
Optimisation over the

Non-dominated Set of a

Multi-objective Optimisation

Problem

Zhengliang Liu

Management Science

Lancaster University

This dissertation is submitted for the degree of

Doctor of Philosophy

Management School August 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76961274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

Zhengliang Liu

August 2016



Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Professor Matthias

Ehrgott for his continuous support of my Ph.D study. His immense knowledge and

insights in the field of multi-objective optimisation provided clear guidance throughout the

research. His advice helped me tackle numerous problems encountered during the study.

His experience and expertise in academic writing exemplified high quality of research

presentation. In this journey of study, constantly I was deeply touched by his passion

and dedication to research. He persisted in weekly meetings with me in spite of heavy

duties as the Head of Department of Management Science. In my difficult times, Matthias

helped me seek solutions patiently and stood by me as a mentor and also as a friend. I

can never express my appreciation too much to him and felt lucky to have the privilege to

work with him.

I also would like to thank Dr. Andrea Raith, who co-supervised me during my study in

the University of Auckland. It was such a wonderful time to work with her. Her expertise

in optimisation and in computer programming is of great help to me. Andrea showed

great patience to help me solve problems in my computer programming and writing. She

provided support to me not only in my research but also in my decision of Ph.D study,

which I believed changed my life.

Besides my supervisors, I would like to thank Professor Horst W. Hamacher and

research fellows in the University of Kaiserslautern for their advice to my research and

kind hospitality during my visit in Germany.



My sincere thanks also goes to my annual review committee, Professor Adam Letchford,

Professor John Boylan, Professor Mike Wright and Professor Konstantinos Zografos. I

appreciate their opinions and feedback to my study.

I am grateful to Ms Kim Williams, Ms Gay Bentinck and Ms Lindsay Newby, who

provided professional support in administration, especially in my transfer from the

University of Auckland to Lancaster University.

It was impossible for me to have the opportunity of Ph.D. study without the financial

support from the University of Auckland and the US Airforce Office for Scientific Research.

Last but not the least, I would like to thank my families for loving, supporting and

understanding me.

iv



Abstract

In this thesis we are concerned with optimisation over the non-dominated set of a multi-

objective optimisation problem. A multi-objective optimisation problem (MOP) involves

multiple conflicting objective functions. The non-dominated set of this problem is of

interest because it is composed of the “best” trade-off for a decision maker to choose

according to his preference. We assume that this selection process can be modelled by

maximising a function over the non-dominated set.

We present two new algorithms for the optimisation of a linear function over the

non-dominated set of a multi-objective linear programme (MOLP). A primal method is

developed based on a revised version of Benson’s outer approximation algorithm. A dual

method derived from the dual variant of the outer approximation algorithm is proposed.

Taking advantage of some special properties of the problem, the new methods are designed

to achieve better computational efficiency. We compare the two new algorithms with

several algorithms from the literature on a set of randomly generated instances. The

results show that the new algorithms are considerably faster than the competitors.

We adapt the two new methods for the determination of the nadir point of (MOLP).

The nadir point is characterized by the componentwise worst values of the non-dominated

points of (MOP). This point is a prerequisite for many multi-criteria decision making

(MCDM) procedures. Computational experiments against another exact method for this

purpose from the literature reveal that the new methods are faster than the competitor.

The last section of the thesis is devoted to optimising a linear function over the

non-dominated set of a convex multi-objective problem. A convex multi-objective problem

(CMOP) often involves nonlinear objective functions or constraints. We extend the primal



and the dual methods to solve this problem. We compare the two algorithms with several

existing algorithms from the literature on a set of randomly generated instances. The

results reveal that the new methods are much faster than the others.

vi



Contents

1 Introduction 1

2 Multi-objective Optimisation 7

2.1 Multi-objective linear programming . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 A revised version of Benson’s outer approximation algorithm for

(MOLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Geometric duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 A dual variant of Benson’s outer approximation algorithm for (MOLP) 18

2.2 Convex multi-objective optimisation . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 An outer approximation algorithm for (CMOP) . . . . . . . . . . 22

2.2.2 Dual method for (CMOP) . . . . . . . . . . . . . . . . . . . . . . 25

3 Literature Review 28

3.1 Decision space based algorithms . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Objective space based algorithms . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Polyblock approximation method . . . . . . . . . . . . . . . . . . . 31

3.2.2 Bi-objective branch and bound algorithm . . . . . . . . . . . . . . 33

3.2.3 Conical branch and bound algorithm . . . . . . . . . . . . . . . . 36

3.2.4 An outcome space algorithm . . . . . . . . . . . . . . . . . . . . . 39

4 Linear Optimisation over the Non-dominated Set of a Multi-objective

Linear Programme 41



4.1 The primal method for (P) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The dual method for (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 The Determination of the Nadir Point 57

5.1 The nadir point of (MOP) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 The determination the nadir point by the primal method and the dual

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Optimisation over the Non-dominated Set of a Convex Multi-objective

Optimisation Problem 69

6.1 Optimisation over the non-dominated set of (CMOP) . . . . . . . . . . . . 71

6.2 Primal method to solve (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Dual method to solve (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion 81

Bibliography 85

viii



Chapter 1

Introduction

Mathematical optimisation is concerned with applying mathematical models to aid decision

making. In practice a decision is made to achieve a goal given by a decision maker. For

example a driver may aim to travel on the shortest route from a starting location to a

destination. This can be modelled by minimising a function of the travel distance between

the two locations. This function is known as the objective function in the model. To

achieve this goal, a shortest route has to be selected among many alternatives, which

are represented by feasible solutions (the set containing all feasible solutions is called

the feasible set). However, sometimes a decision maker has to take into consideration

multiple objectives simultaneously. For example the driver may also intend to avoid

traffic congestion. This target can be incorporated into the model as the second objective

function quantifying traffic congestion. However, these two objectives are often conflicting

with each other. The shortest route is often rather congested. Therefore, the decision

maker has to seek a trade-off between these two objectives. This scenario can be modelled

as a multi-objective optimisation problem (MOP). This problem has many applications

in practice, such as minimising cost versus minimising adverse environmental impacts in

infrastructure projects (Ehrgott et al., 2010), minimising risk versus maximising return in

financial portfolio management (Markowitz (1952), Ehrgott et al. (2009b)) or maximising

tumour control versus minimising normal tissue complications in radiotherapy treatment

1



design (Ehrgott et al., 2009a). Because a feasible solution simultaneously optimising

all of the objectives does not usually exist, the goal of (MOP) is to identify a set of

so-called efficient solutions. Efficient solutions have the property that it is not possible to

improve any of the objectives without deteriorating at least one other objective. The set

of all efficient solutions is known as the efficient set. A vector of the objective function

values derived from an efficient solution is called a non-dominated point. All of the

non-dominated points compose the non-dominated set. The determination of this set is

essential to (MOP) because this set contains the “best” options, from which the decision

maker can choose one option (a non-dominated point) to his preference and thereafter

choose an efficient solution corresponding to the chosen option to implement. In Chapter

2 we review several algorithms for solving multi-objective linear programmes (MOLPs)

and convex multi-objective optimisation problems (CMOPs). These algorithms are based

on Benson’s outer approximation algorithm (Benson, 1998) and its dual variant (Ehrgott

et al., 2011a). In this study we present the up-to-date versions of the algorithms proposed

by Löhne et al. (2014).

In practical applications of (MOP), the decision maker has to select one solution from

the efficient set for implementation. We assume that this selection process can be modelled

by means of a function which is to be maximised over the efficient set of the underlying

(MOP). For example, an investor perhaps aims at minimising the transaction cost of

establishing a portfolio with high return and low risk. Problems of this kind are known as

optimisation over the efficient set of a multi-objective optimisation problem (OE). This

problem arises in many applications. For instance, Benson (1984) describes a production

planning problem. A manufacturing firm has ten factories for producing four different

types of products. The firm’s goal is to maximise its profit function. However, the firm

also aims to maintain high employment levels at each of its ten factories. Therefore,

instead of maximising the profit function over the set of all feasible production plans, the

firm wants to maximise it over the set of all efficient solutions of (MOP), in which the

objective functions consist of ten employment level functions of the factories. Thus, (OE)

2



will be to find a maximum-profit production plan among all plans that are efficient in

terms of the employment levels at the ten factories.

