Fiber Applications for Telecommunications and for Electric Utilities

    Get PDF
    Beyond telecommunications, optical fibers can also transport optical energy to powering electric or electronic devices remotely. This technique is called power over fiber (PoF). Besides the advantages of optical fiber (immunity to electromagnetic interferences and electrical insulation), the employment of a PoF scheme can eliminate the energy supplied by metallic cable and batteries located at remote sites, improving the reliability and the security of the system. Smart grid is a green field where PoF can be applied. Experts see smart grid as the output to a new technological level seeks to incorporate extensively technologies for sensing, monitoring, information technology, and telecommunications for the best performance electrical network. On the other hand, in telecommunications, PoF can be used in applications, such as remote antennas and extenders for passive optical networks (PONs). PoF can make them virtually passives. We reviewed the PoF concept, its main elements, technologies, and applications focusing in access networks and in smart grid developments made by the author’s research group

    Special Issue “Body Sensors Networks for E-Health Applications”

    Get PDF
    Body Sensor Networks (BSN) have emerged as a particularization of Wireless Sensor Networks (WSN) in the context of body monitoring environments, closely linked to healthcare applications. These networks are made up of smart biomedical sensors that allow the monitoring of physiological parameters and serve as the basis for e-Health applications. This Special Issue collects some of the latest developments in the field of BSN related to new developments in biomedical sensor technologies, the design and experimental characterization of on-body/in-body antennas and new communication protocols for BSN, including some review studies

    A role-based software architecture to support mobile service computing in IoT scenarios

    Get PDF
    The interaction among components of an IoT-based system usually requires using low latency or real time for message delivery, depending on the application needs and the quality of the communication links among the components. Moreover, in some cases, this interaction should consider the use of communication links with poor or uncertain Quality of Service (QoS). Research efforts in communication support for IoT scenarios have overlooked the challenge of providing real-time interaction support in unstable links, making these systems use dedicated networks that are expensive and usually limited in terms of physical coverage and robustness. This paper presents an alternative to address such a communication challenge, through the use of a model that allows soft real-time interaction among components of an IoT-based system. The behavior of the proposed model was validated using state machine theory, opening an opportunity to explore a whole new branch of smart distributed solutions and to extend the state-of-the-art and the-state-of-the-practice in this particular IoT study scenario.Peer ReviewedPostprint (published version

    A Secure, Configurable, Wireless System for Transfer of Sensor Data from Aircraft to Ground

    Get PDF
    Modern aircraft are complex systems, equipped with hundreds of embedded sensors that record a wide repertoire of data during flight, such as crucial engine and airframe parameters, status of flight control system, air conditioning system, landing gear, life-saving and emergency systems. The data from the sensors is stored in the Flight Data Recorder. Maintenance personnel routinely transfer this sensor data to a ground terminal device to analyze it for aircraft health and performance monitoring purposes. Manual methods of extracting sensor data can be tedious and error-prone when large fleets of aircraft are involved. This paper presents a novel system to extract sensor data from aircraft to a ground terminal, wirelessly. The wireless system is implemented using unique, configurable wireless transmitter receivers (WTRs) designed for this purpose. The hardware for the wireless transfer of data was designed, interfaced with a modern aircraft’s system, and tested with the aircraft on the ground and another flying object. The data from the aircraft’s Flight Data Recorder was successfully transmitted and received wirelessly by the ground terminal, over a distance of 50 meters (with aircraft on ground) and 10 Kilometers (with a flying object), in a secure mode with zero packet loss. The WTRs have also qualified the requisite tests for airborne certification

    Utilization of Battery Energy Storage Systems (BESS) in Smart Grid: A Review

    Get PDF
    The uncertainty in fuel cost, the ageing of most existing grid, the lack of utilities’ supply capacity to respond to the increasing load demand, and the lack of automatically power restoration, accelerate the need to modernize the distribution network by introducing new technologies, putting the smart grid (SG) on spot. The aim of this paper is to carry out a detailed survey of the major requirements of (SG) and discuss the operational challenges arising from the integration of distributed generation (DG) in distribution networks (DN). These requirements dictate the necessity to review the energy and communication infrastructure, the automatic control, metering and monitoring systems, and highlight the features of smart protection system for a robust and efficient distribution grid. In addition, the paper aims to classify the energy storage systems (ESS) and explain their role for utilities, consumers and for environment. This includes the pumped hydro systems (PHS) and compressed air systems (CAS), battery energy storage systems (BESSs), double layer and superconductive capacitors, and electric vehicles (EVs). Since BESSs emerged as one of the most promising technology for several power applications, the paper presents an overview of their main features, management and control systems and operational modes. A survey about the utilization of BESSs in power system is presented

    Propuesta de un diseño de estación de monitorización en tiempo real: implementación y rendimiento en diferentes condiciones ambientales

    Get PDF
    With the aim of creating a real-time monitoring network for both oceanographic and meteorological data, a monitoring station conceptual design was developed. A common framework for software and electronics was adapted to different environmental conditions using two buoy approaches: one intended for oceanic waters, to be moored up to 30-40 m depth, where waves are the critical design factor, and one for continental waters (rivers, lakes and the inner part of estuaries), where currents are the critical design factor. When structures such as bridges are present in the area, the monitoring station can be installed on these structures, thus reducing its impact and increasing safety. In this paper, the design, implementation, operation and performance of these stations are described. A reliability index is calculated for the longest time series of the three related deployment options on the Galician coast: Cíes (oceanic buoy in front of the Ría de Vigo), Catoira (continental buoy in the Ulla river) and Cortegada (installation in a bed in the Ría de Arousa).Con el fin de crear una red de monitorización en tiempo real de variables tanto oceanográficas como meteorológicas, se ha desarrollado el diseño conceptual de una estación de monitorización. Este diseño común de electrónica y programación se ha adaptado a las diferentes condiciones ambientales del medio empleando dos tipos diferentes de boya: uno para aguas oceánicas, que puede ser fondeado hasta 30-40 m de profundidad, donde el oleaje es el factor crítico a tener en cuenta para su diseño, y otro para aguas continentales (ríos, lagos o incluso para la parte interior de estuarios), donde las corrientes son el principal elemento ambiental que ha de ser considerado. Asimismo, cuando existen estructuras en el medio, como puentes, esta estación puede ser instalada sobre dichas estructuras, reduciendo así su impacto e incrementando la seguridad. En este trabajo se describen el diseño, implementación, operación y funcionamiento de esta estación. También se calcula el índice de éxito en las series temporales más largas de cada una de las tres posibles ubicaciones descritas en la costa gallega: Cíes (boya oceánica frente a la Ría de Vigo), Catoira (boya continental en el río Ulla) y Cortegada (instalada en una batea en la Ría de Arousa)
    corecore