19 research outputs found

    Multiparametric Continuous and Mixed-Integer Nonlinear Optimization with Parameters in General Locations

    Get PDF
    Convex programming has been a research topic for a long time, both theoretically and algorithmically. Frequently, these programs lack complete data or contain rapidly shifting data. In response, we consider solving parametric programs, which allow for fast evaluation of the optimal solutions once the data is known. It has been established that, when the objective and constraint functions are convex in both variables and parameters, the optimal solutions can be estimated via linear interpolation. Many applications of parametric optimization violate the necessary convexity assumption. However, the linear interpolation is still useful; as such, we extend this interpolation to more general parametric programs in which the objective and constraint functions are biconvex. The resulting algorithm can be applied to scalarized multiobjective problems, which are inherently parametric, or be used in a gradient dual ascent method. We also provide two termination conditions and perform a numerical study on synthetic parametric biconvex optimization problems to compare their effectiveness

    Tractable multi-product pricing under discrete choice models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 199-204).We consider a retailer offering an assortment of differentiated substitutable products to price-sensitive customers. Prices are chosen to maximize profit, subject to inventory/ capacity constraints, as well as more general constraints. The profit is not even a quasi-concave function of the prices under the basic multinomial logit (MNL) demand model. Linear constraints can induce a non-convex feasible region. Nevertheless, we show how to efficiently solve the pricing problem under three important, more general families of demand models. Generalized attraction (GA) models broaden the range of nonlinear responses to changes in price. We propose a reformulation of the pricing problem over demands (instead of prices) which is convex. We show that the constrained problem under MNL models can be solved in a polynomial number of Newton iterations. In experiments, our reformulation is solved in seconds rather than days by commercial software. For nested-logit (NL) demand models, we show that the profit is concave in the demands (market shares) when all the price-sensitivity parameters are sufficiently close. The closed-form expressions for the Hessian of the profit that we derive can be used with general-purpose nonlinear solvers. For the special (unconstrained) case already considered in the literature, we devise an algorithm that requires no assumptions on the problem parameters. The class of generalized extreme value (GEV) models includes the NL as well as the cross-nested logit (CNL) model. There is generally no closed form expression for the profit in terms of the demands. We nevertheless how the gradient and Hessian can be computed for use with general-purpose solvers. We show that the objective of a transformed problem is nearly concave when all the price sensitivities are close. For the unconstrained case, we develop a simple and surprisingly efficient first-order method. Our experiments suggest that it always finds a global optimum, for any model parameters. We apply the method to mixed logit (MMNL) models, by showing that they can be approximated with CNL models. With an appropriate sequence of parameter scalings, we conjecture that the solution found is also globally optimal.by Philipp Wilhelm Keller.Ph.D

    Optimisation over the non-dominated set of a multi-objective optimisation problem

    Get PDF
    In this thesis we are concerned with optimisation over the non-dominated set of a multiobjective optimisation problem. A multi-objective optimisation problem (MOP) involves multiple conflicting objective functions. The non-dominated set of this problem is of interest because it is composed of the “best” trade-off for a decision maker to choose according to his preference. We assume that this selection process can be modelled by maximising a function over the non-dominated set. We present two new algorithms for the optimisation of a linear function over the non-dominated set of a multi-objective linear programme (MOLP). A primal method is developed based on a revised version of Benson’s outer approximation algorithm. A dual method derived from the dual variant of the outer approximation algorithm is proposed. Taking advantage of some special properties of the problem, the new methods are designed to achieve better computational efficiency. We compare the two new algorithms with several algorithms from the literature on a set of randomly generated instances. The results show that the new algorithms are considerably faster than the competitors. We adapt the two new methods for the determination of the nadir point of (MOLP). The nadir point is characterized by the componentwise worst values of the non-dominated points of (MOP). This point is a prerequisite for many multi-criteria decision making (MCDM) procedures. Computational experiments against another exact method for this purpose from the literature reveal that the new methods are faster than the competitor. The last section of the thesis is devoted to optimising a linear function over the non-dominated set of a convex multi-objective problem. A convex multi-objective problem (CMOP) often involves nonlinear objective functions or constraints. We extend the primal and the dual methods to solve this problem. We compare the two algorithms with several existing algorithms from the literature on a set of randomly generated instances. The results reveal that the new methods are much faster than the others

    Optimistic and pessimistic ambiguous chance constraints with applications

    No full text
    In this thesis, we consider optimisation problems which involve ambiguous chance constraints, i.e., probabilistic constraints where the probability distribution of the primitive uncertainties is at least partly unknown. In this case, we can define an ambiguity set that contains all distributions consistent with our prior knowledge of the uncertainty and take either a pessimistic (worst-case) or optimistic (best-case) view of the world. The former view can be used to actively optimise a system whilst guaranteeing some predefined level of safety; being robust even if the worst-case scenario materialises. The latter view can be used to actively optimise a system where it is required to reconstruct realisations of a random variable whose distribution is not known precisely. We characterise the ambiguity set through generalised moment bounds and structural properties such as symmetry, unimodality, or independence patterns. Sufficient conditions are presented under which the corresponding chance constraints admit equivalent explicit tractable conic reformulations that can be solved with off-the-shelf solvers. However, in general, ambiguous chance constrained problems are provably difficult and we suggest efficiently computable conservative approximations. To illustrate the effectiveness of our reformulations, we give two detailed and novel examples. First, we consider the pricing problem of a provider of cloud computing services. This provider faces uncertain demand and wishes to maximise profit, whilst maintaining a desired level of quality of service. We show that such a problem naturally fits within the pessimistic ambiguous chance constraint framework. Second, we consider the problem of improving the quality of a photographic image by reconstructing and then removing noise. We show that such a problem can be formulated as an optimistic ambiguous chance constrained program that generalises, and offers new insight to, an existing powerful image denoising approach.Open Acces

    Three Risky Decades: A Time for Econophysics?

    Get PDF
    Our Special Issue we publish at a turning point, which we have not dealt with since World War II. The interconnected long-term global shocks such as the coronavirus pandemic, the war in Ukraine, and catastrophic climate change have imposed significant humanitary, socio-economic, political, and environmental restrictions on the globalization process and all aspects of economic and social life including the existence of individual people. The planet is trapped—the current situation seems to be the prelude to an apocalypse whose long-term effects we will have for decades. Therefore, it urgently requires a concept of the planet's survival to be built—only on this basis can the conditions for its development be created. The Special Issue gives evidence of the state of econophysics before the current situation. Therefore, it can provide excellent econophysics or an inter-and cross-disciplinary starting point of a rational approach to a new era
    corecore