Research interest in (OE) is motivated by many factors. First, in terms of computational

effort, it may be easier to solve (OE) directly than to solve (MOP) and then obtain a

most preferred efficient solution. Secondly, decision makers may be overwhelmed by the

large size of the whole efficient set (even in the case of (MOLP), the efficient set usually

has infinite cardinality) and may not be able to choose a preferred solution from it. In

Chapter 3 a survey on the methods for solving (OE) is conducted. These methods can be

categorised into two classes, namely, methods based in decision space and methods based

in objective space. The former class explores the feasible set of (MOP) in decision space

where the decision variables exist. The latter class investigates the the feasible set in

objective space (the image of the feasible set in decision space) where the objective vectors

exist. Several articles explore the structures and properties of the efficient set and the

non-dominated set. Dauer (1987) notes that the feasible set in objective space often has a

much simpler structure, i.e., fewer extreme points and proper faces, than the feasible set in

decision space. This is due to the fact that in practice the dimension of the decision space

is much greater than that of the objective space. Dauer (1993) illustrates the concept of

“collapsing”, which means that faces of the efficient set shrink into nonfacial subsets of

the non-dominated set. Benson (1995) shows that the dimension of efficient faces in the

feasible set always exceeds or equals the dimension of their images in the non-dominated

set. Hence, it is more computationally efficient to employ techniques and methods to

solve (OE) in objective space. In the hope that computational effort might be saved,

solving (OE) in objective space has been attracting attention, and several algorithms have

been developed since 2000. Most existing methods in the literature employ the branch

and bound technique (A. H. Land (1960)). This technique is a systematic search scheme

which can be represented by a “tree” structure. The “root” (the original problem) of the

“tree” splits into two “branches” (two subproblems), from each of which upper bounds

and lower bounds of the objective function are determined. A gap between the upper

3



bound and the lower bound of a “branch” indicates that further partitioning has be to

conducted. If a “branch” does not provide better solutions than the incumbent solution

(the solution providing the best objective function value so far), this “branch” is pruned

without further branching. An optimal solution is obtained if the upper bound and the

lower bound coincide. We review several algorithms (Nguyen Thi et al. (2008), Fülöp

and Muu (2000) Kim and Thang (2013), Thoai (2000) and Benson (2011)) of this kind in

Chapter 3.

In this thesis the problem of interest is the optimisation of a linear function over

the non-dominated set of an MOP. In Chapter 4 we present two new algorithms for

maximising a linear function over the non-dominated set of an MOLP, which is named

problem (P). A primal method is developed based on a revised version of Benson’s

outer approximation algorithm to compute the non-dominated set of an MOLP. Benson’s

algorithm enumerates all of the non-dominated vertices of the objective polyhedron (the

image of the feasible set in decision space). We first show that an optimal solution to

(P) exists at a vertex of the objective polyhedron. Therefore, a naïve algorithm can

be proposed with two phases. Firstly enumerate all non-dominated vertices through

Benson’s algorithm, and then evaluate the objective function at the vertices. The primal

method we propose integrates the two phases. Specifically, the vertex evaluation step is

embedded into the vertex enumeration step. When a vertex is generated in the iterations

of Benson’s algorithm, the objective function is evaluated at the vertex. If the vertex is a

non-dominated point of (MOLP), we use a hyperplane serving as a “cut” to remove part

of the search region where no better point exists.

Furthermore, an important conclusion is drawn that an optimal solution is obtained

at a so-called incomplete vertex of the objective polyhedron. A vertex is incomplete if

it has at least one dominated “neighbour” (an adjacent vertex connected by one edge).

This property reveals that it is sufficient to search for the incomplete vertices to solve (P).

However, it is rather difficult to confine the search to the set of incomplete vertices due to

the complexity of the non-dominated set. Fortunately, the dual method we propose takes

4



advantage of this property in dual objective space. This method is derived from the dual

variant of Benson’s outer approximation algorithm. We have proved that an incomplete

vertex of the primal polyhedron corresponds to a so-called incomplete facet of the dual

polyhedron. The dual algorithm is designed to determine the incomplete facets in order

to solve the problem. We compare the two new algorithms with several algorithms from

the literature on a set of randomly generated instances. The results show that the new

algorithms are considerably faster than the competitors.

In Chapter 5 the primal method and the dual method are adapted to determine the

nadir point of an MOLP. The nadir point is characterized by the componentwise worst

values of the non-dominated points of (MOP). The task of the determination of the nadir

point is of significant importance. Firstly, the knowledge of the nadir point facilitates

the normalisation of the objectives with inconsistent magnitude (Miettinen (1999)). In

the field of multi-criteria decision making (MCDM), a decision maker aims at a desirable

point out of the non-dominated set. The preferences of the decision maker are reflected

via a set of weights associated with the criteria. However, if the objectives are of different

magnitude, it is necessary to normalise them into the same interval, say between zero and

one, in order to ensure that a preferred point is chosen in accordance to the weights. The

normalisation procedure requires the range of the non-dominated set, which is delimited by

the ideal point and the nadir point. The decision maker would make a decision within this

range. Secondly, the nadir point is a pre-requisite for some interactive methods such as

the STEM method (Benayoun et al. (1971)) and the GUESS method (Buchanan (1997)).

In compromise programming, it serves as a reference point (Ehrgott and Tenfelde-Podehl

(2003)). Additionally, another motivation is proposed by Deb et al. (2010) that the nadir

point is crucial in terms of visualising the non-dominated set. For the reasons mentioned

above, heuristics and optimisation methods for determining this point are of interested to

many researchers and practitioners.

Unfortunately, it is a challenge to determine the nadir point, which is composed of the

maxima of the individual objectives over the non-dominated set. The structure of this set

5



can be very complex causing the determination of the nadir point to be rather difficult.

To the best of our knowledge, the only exact method for computing the nadir point for

MOLPs from the literature is proposed by Alves and Costa (2009).

The nadir values can be determined by optimising a linear function over the non-

dominated set of (MOLP), which is a special case of (P). Hence the primal method and the

dual method can be utilised to solve this problem. In order to achieve better performance,

we adapt these two methods to find the exact nadir point. We compare these two methods

against the exact method proposed byAlves and Costa (2009). The results show that the

new methods are faster.

In Chapter 6, we extend the primal and the dual methods to maximise a linear function

over the non-dominated set of (CMOP). A CMOP is a multi-objective optimisation problem

with nonlinear convex objective functions and feasible set. This problem can be solved by

the outer approximation algorithm proposed by Löhne et al. (2014). This method uses

polyhedra to approximate the non-dominated set of the feasible set in objective space

from outside. We first show that the properties of (P) still hold for the nonlinear case.

Then a primal method and a dual method are introduced, which are based on the outer

approximation algorithms by Löhne et al. (2014). We compare the two new algorithms

with several algorithms from the literature on a set of randomly generated instances. The

results show that the new algorithms are more efficient than the competitors.

6



Chapter 2

Multi-objective Optimisation

This chapter is concerned with the multi-objective optimisation problem (MOP). This

problem involves simultaneously optimising multiple conflicting objective functions. Solu-

tions to (MOP) are known as efficient solutions. A solution is efficient if it is not possible

to improve one objective function without deteriorating at least one other. One class

of (MOP) is the multi-objective linear programme (MOLP), where all of the objective

functions are linear and the feasible set is a convex polyhedron. In this chapter we review

two objective space based methods to solve (MOLP), namely the revised version of Ben-

son’s outer approximation algorithm and its dual variant. The second part of the chapter

focuses on another class of (MOP) known as the convex multi-objective optimisation

problem (CMOP). This type of problem involves optimising multiple non-linear convex

objective functions over a non-linear convex feasible set. Benson’s method and its dual

variant have been extended to solve this problem. The algorithms discussed in this chapter

establish the foundation of algorithms in the subsequent chapters.

A multi-objective optimisation problem is formulated as

min {(f1(x), . . . ,fp(x))T : x ∈ X }, (MOP)

where f : Rn → Rp is a vector-valued function composed of p real-valued continuous

functions fk : Rn → R, k = 1, . . . ,p. The set X is a feasible set in decision space Rn. The

7



objective function f maps a solution x ∈ X to a point y = f(x) in objective space Rp. Let

Y := {f(x) : x ∈ X } denote the image of X in objective space. We assume that X is a

nonempty and compact set. Therefore, Y is nonempty and compact, too.

We use the notation introduced by Ehrgott (2005) to compare vectors y1, y2 ∈ Rp:

y1 = y2 if y1
k = y2

k for k = 1, . . . ,p; y1 < y2 if y1
k < y2

k for k = 1, . . . ,p; y1 5 y2 if y1
k ≤ y2

k for

k = 1, . . . ,p; y1 ≤ y2 if y1 5 y2 and y1 ̸= y2. We define Rp
= := {y ∈ Rp : yk = 0,k = 1, . . . ,p},

and Rp
5 := {y ∈ Rp : yk 5 0,k = 1, . . . ,p}; Rp

≥ := {y ∈ Rp : yk ≥ 0,k = 1, . . . ,p}, and Rp
≤ :=

{y ∈ Rp : yk ≤ 0,k = 1, . . . ,p}.

Definition 2.1. A feasible solution x̂ ∈ X is an efficient solution of (MOP) if there is no

x ∈ X such that f(x) ≤ f(x̂). The set of all efficient solutions is called the efficient set in

decision space and denoted by XE. Correspondingly, ŷ = f(x̂) is called a non-dominated

point and YN := {f(x) : x ∈ XE} is the non-dominated set in objective space.

Definition 2.2. A feasible solution x̂ ∈ X is a weakly efficient solution of (MOP) if

there is no x ∈ X such that f(x) < f(x̂). The set of all weakly efficient solutions is

called the weakly efficient set in decision space and denoted by XW E. Correspondingly,

ŷ = f(x̂) is called a weakly non-dominated point and YW N := {f(x) : x ∈ XW E} is the

weakly non-dominated set in objective space.

A non-dominated point of (MOP) is characterized as a vector of the objective values,

none of which can be improved without deteriorating at least one other value. Therefore,

the set of non-dominated points is of interest to decision makers. To solve (MOP)

is generally understood as obtaining YN or a representation of this set. Once YN is

determined, the efficient set XE consists of those solutions in the set {x ∈ Rn : f(x) ∈ YN }.

Normally in practice decision makers choose a non-dominated point y ∈ YN , and one

efficient solution x ∈ {x : x ∈ XE ,f(x) = y} is adopted to implement.

For (MOP) two points, namely the ideal point and the anti-ideal point, are of interest.

The ideal point is a vector in objective space composed of the minimal values of the

minimisation of each objective function individually. On the contrary, the anti-ideal

8



point contains the maximal values of maximising the objective functions individually. For

most of the algorithms introduced in this study, these two points are often determined

to initiate the computation. For example these two points can be used to construct the

initial polyhedron containing Y to start an outer approximation scheme. The formal

definitions of these two points are in Definition 2.3 below.

Definition 2.3.

• The ideal point yI ∈ Rp of (MOP) is defined to be the vector of componentwise

minima of Y, i.e., yI
k := min {fk(x) : f(x) ∈ Y}, k = 1, . . . ,p.

• The anti-ideal point yAI ∈ Rp of (MOP) is defined to be the vector of componentwise

maxima of Y, i.e., yAI
k := max {fk(x) : f(x) ∈ Y}, k = 1, . . . ,p.

Figure 2.1 shows the ideal and the anti-ideal point of a polyhedron Y, for the case

p = 2.

Y

yI

yAI

Figure 2.1 Ideal point and anti-ideal point.

9



2.1 Multi-objective linear programming

A multi-objective linear programme is a special case of (MOP), where all objectives and

constraints are linear. It can be formulated as

min {Cx : Ax = b}, (MOLP)

where C is a p × n matrix, p is the number of objective functions and n is the number

of decision variables. The feasible set X is a polyhedral convex set defined by Ax = b,

where A ∈ Rm×n and b ∈ Rm. We assume that X is bounded. A polyhedral convex set

such as X has a finite number of faces. A subset F of X is a face if and only if there are

ω ∈Rn \{0} and γ ∈R such that X ⊆ {x ∈Rn : ωT x= γ} and F = {x ∈Rn : ωT x = γ}∩X .

We call a hyperplane H = {x ∈ Rn : ωT x = γ} supporting to X if ωT x = γ for all x ∈ X

and there is some x0 ∈ X such that ωT x0 = γ. The proper (r − 1)-dimensional faces of

an r-dimensional polyhedral set X are called facets of X . Proper faces of dimension zero

are called extreme points or vertices of X . For more details of the polyhedral theory the

reader is referred to Nemhauser and Wolsey (1988).

In Example 2.1 we provide a numerical example of (MOLP).

Example 2.1.

min

1 0

0 1


x1

x2



s.t.



4 1

3 2

1 5

−1 −1



x1

x2

=



4

6

5

−6


x1,x2 = 0.

10



Figure 2.2 shows the feasible set X of Example 2.1 in decision space. The red line

segments compose the efficient set XE .

x1

x2

1 2 3 4 5 6

1

2

3

4

5

6

0

X

XE

Figure 2.2 The feasible set and the efficient set of Example 2.1 in decision space.

Figure 2.3 shows the feasible set Y of Example 2.1 in objective space. The bold line

segments compose the non-dominated set YN . In this example, the feasible set X in

decision space is identical to Y . Furthermore XE is the same as YN . This is because C is

the identity matrix in this example.

y1

y2

1 2 3 4 5 6

1

2

3

4

5

6

0

Y

YN

Figure 2.3 The feasible set and non-dominated set of Example 2.1 in objective space.

11



Let P := Y +Rp = {y + ŷ : y ∈ Y , ŷ ∈ Rp} denote the extended set of Y. The non-

dominated set of P is the same as that of Y , i.e., PN = YN (Ehrgott (2005) Proposition

2.3). Therefore in terms of solving (MOP) these two sets are equivalent. In this study we

use P instead of Y because P has some beneficial properties to the algorithms that we

will present in the following sections. For example P has dimension p, i.e., dim(P) = p,

and the non-dominated set of P belongs to the boundary of P , i.e., PN ⊂ bd(P) (Ehrgott

(2005) Proposition 2.4). We will explain the importance of these properties in the next

section.

A number of methods for solving (MOLP) have been reviewed by Ehrgott (2005).

The existing methods fall into two main categories, namely methods based in decision

space and methods based in objective space. The former search X for efficient solutions

in decision space, whereas the latter explore the structure of Y in objective space. In the

following sections we review several objective space based methods which play important

roles in this research.

2.1.1 A revised version of Benson’s outer approximation algo-

rithm for (MOLP)

An objective space based method for solving (MOLP) was initially proposed by Benson

(1998). Then Ehrgott et al. (2011a) revised this method with a few modifications. Hamel

et al. (2014) further developed this method so that only one linear programme (LP) needs

to be solved in each iteration. In this section the state-of-the-art version by Hamel et al.

(2014) is reviewed. We first provide notation that will facilitate the description of this

algorithm. For y ∈ Rp and v ∈ Rp, let

λ(v) :=
v1, ...,vp−1,1−

p−1∑
i=1

vi

T

, (2.1)

λ∗(y) := (y1 −yp, ...,yp−1 −yp,−1)T . (2.2)

12



Ehrgott et al. (2011a) define a coupling function ϕ : Rp ×Rp → R by

ϕ(y,v) :=
p−1∑
i=1

yivi +yp

1−
p−1∑
i=1

vi

−vp. (2.3)

Consider the following weighted sum problem of (MOLP):

min {λ(v)T Cx : x ∈ Rn,Ax = b}. (P1(v))

Proposition 2.1. If λ ∈ Rp
≥, then an optimal solution x to (P1(v)) is a weakly efficient

solution to (MOLP).

Proposition 2.1 is well known, see Ehrgott (2005).

The dual problem of P1(v) is

max {bT u : u ∈ Rm,u = 0,AT u = CT λ(v)}. (D1(v))

The following LPs play an important role in the algorithms:

min {z : (x,z) ∈ Rn ×R,Ax = b,Cx− ez 5 y}, (P2(y))

where e is a column vector with all elements being one. Given a point y ∈ Rp in the

objective space, if the optimal value z 5 0, then y ∈ P, otherwise y /∈ P. An optimal

solution x̂ ∈ X to (P2(y)) provides a point ŷ = Cx̂ which is on the boundary of P . Moreover

ŷ is a weakly non-dominated point, i.e., ŷ ∈ PW N (Benson, 1998).

The following LP (D2(y)) is the dual problem of (P2(y)).

max {bT u−yT λ : (u,λ) ∈ Rm ×Rp,(u,λ) = 0,AT u = CT λ,eT λ = 1}. (D2(y))

13



Proposition 2.2. Let (u∗,λ∗) be an optimal solution to (D2(y)). Then

p∑
k=1

λ∗
kyk = bT u∗

provides a supporting hyperplane to P at ŷ.

Proof. See Proposition 4.2 in Hamel et al. (2014).

Therefore, by solving (P2(y)), we not only check if y belongs to P but also obtain the

dual variable values (u∗,λ∗) (an optimal solution to (D2(y))), through which a supporting

hyperplane to P at ŷ can be constructed.

The algorithm discussed in this section is the revised version of Benson’s algorithm

proposed by Hamel et al. (2014). It first constructs a p-dimensional polyhedron S0 :=

yI +Rp
= such that P ⊆ S0. In every iteration it chooses a vertex sk from VSk−1 , the

vertex set of Sk−1, which is not in P and constructs a supporting hyperplane to P by

solving (P2(sk)) and obtaining its dual optimal solution to (D2(sk)). Sk is defined by

intersecting Sk−1 with the halfspace of the supporting hyperplane containing P. The

algorithm terminates as soon as no such sk ∈ Sk−1 \P can be found and Sk−1 = P . Some

notation used in Algorithm 2.1 is listed below.

YN set of non-dominated points found in the algorithm.

Sk outer approximation set of P in iteration k.

yI ideal point of P .

VSk vertex set of Sk.

ei
ϵ ei

ϵj = ϵ if i ̸= j; otherwise, ei
ϵj = 1− (p−1)ϵ, ϵ > 0 is a small positive number.

Note that in Line 1 in stead of using (P1(ei)), (P1(ei
ϵ)) is employed to assure that

non-dominated points are obtained.

14



Algorithm 2.1 Revised Benson’s algorithm
Input: (MOLP)
Output: YN ; Sk

1: Compute an optimal solution xi and an optimal value yI
i of (P1(ei

ϵ)), for i = 1, . . . ,p.
YN := {Cxi}, for i = 1, . . . ,p.

2: Set S0 := {yI}+Rp
=; VS0 := {yI} and k := 1.

3: while VSk−1 ̸⊂ P do
4: Choose a vertex sk of Sk−1.
5: Compute an optimal solution (xk, zk) to P2(sk) and an optimal solution (uk,λk) to

D2(sk).
6: if zk > 0 then
7: Set Sk := Sk−1 ∩ {y ∈ Rp : ϕ(y,(λk

1, . . . ,λk
p−1, bT uk)) = 0}; Update VSk ; YN :=

YN ∪Cxk.
8: else
9: YN := YN ∪ sk.

10: end if
11: Set k := k +1
12: end while

Example 2.2. In Figure 2.4, we illustrate the revised version of Benson’s algorithm with

Example 2.1.

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

Y

(a)

S0

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S1

y1

(b)
y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S2

y2

(c)

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S3

y3

(d)
y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

P

(e)

Figure 2.4 The revised version of Benson’s algorithm.

15



Table 2.1 Iterations of Algorithm 2.1 in Example 2.2.

Iteration k Vertex sk Vertices of Sk in P Vertices of Sk not in P

1, Figure 2.4 (b) (0,0)T ∅ (2,0)T ,(0,3)T

2, Figure 2.4 (c) (0,3)T (0,4)T ,(0.4,2.4)T (2,0)T

3, Figure 2.4 (d) (2,0)T (0,4)T ,(0.4,2.4)T , ∅

(20/13,9/13)T ,(5,0)T

The algorithm starts with the initial polyhedron S0, see Figure 2.4 (a). The first vertex

s1 is (0,0)T . By solving (P2(s1)), y1, a weakly non-dominated point of P is obtained. A

supporting hyperplane to P at y1 is generated and two vertices of S1, (0,3)T and (2,0)T ,

are obtained. In the second iteration, the vertex (0,3)T is chosen and a new hyperplane is

generated. Then we obtain two new extreme points, (0,4)T and (0.4,2.4)T , which belong

to P . The process is iterated until all the extreme points of Sk−1 are in P . At termination,

both the non-dominated vertices and the hyperplanes defining P are known, as shown in

Figure 2.4 (e). More discussion and details of this algorithm can be found in Hamel et al.

(2014).

2.1.2 Geometric duality

Heyde and Löhne (2008) introduced a concept of geometric duality for (MOLP). This

theory relates (MOLP) with a dual multi-objective linear programme (DMOLP) in dual

objective space Rp. We use the following notation to compare two vectors v1, v2 ∈ Rp

in dual objective space. We write v1 >K v2 if v1
k = v2

k for k = 1, . . . ,p − 1 and v1
p > v2

p;

v1 =K v2 if v1
k = v2

k for k = 1, . . . ,p − 1 and v1
p = v2

p. Moreover v1 ≥K v2 is the same as

v1 >K v2.

The dual of (MOLP) is

max
K

{(λ1, ...,λp−1, bT u)T : (u,λ) = 0,AT u = CT λ,eT λ = 1}, (DMOLP)

16



where (u,λ) ∈ Rm ×Rp. K := {v ∈ Rp : v1 = v2 = · · · = vp−1 = 0,vp = 0} is the ordering

cone in the dual objective space, and maximisation is with respect to the order defined by

K. Let V denote the feasible set in the dual objective space, then the extended feasible

set in the dual objective space is D := V −K = {v − v̂ : v ∈ V , v̂ ∈ K}. For (DMOLP) it is

of interest to determine the so-called K-maximal set, which is

DK = max
K

{(λ1, ...,λp−1, bT u)T : (u,λ) = 0,AT u = CT λ,eT λ = 1}.

Figure 2.5 shows the extended feasible set D in the dual objective space of Example 2.1.

The bold line segments compose DK.

Heyde and Löhne (2008) define the two set-valued maps H and H∗ to relate P and D.

H : Rp ⇒ Rp,H(v) := {y ∈ Rp : λ(v)T y = vp} and (2.4)

H* : Rp ⇒ Rp,H*(y) := {v ∈ Rp : λ∗(y)T v = −yp}. (2.5)

Note that λ(v) and λ∗(y) are defined in (2.1) and (2.2).

Given a point v ∈Rp in dual objective space, H defines a hyperplane H(v) in primal ob-

jective space. On the other hand a hyperplane H(v) in primal objective space corresponds

to a point v in dual objective space. Similarly, given a point y ∈ Rp in primal objective

0 1

D

v1

v2

Figure 2.5 Extended dual objective polyhedron and the K-maximal set of Example 2.1.

17



space, H∗(y) is a hyperplane in dual objective space. On the contrary, a hyperplane H∗(y)

in primal objective space can be mapped to a point y in primal objective space through

H∗. Theorems 2.1 and 2.2 state a relationship between proper K-maximal faces of D and

proper weakly non-dominated faces of P .

Theorem 2.1. (Heyde and Löhne (2008))

1. A point v is a K-maximal vertex of D if and only if H(v) ∩ P is a weakly non-

dominated facet of P.

2. A point y is a is a weakly non-dominated vertex of P if and only if H∗(y)∩D is a

K-maximal facet of D.

Heyde and Löhne (2008) define a duality map Ψ : 2Rp → 2Rp . Let F∗ ⊂ Rp, then

Ψ(F∗) :=
⋂

v∈F∗
H(v)∩P .

Theorem 2.2. (Heyde and Löhne (2008)) Ψ is an inclusion reversing one-to-one map

between the set of all proper K-maximal faces of D and the set of all proper weakly

non-dominated faces of P and the inverse map is given by

Ψ−1(F) =
⋂

y∈F
H∗(y)∩D.

Moreover, for every proper K-maximal face F∗ of D it holds that dimF∗ +dimΨ(F∗) =

p−1.

2.1.3 A dual variant of Benson’s outer approximation algorithm

for (MOLP)

Ehrgott et al. (2011a) propose a dual variant of Benson’s algorithm to solve (DMOLP).

This method is further developed by Hamel et al. (2014). The revised version of Benson’s

18



algorithm applies an outer approximation to P in primal objective space, whereas its

dual variant does the same to D in dual objective space. Hamel et al. (2014) detail the

dual algorithm. It iteratively generates supporting hyperplanes of D, which correspond to

non-dominated faces of P . Eventually a complete set of hyperplanes that define D as well

as the set of all vertices of D is obtained.

Algorithm 2.2 Dual variant of Benson’s algorithm
Input: (MOLP)
Output: VSk−1 (K-maximal vertex set of D); Sk (inequality representation of D)

1: Choose some d̂ ∈ intD.
2: Compute an optional solution x0 of P1(d̂).
3: Set S0 := {v ∈ Rp : λ(v) = 0,ϕ(Cx0,v) = 0} and k := 1.
4: while VSk−1 ̸⊂ D do
5: Choose a vertex sk of Sk−1 such that sk /∈ D.
6: Compute an optimal solution xk of (P1(sk)).
7: Set Sk := Sk−1 ∩{v ∈ R : ϕ(Cxk,v) = 0}.
8: Set k := k +1.
9: end while

Example 2.3. We illustrate the dual variant of Benson’s algorithm with Example 2.1

in Figure 2.6. Algorithm 2.2 solves (DMOLP) in dual objective space. It firstly chooses

an interior point in D in the way stated in Algorithm 2 (i1) in Ehrgott et al. (2011a).

Then a polyhedron containing D is constructed as shown in Figure 2.6 (a). Iteratively

infeasible vertices of Sk−1 are used to generate supporting hyperplanes of D. The algorithm

terminates as soon as all vertices of Sk−1 are feasible, i.e., they belong to D. Table 2.2

shows details of the solution process for Example 2.1.

19



S0

D

0 1 v1

v2

(a)

S1

D

0 1 v1

v2

(b)

S2

D

0 1 v1

v2

(c)

S3

D

0 1 v1

v2

(d)

S4

D

0 1 v1

v2

(e)

Figure 2.6 Dual variant of Benson’s algorithm.

Table 2.2 Iterations of Algorithm 2.2 in Example 2.3.

Iteration k Vertex sk Feasible vertices Infeasible vertices

1 Figure 2.6 (b) (0,6/5)T (0,0)T (6/25,6/5)T ,(1,6/5)T

2 Figure 2.6 (c) (1,6/5)T (0,0)T , (1,0)T (6/25,6/5)T ,(14/20,6/5)T

3 Figure 2.6 (d) (6/25,6/5)T (0,0)T , (1,0)T , (14/20,6/5)T

(1/6,5/6)T , (3/5,6/5)T ∅

4 Figure 2.6 (e) (14/20,6/5)T (0,0)T , (1,0)T ,

(1/6,5/6)T , (3/5,6/5)T ,

(4/5,4/5)T

Table 2.2 lists the iterations of Algorithm 2.2 in Example 2.3. In the first iteration an

infeasible vertex (0,6/5)T is used to generate the first hyperplane, which leads to a feasible

point (0,0)T . The second iteration selects an infeasible vertex (1,6/5)T and finds another

20



feasible point (1,0)T . So far the infeasible points are (6/25,6/5)T and (14/20,6/5)T . In

the third and fourth iteration these two points are removed by two new hyperplanes.

Eventually all vertices of S4 are feasible and S4 is the same as D. Thus all K-maximal

vertices and facets of D are found.

2.2 Convex multi-objective optimisation

A convex multi-objective programme (CMOP) is a multi-objective optimisation problem

with convex objective functions and convex feasible set. Consider a multi-objective

optimisation problem

min {f(x) : x ∈ Rn,g(x) 5 0}, (CMOP)

where f(x) = (f1(x), . . . ,fp(x))T and g(x) = (g1(x), . . . ,gm(x))T . If f(x) and g(x) are

convex, i.e., the objectives and the constraints are all convex functions, the problem is

a convex multi-objective optimisation problem. The problem discussed in this section

involves non-linear objectives or constraints.

In practice it is adequate to obtain an approximation of the non-dominated set PN of

(CMOP) with a tolerance ϵ ∈ Rp and ϵ > 0 given by the decision maker. In this study this

concept is modelled by (weakly) ϵ-non-dominance, which serves to measure the quality of

the approximation.

Definition 2.4. Let ϵ ∈ Rp
≥. A point y is called (weakly) ϵ-non-dominated if y + ϵ ∈ Y

and there does not exist any ŷ ∈ Y such that ŷ ≤ (<)y.

Example 2.4. Below is an example of (CMOP). The image of the feasible set in the

objective space is illustrated in Figure 2.7. The red curve is the non-dominated set of the

21



CMOP.

min

1 0

0 1


x1

x2


s.t. (x1 −2)2 +(x2 −2)2 5 4.

y1

y2

Y

0

Figure 2.7 The image of the feasible set of Example 2.4 in objective space.

2.2.1 An outer approximation algorithm for (CMOP)

In order to solve (CMOP) an algorithm is proposed by Ehrgott et al. (2011b). This

algorithm is an extension of Benson’s outer approximation algorithm. It provides a set of

ϵ-non-dominated points by means of approximating the non-dominated set of (CMOP).

This algorithm first constructs a polyhedron containing P . In each iteration, a vertex that

is not an ϵ-non-dominated point of P is chosen to generate a supporting hyperplane to

P . Then the approximation polyhedron is updated by intersecting it with the half space

containing P defined by the supporting hyperplane. The algorithm terminates when all

of the vertices are ϵ-non-dominated. In this section we review the revised version of this

algorithm proposed by Löhne et al. (2014), in which only one optimisation problem needs

to be solved in each iteration. We first introduce two pairs of single objective optimisation

22



problems to facilitate the description of the algorithms later. Problem P1(v) is a weighted

sum problem. Solving P1(v) results in a weakly non-dominated point. Problem D1(v)

is the Lagrangian dual of P1(v). Problems P2(y) and D2(y) are employed to generate

supporting hyperplanes. These four optimisation problems are the nonlinear extension of

the LPs P1(v), D1(v), P2(y) and D2(y) respectively, which serve similar purposes as in

Algorithm 2.1 and Algorithm 2.2.

min {λ(v)T f(x) : x ∈ Rn,g(x) 5 0}. (P1(v))

max
{

min
x∈X

[
λ(v)T f(x)+uT g(x)

]
: u = 0

}
. (D1(v))

min {z ∈ R : g(x) 5 0,f(x)− ze−y 5 0}. (P2(y))

max
{

min
x

{uT g(x)+λT f(x)}−λT y : u = 0, eT λ = 1,λ = 0
}

. (D2(y))

In this context, these four optimisation problems involve nonlinear convex terms making

them hard to solve. However, given that f(x) and g(x) are differentiable , the nonlinear

term can be linearized in the way stated in Section 5 of Ehrgott et al. (2011b), to which

we refer the readers for more details. Below is the revised outer approximation algorithm

by Löhne et al. (2014).

Example 2.5. Figure 2.8 illustrates the first few iterations of Algorithm 2.3 when solving

Example 2.4. In this example the ideal point is (0,0)T . The first cut is generated as

shown in Figure 2.8 (b). This cut generates two new vertices. If both of them are ϵ-non-

dominated points, the algorithm terminates. Otherwise a new cut is computed through

the vertices shown in Figure 2.8 (c) and (d). Eventually the algorithm ends with a set of

ϵ-non-dominated points and a set of hyperplanes which form an outer approximation of P .

23



Algorithm 2.3 Outer approximation algorithm for (CMOP)
Input: (CMOP), ϵ (tolerance given by DM).
Output: YϵN (set of ϵ-non-dominated points).

1: Compute an optimal solution xi and an optimal value yI
i of (P1(ei

ϵ)), for i = 1, . . . ,p.
YϵN := {f(xi)}, for i = 1, . . . ,p.

2: Set S0 := {yI}+Rp
=; VS0 := {yI} and k := 1.

3: while VSk−1 ̸⊂ PϵN do
4: Choose a vertex sk of Sk−1.
5: Compute an optimal solution (xk, zk) to P2(sk) and an optimal solution (uk,λk) to

D2(sk).
6: if zk > ϵ then
7: Set Sk := Sk−1 ∩ {y ∈ Rp : ϕ(y,(λk

1, . . . ,λk
p−1, bT uk)) = 0}; Update VSk ; YϵN :=

YϵN ∪f(xk).
8: else
9: YϵN := YϵN ∪ sk.

10: end if
11: Set k := k +1
12: end while

y1

y2

Y

0 (a) y1

y2

Y

0 (b) y1

y2

Y

0 (c)

y1

y2

Y

0 (d) y1

y2

Y

0 (e)

Figure 2.8 Outer approximation algorithm for (CMOP)

24



2.2.2 Dual method for (CMOP)

Löhne et al. (2014) propose a dual variant of Algorithm 2.3 to solve (CMOP) in the dual

objective space. The geometric dual of (CMOP) is defined as

max
K

{D(v) : v ∈ Rp,λ(v) ≥ 0}, (DCMOP)

where D(v) =
{
v1, . . . ,vp−1,minx∈X

[
λ(v)T f(x)

]}
. The ordering cone K := {v ∈ Rp : v1 =

v2 = · · · = vp−1 = 0,vp = 0} is the same as in (DMOLP), and maximisation is with respect

to the order defined by K. Let V denote the feasible set in the dual objective space, then

the extended feasible set in the dual objective space is D := V −K. The K-maximal set of

(DCMOP) is

DK = max
K

{(λ1, ...,λp−1,min
x∈X

[
λ(v)T f(x)

]
)T : (u,λ) = 0, eT λ = 1}.

Figure 2.9 shows the extended feasible set of Example 2.4 in dual objective space and the

red curve is the K-maximal set. For (CMOP) we employ the idea of ϵ-non-dominance.

Similarly for (DCMOP) we use the idea of ϵK-maximum.

Definition 2.5. Let ϵ ∈R and ϵ > 0. A point v is called an ϵK-maximal point if v−ϵep ∈ D

and there does not exist any v̂ ∈ D such that v̂j = vj for j = 1, . . . ,p−1 and v̂p > vp.

v1

v2

D

Figure 2.9 The extended feasible set of Example 2.4 in dual objective space.

25



Algorithm 2.4 for solving (CMOP) performs an outer approximation to D in dual

objective space. This algorithm firstly chooses an interior point in D. This is implemented

in the way stated in Algorithm 2 (i1) in Ehrgott et al. (2011a). Then a polyhedron S0

containing D is constructed. In each iteration a vertex sk /∈ DϵK of Sk is chosen. By

solving (P1(sk)), a supporting hyperplane is determined. Eventually, a set of ϵK-maximal

points of D is obtained.

Algorithm 2.4 Dual variant of Algorithm 2.3
Input: (CMOP)
Output: VϵK a set of ϵK-maximal points of D.

1: Choose some d̂ ∈ intD.
2: Compute an optimal solution x0 of P1(d̂);
3: Set S0 := {v ∈ Rp : λ(v) = 0,{v ∈ R : ϕ∗(f(x0),v) = 0} and k := 1.
4: while VSk−1 ( DϵK do
5: Choose a vertex sk of Sk−1.
6: Compute an optimal solution xk of (P1(sk)) and an optimal value yk to (P1(sk)).
7: if sk

q −yk > ϵ then
8: Set Sk := Sk−1 ∩{v ∈ R : ϕ∗(f(xk),v) = 0}. Update VSk .
9: else

10: VϵK := VϵK ∪ sk.
11: end if
12: Set k := k +1.
13: end while

Example 2.6. Figure 2.10 shows the first few iterations of Algorithm 2.4 by solving

Example 2.4. In Figure 2.10 (a) the initial polyhedron containing D is constructed. In

each iteration a cut is derived from a vertex that is not an ϵK-maximal point. If there

does not exist such a vertex the algorithm terminates with a set of ϵK-maximal points and

K-maximal points and a set of hyperplanes which form an outer approximation of DK.

26



v1

v2

D

0
(a)

v1

v2

D

0
(b)

v1

v2

D

0
(c)

v1

v2

D

0
(d)

v1

v2

D

0
(e)

Figure 2.10 First few iterations of Algorithm 2.4 for Example 2.4.

27



Chapter 3

Literature Review

In Chapter 2 we introduced the multi-objective optimization problem (MOP) and several

methods to approximate the non-dominated set PN . For any point y ∈ PN , there is a

set of efficient solutions that map to y through f , i.e., {x ∈ X : f(x) = y}. In practical

applications of multi-objective optimisation, it is of course necessary that the decision

maker has to select one solution from the efficient set for implementation. We assume that

this selection process can be modelled by means of a function which is to be maximised over

the efficient set of the underlying (MOP). Problems of this kind are known as optimisation

over the efficient set of a multi-objective optimisation problem,

max {Φ(x) : x ∈ XE}, (OE)

where Φ(x) : Rn → R is a function of x; XE is the efficient set of (MOP).

In this research the problem of interest is optimisation over the non-dominated set of

(MOP), which is closely associated with (OE). We assume that the objective function Φ

of (OE) is a composite function of a function M : Rp → R and the objective function f of

(MOP), i.e., Φ = M ◦f . Therefore, Φ(x) = M(f(x)). Substituting y = f(x) into (OE), we

derive the problem:

max {M(y) : y ∈ PN }. (ON)

28



Under the assumption (ON) is essentially the same as (OE). However, the (ON) formulation

is more intuitive than the (OE) formulation because in practice decision makers choose a

preferred solution based on the objective function values rather than the decision variables.

In the next section we briefly review some of the decision space based methods to solve

this problem.

3.1 Decision space based algorithms

Philip (1972), Ecker and Song (1994), and Fülöp (1994), propose algorithms to solve a

special case of (OE), where Φ(x) is a linear function and the underlying multi-objective

optimisation problem is a multi-objective linear programme (MOLP). Bolintineanu (1993)

optimises a quasi-convex function over the efficient set of (MOLP). All of these algorithms

are based on two techniques. One technique is moving from one efficient vertex of X to an

efficient neighbouring vertex with a better objective function value via an efficient edge.

This is achievable due to the fact that the efficient set is connected (Steuer, 1986). The

other technique is cutting off part of the feasible set where Φ(x) takes worse values than

the incumbent value, i.e., the best function value found so far.

Benson (1992) proposes a nonadjacent vertex search algorithm to solve (OE) with an

underlying (MOLP), which dispenses with vertex enumeration. The nonadjacent vertex

search algorithm solves a sequence of linear programmes whose optimal solutions are

efficient solutions for (MOLP). The sequence of the optimal solutions converges to an

optimal solution of (OE). This algorithm can be regarded as an inner approximation

algorithm.

Sayin (2000) introduces a face search algorithm which decomposes the efficient set

into a finite number of faces. These faces are represented through index sets of non-zero

components of decision variables. On each of the faces an optimisation problem needs

to be solved in order to determine if a face is to be fathomed or to be explored further.

29



However the implementation of the method involves the list-management of the index

sets. The rapid growth of the list gives rise to impracticality in computation.

White (1996), Dauer and Fosnaugh (1995) and An et al. (1996) introduce a gap function

to reformulate (OE) as an optimization problem with a reverse convex constraint. This

extra constraint can be relaxed as an objective function through introducing a Lagrangian

multiplier. This Lagrangian relaxed problem has been further studied in order to solve

(OE). This method is also used in Tuyen and Muu (2001), where (OE) is reformulated as

a biconvex programming problem.

Thach et al. (1996) develop a duality approach to solve (OE). This approach is based

on the nonconvex duality theory of Thach (1991). In this article a dual problem of (OE)

is proposed and this dual problem is reformulated as a quasi-convex optimisation problem

which can be solved iteratively. In Yamada et al. (2000) and Yamada et al. (2001) this

dual approach is employed to generate cuts to approximate the feasible set from inside,

i.e., an inner approximation procedure in decision space.

In Thai Quynh and Hoang Quang (2000), a bisection method is used for locating

optima. It starts with an interval containing an optimal value of Φ(x), and then the

interval is reduced until an approximate solution of desired quality is obtained.

A method designed by Le Thi et al. (2002) incorporates a global search scheme and

a local search scheme. This method combines a branch and bound scheme and d.c.

programming (optimisation problems with an objective function that is the difference of

two convex functions). The bounding procedure is performed by using the weak duality

theorem of Lagrange duality, whereas the d.c. programming formulation provides lower

bounds.

3.2 Objective space based algorithms

Several articles explore the structures and properties of XE and YN (Dauer (1987), Dauer

(1993), Benson (1995)). Dauer (1987) notes that Y often has a much simpler structure,

30



i.e., fewer extreme points and faces, than X . In the hope that computational effort might

be saved, several algorithms have been developed since 2000. In this section, we review

some of the objective space based methods, which explore the feasible polyhedron Y in

objective space.

3.2.1 Polyblock approximation method

The polyblock approximation method, proposed by Nguyen Thi et al. (2008), is concerned

with minimising M(y) over YN , rather than maximising as stated in (ON), where M(y)

is a continuous and increasing function. Note that a function M is increasing if for y′,

y ∈ Rp and y′ ≥ y we have M(y′) = M(y). We call this specific (ON) problem (SON),

min {M(y) : y ∈ YN }. (SON)

For a, b ∈ Rp the set [a,b] := {y ∈ Rp : a 5 y 5 b} is called a “box”. Obviously, the ideal

point yI and the anti-ideal point yAI form a “box” [yI ,yAI ] containing Y .

Example 3.1. Figure 3.1 illustrates this algorithm by minimising 4y1 + 5y2 over the

non-dominated set of Example 2.1.

The algorithm starts with the initial box [yI ,yAI ] shown in Figure 3.1 (a). In Figure

3.1 (b), a line connecting yI and yAI is drawn, which intersects with YN at q = (1.2,1.2)T ,

which is a non-dominated point. The function M is evaluated at q, M(q) = 10.8. Then

[yI , q] is removed from [yI ,yAI ] generating two new vertices, v1 = (0,1.2)T and v2 = (1.2,0)T

with M(v1) = 6; M(v2) = 4.8. Since M(v1) > M(v2), in Figure 3.1 (c) v2 is chosen to

be connected with yAI resulting in an updated q and M(q) ≈ 10.17. M(v3) ≈ 8.08,

M(v4) ≈ 6.90. After a finite number of iterations, an approximate solution is obtained.

For details of the algorithm the reader is referred to Nguyen Thi et al. (2008). However,

Theorem 3.1 below shows that it is unnecessary to use this algorithm to solve (SON),

which in fact is equivalent to a linear programming problem shown in Theorem 3.1.

31



y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

Y

yAI

yI

(a)
y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

Y

yAI

yI

qv1

v2

(b)

y1

y2

2 3 4 5 6

1
2
3
4
5
6

Y

yAI

yI

(c)

q
v3

v4

v2

Figure 3.1 Polyblock approximation algorithm.

Theorem 3.1. If M(y) is continuous and increasing, then there exists an optimal solution

to (RON) that is also optimal to (SON), where (RON) is

min {M(y) : y ∈ Y}. (RON)

Proof. Assume that y∗ is an optimal solution to (RON) and y∗ /∈ YN . Due to the fact that

YN is externally stable, there exists a point y′ ∈ YN such that y′ ≤ y∗ (see, e.g., Ehrgott

(2005), Theorem 2.21). Since M(y) is increasing, M(y′) 5 M(y∗). If M(y′) < M(y∗) a

point y′ ∈ Y is obtained with M(y′) that is better than that of the presumed optimal

point y∗, a contradiction. Otherwise M(y′) = M(y∗) and a non-dominated point y′ ∈ Y

which minimises (SON) is obtained.

32



3.2.2 Bi-objective branch and bound algorithm

This section is dedicated to the description of a bi-objective branch and bound algorithm

to solve a special case of (ON), where M(y) is a lower-semicontinuous function on the

non-dominated set of a bi-objective linear programming problem. The bi-objective linear

programming problem possesses some special properties, which help exploit the structure

of the problem. This method was first proposed by Benson and Lee (1996), and further

improved by Fülöp and Muu (2000). The revised version by Fülöp and Muu (2000) is

reviewed in this section.

Example 3.2. We demonstrate the bi-objective branch and bound algorithm by max-

imising y1 +y2 over the non-dominated set of Example 2.1 in Figure 3.2.

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

Y

yI

y1

y2

(a)
y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

Y

yI

y1

y2
y

(b)

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

Y

yI

y1

y2
q

(c)

Figure 3.2 Bi-objective branch and bound algorithm.

33



Let m1 = min{y1 : y2 = yI
2 ,y ∈ Y}, and m2 = min{y2 : y1 = yI

1 , y ∈ Y}. Let y1 =

(yI
1 ,m2)T , and y2 = (m1,yI

2)T . These two points are non-dominated and therefore feasible

to (ON), hence they can be used to find a lower bound on y1 + y2. In Figure 3.2 (a),

y1 = (0,4)T , y2 = (5,0)T . A lower bound of 5 is obtained at y2. Then optimisation problem

(3.1) is solved to obtain an upper bound,

max
{
M(y) : (y2

2 −y1
2)y1 +(y1

1 −y2
1)y2 5 y1

1y2
2 −y1

2y2
1,y ∈ Y

}
. (3.1)

In the objective space, (3.1) means to find an optimal point over the shaded region

which is below the dashed line segment shown in Figure 3.2 (b). Having solved problem

(3.1), we have found an upper bound of 5 at y2. At this point, the upper bound and the

lower bound coincide. Therefore, we have solved the problem. In the case that Φ(x) is more

complex (e.g., Φ(x) is nonlinear), branching steps may take place as shown in Figure 3.2

(c). Let the line segment connecting y1 and y2 shift parallel until it becomes a supporting

hyperplane to Y at some point q. By connecting y1 and y2 with q, then the branching

process splits the problem into two subproblems. For each of the subproblems the same

process is repeated until the upper bound and the lower bound coincide. Computational

experiments can be found in Fülöp and Muu (2000).

Kim and Thang (2013) extend this method to maximise an increasing function M(y)

over the non-dominated set of a convex bi-objective optimisation problem (CBOP). This

algorithm starts with a simplex, from which a lower bound and an upper bound on the

optimal objective function value can be attained. Then this simplex is divided into two

simplices, each of which is to be explored in the subsequent iterations. The simplices with

upper bounds that are worse than the incumbent objective function values are pruned.

We use Figure 3.3 to illustrate this algorithm.

Example 3.3. Figure 3.3 shows an example of maximising an increasing function M(y)

over the non-dominated set of (CBOP). The first step (Figure 3.3 (a)) is to determine

y1 and y2 in the same way as the linear version by Fülöp and Muu (2000). Notice that

34



y1

y2

1 2 3 4 5

1

2

3

4

5

0
(a)

y1

y2

yI

Y

y1

y2

1 2 3 4 5

1

2

3

4

5

0
(b)

y1

y2yI

Y

y1

y2

1 2 3 4 5

1

2

3

4

5

0
(c)

y1

y2

Y

q

y1

y2

1 2 3 4 5

1

2

3

4

5

0
(d)

y1

y2

Y

Figure 3.3 Convex bi-objective branch and bound method.

y1 and y2 are non-dominated. Therefore, a lower bound can be determined. These two

points and the ideal point yI define a simplex shown in Figure 3.3 (b). The objective

function M(y) is maximised over the intersection of Y and the simplex (shaded region on

(b)). This step provides an upper bound. In Figure 3.3 (c) and (d), the branching step

takes place. Point q splits the simplex into two. This point is at the intersection of a

ray emanating from the origin and YN . This process is iterated until the gap between

the upper bound and the lower bound is within a tolerance determined initially by the

decision maker.

35



3.2.3 Conical branch and bound algorithm

Another branch and bound algorithm was proposed by Thoai (2000), which optimises a

continuous function over the non-dominated set of (MOP). A conical partition technique

is employed as the branching process.

Example 3.4. In Figure 3.4, the conical branch and bound algorithm is demonstrated

by maximising y1 +y2 over the non-dominated set of Example 2.1.

yAIy1

y2

Y

(a)

yAIy1

y2

y3

(b)

yAIy1

y2
p

y3

y4

y5

(c)

Figure 3.4 Conical branch and bound algorithm.

In Figure 3.4 (a), cone yAI −Rp
= with vertex yAI is constructed. This cone contains

Y . Along each extreme direction of the cone, the intersection point of the direction and

the weakly non-dominated set PW N of the extended feasible set P is obtained. Here

y1 = (0,6)T , y2 = (6,0)T . Neither y1 nor y2 is non-dominated, otherwise, a lower bound is

36



found. Then solving problem (3.2), a relaxation of (ON), finds an upper bound, here 6,

at some point on the line segment connecting y1 and y2.

max M(y)

s.t. y −Uλ = yAI

p∑
i=1

λi = 1 (3.2)

λ = 0

y ∈ Y ,

where U is a matrix containing column vectors y1 − yAI and y2 − yAI in the example.

Figure 3.4 (b) illustrates the branching step. A ray emanating from yAI and passing

through the mid-point of y1 and y2 hits the boundary of Y at y3 (1.2,1.2)T . Since y3 is a

non-dominated point, a lower bound of 2.4, is achieved. The initial cone is partitioned

into two cones defined by y1, y3, yAI and y2, y3, yAI , respectively. At this stage, neither

the lower bound nor the upper bound is changed. In Figure 3.4 (c), the cones are further

refined. By evaluating each cone, the gap between the upper bound and the lower bound

is narrowed. An optimal point is obtained when the upper bound coincides with the lower

bound. Table 3.1 shows the iterations of this method in Example 3.4. A cone is called

active if there is a gap between the upper bound and lower bound. An active cone will be

further explored. A cone is incumbent if the upper bound meets the lower bound with

the best objective value so far. A cone is fathomed if the best feasible solution found in

this cone is suboptimal. The convergence of the algorithm is discussed in Thoai (2000).

From Table 3.1, the reader may notice that in this example the cones defined by y1 or

y2 stay active until they shrink to a ray. This is due to the fact that these cones contain

points which are weakly non-dominated but not non-dominated (i.e., points belonging to

YW N \YN ), e.g., the line segment between p and y2 in Figure 3.4 (c). For solving (OE),

YW N \YN is not worthy of exploration. Therefore, it is necessary to introduce a scheme to

37



Table 3.1 Iterations of the conical branch and bound algorithm in Example 3.4.

Iteration Points defining cone Upper bound Lower bound Status
1 y1,y2 6.00 −∞ active

2 y1,y3 6.00 2.40 active
y3,y2 6.00 2.40 active

3

y1,y4 6.00 3.35 active
y4,y3 3.35 3.35 fathomed
y3,y5 3.78 3.78 incumbent
y5,y2 6.00 3.78 active

4 . . . . . . . . . . . .

eliminate this part. The algorithm given in Thoai (2000) does not explicitly provide a way

to do so. Proposition 3.1 provides a sufficient condition for detecting cones of this kind.

Proposition 3.1. Given a cone considered in the conical branch and bound algorithm

such that all intersection points yi of extreme rays with YW N belong to YW N\YN assume

that there there exists j ∈ {1, . . . ,p} such that yi
j are equal for all i. Then for an optimal

solution y∗ to problem (3.2), then y∗ ∈ YW N \YN .

Proof. If there exists j such that yi
j are equal for all i, then the yis lie on a facet of Y.

Furthermore, if all yi ∈ YW N\YN , then every point on the facet is in the set YW N \YN .

Therefore, an optimal solution to problem (3.2) is from the set YW N\YN .

Proposition 3.1 provides a way to detect the case when a cone is not worthy of further

exploration. The modified version of the conical branch and bound algorithm removes the

cone once such a case is found.

This method also deals with optimisation over the non-dominated set of (CMOP).

Figure 3.5 illustrates a few steps of the algorithm for maximising a continuous function

M(y) over the non-dominated set of (CMOP). In Figure 3.5 (a) a cone is constructed

to contain Y. An upper bound of M(y) can be found through maximising M(y) over

the shaded region of Y. Figure 3.5 (b) illustrates the first branching step splitting the

initial cone into two. A ray emanating from yAI hits the non-dominated set of Y at y3, a

non-dominated point. A lower bound M(y3) is attained. The objective function M(y) is

maximised over each of the shaded regions of the cones, which provides new upper bounds.

38



In Figure 3.5 (c) each of the cones splits into two cones with new upper bounds and lower

bounds. This process is repeated until the upper bound and the lower bound coincide or

the gap between them is small enough.

(a)

yAIy1

y2

Y

(b)

yAIy1

y2

Y

y3

(c)

yAIy1

y2

Y

y4

y5y3

Figure 3.5 Conical branch and bound algorithm.

3.2.4 An outcome space algorithm

The branch and bound technique also plays an essential role in the algorithm designed

by Benson (2011). This method was designed for optimising a finite, convex function

over the weakly efficient set of a multi-objective nonlinear programming problem that

has nonlinear objective functions and a convex, nonpolyhedral feasible set. In this paper

the problem is reformulated as a convex programming problem with a single reverse

39



convex constraint. Then the branch and bound technique is employed to globally solve

this problem. The initial simplex containing Y is first constructed. In each iteration a

simplex is subdivided into two simplices. However, compared to the case where all of

the constraints and objectives are linear, it is more complicated to find a feasible point

and therefore, to establish lower bounds. A subroutine is developed that requires solving

several optimisation problems to detect feasible points. A relaxed problem is used to find

upper bounds by using a convex combination of the vertices of the simplex. The reader is

referred to Benson (2011) for more details.

40



Chapter 4

Linear Optimisation over the

Non-dominated Set of a

Multi-objective Linear Programme

This chapter is devoted to a primal method and a dual method to maximise a linear

function over the non-dominated set of a multi-objective linear programme. This problem

is formulated as

max {µT y : y ∈ PN }, (P)

where µ is a column vector with p elements, and PN is the non-dominated set of the

extended feasible set P. In this chapter we investigate the properties of (P), which we

will exploit in our primal algorithm. The dual method for (P) is developed based on some

important properties of (P) in dual objective space.

Theorem 4.1. An optimal solution y∗ of (P) is obtained at a vertex of P, i.e., y∗ ∈ VP ,

the set of vertices of P.

Proof. Let y be an optimal solution of (P). Therefore, y can be expressed by a convex

combination of the vertices of P .

y =
r∑

i=1
αiŷ

i,

41



where {ŷ1, . . . , ŷr} = VP such that 0 5 αi 5 1 for i = 1, . . . , r and
r∑

i=1
αi = 1.

Therefore we get

µT y = µT
r∑

i=1
αiŷ

i =
r∑

i=1
αiµ

T ŷi

5
r∑

i=1
αiµ

T ȳ

= µT ȳ,

where ȳ ∈ argmax{µT ŷi : ŷi ∈ VP}.

It follows that µT y = µT ȳ and therefore at least one of the extreme points of P is an

optimal solution of (P).

Theorem 4.1 implies that a naïve algorithm for solving (P) is to simply enumerate the

vertices of P using Algorithm 2.1 and determine which one has the largest value of µT y.

Notice that the set of vertices of P is a subset of the non-dominated set, i.e., VP ⊂ PN .

This is summarised in Algorithm 4.1.

Algorithm 4.1 Brute force algorithm
Input: (P)
Output: y∗ (an optimal solution to (P))

Phase 1: Obtain VP through Algorithm 2.1.
Phase 2: y∗ ∈ argmax{µT y : y ∈ VP}.

However, taking advantage of some properties of (P) may dispense with the enumeration

of all vertices of P . We start this discussion by investigating the vertices of Y more closely.

Let [a− b] denote an edge of polyhedron Y with vertices a and b. We call points a and b

neighbouring vertices and denote with N(a) the set of all neighbouring vertices of vertex

a.

Definition 4.1. Let [a− b] be an edge of Y. [a− b] is called a non-dominated edge if for

some point y in the relative interior of [a− b], y ∈ YN .

42



Yu (1985) (Chapter 8) shows that if a point in the relative interior of a face of a

polyhedron is non-dominated, then the entire face is non-dominated.

Definition 4.2. If [a − b] is a non-dominated edge for all b ∈ N(a), then a is called a

complete vertex, otherwise it is called an incomplete vertex. Let V c
Y denote the set of

complete vertices of Y, and define V ic
Y := VY \V c

Y as the set of incomplete vertices.

Notice that a complete vertex must be a non-dominated vertex. Figure 4.1 shows the

set Y of Example 2.1. The complete vertices are b and c. The incomplete vertices are

a, d, e and f . The distinction between Y and P is important here: All vertices of P are

complete, whereas Y also has dominated vertices, and hence incomplete vertices must

exist.

Y

a

b

c

d
e

f

Figure 4.1 Complete and incomplete vertices.

Proposition 4.1. Let a be a vertex of Y. If there does not exist a vertex b ∈ N(a) such

that µT (b−a) > 0, then a is an optimal solution of the linear programme

max {µT y : y ∈ P}. (RP)

43



Proof. Assume a is not an optimal solution, then there exists at least one vertex b ∈ N(a)

such that µT b > µT a, which means µT (b−a) > 0, a contradiction.

Theorem 4.2. (P) has the same optimal solution as (RP), if and only if µ ∈ Rp
≤.

Proof. 1. First, let µ ∈ Rp
≤ and let y∗ be an optimal solution of (RP). We show that

y∗ is an optimal solution of (P). Let µ′ := −µ, then µ′ ∈ Rp
≥. We rewrite (RP) as

min{µ′T Cx : x ∈ X },

which is a weighted sum scalarisation of the underlying (MOLP). If µ′ = 0, any x is

optimal, so y∗ is an optimal solution of (P). If µ′ ≥ 0, it is well known that there

exists an efficient solution x∗ ∈ X which is an optimal solution of (RP). Therefore,

y∗ = Cx∗ ∈ PN . Hence, y∗ is an optimal solution of (P).

2. Let µ ∈ Rp
≤, and let y∗ ∈ PN be an optimal solution of (P). Assume there exists

ŷ ∈ P\PN such that µT ŷ > µT y∗. Since ŷ /∈ PN , ŷ = y∗ +d, where d ≥ 0. Therefore,

µT ŷ = µT (y∗ + d) = µT y∗ + µT d. Hence, µT d > 0. Since dk ≥ 0, k = 1, . . . ,p, there

exists k such that µk > 0. This contradicts µ ∈ Rp
≤, and therefore, y∗ is an optimal

solution of (RP).

3. Now, let µ /∈ Rp
≤ and assume that y∗ is an optimal solution of both (P) and (RP).

Choose d ∈ Rp \Rp
≤ such that dj = 1 if µj > 0 and dj = 0 otherwise. Let y′ = y∗ + d.

Since P = Y +Rp
≥, y′ ∈ P . However, µT y′ = µT y∗ +µT d > µT y∗, which contradicts

the optimality of y∗ for (RP).

Proposition 4.2. Let µ ∈ Rp \Rp
5. If y ∈ V c

Y , then there exists y′ ∈ N(y) such that

µT (y′ −y) > 0.

Proof. Let µ and y be as in the proposition. If there were no y′ ∈ N(y) such that

µT (y′ −y) > 0, then y would be an optimal solution to (RP). As y is also a non-dominated

point, y would be an optimal solution to (P), according to Theorem 4.2 this implies

µ ∈ Rp
5, a contradiction.

44



The main result of this section is Theorem 4.3.

Theorem 4.3. For all µ ∈ Rp \Rp
5, an optimal solution y∗ of (P) is attained at an

incomplete non-dominated vertex, i.e., y∗ ∈ V ic
Y ∩VP .

Proof. Under the assumptions of the theorem, assume that V ic
Y does not contain an

optimal solution of (P), then because of Theorem 4.1 there exists an optimal solution

y∗ ∈ V c
Y . According to Proposition 4.2, there exists y ∈ N(y∗) such that µT y > µT y∗. Since

y ∈ YN , y is feasible for (P) and a contradiction is obtained.

According to Theorem 4.2, whenever µ 5 0, (P) can be solved by solving the LP (RP).

In case µ ∈ Rp \Rp
5, an optimal solution of (P) must be obtained at an incomplete vertex

of Y. Algorithm 4.1 can therefore be restricted to incomplete vertices. Unfortunately,

due to the fact that the structure of PN can be very complex (see for example Fruhwirth

and Mekelburg (1994) for an investigation of the structure of the non-dominated set of

tri-objective linear programmes), a necessary and sufficient condition for checking a vertex

to be incomplete is not known. In the next section, we provide an algorithm that uses

cutting planes to eliminate the enumeration of all vertices of P .

4.1 The primal method for (P)

Algorithm 4.1 has two distinct phases, vertex generation and vertex evaluation. Combining

and integrating both phases and exploiting the properties of (P), we expect that we can save

computational effort, since not all vertices of P need to be enumerated. More specifically,

once a new hyperplane is generated and added to the approximation polyhedron Sk−1 as

a cut, a set of new extreme points of Sk is found. Evaluating µT y at these extreme points,

we select the one with the best function value as sk in the next iteration. If the selected

point is infeasible, a cut called improvement cut {y ∈ Rp : ϕ(y,(λk
1, . . . ,λk

p−1, bT uk)) = 0}

is added. This cut is used in the revised version of Benson’s algorithm. Otherwise another

type of cut, called threshold cut, is added. A threshold cut is {y ∈ Rp : µT y = µT ŷ}, where

45



ŷ is the incumbent solution, i.e., the best feasible non-dominated point found so far. A

threshold cut removes the region where points are worse than ŷ. This primal method is

detailed in Algorithm 4.2.

Algorithm 4.2 Primal algorithm
Input: (P)
Output: y∗ (an optimal solution to (P))

1: Compute the optimal value yI
i of (P1(ei)), for i = 1, . . . ,p.

2: Set S0 := {yI}+Rp
=, k := 1 and VS0 := {yI}.

3: Threshold := False.
4: while VSk−1 ̸⊂ P do
5: sk ∈ argmax{µT y : y ∈ VSk−1},
6: if sk ∈ P and Threshold = False then
7: Sk := Sk−1 ∩{y ∈ Rp : µT y = µT sk}. Update VSk . Threshold := True.
8: else
9: Compute an optimal solution (xk, zk) to P2(sk) and its dual optimal variable

values (uk,λk).
10: Set Sk := Sk−1 ∩{y ∈ Rp : ϕ(y,(λk

1, . . . ,λk
p−1, bT uk)) = 0}. Update VSk . Threshold

:= False.
11: end if
12: Set k := k +1.
13: end while
14: y∗ := sk.

Example 4.1. The primal method is illustrated in Figure 4.2 by maximising y1 +y2 over

the non-dominated set of Example 2.1.

Y

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S0

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S1

y1

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S2

y2

46



y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S3

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S4

Figure 4.2 The primal method.

Table 4.1 Iterations of the primal algorithm in Example 4.1.

Iteration k Vertex sk Cut type Candidates Non-dominated points µT y
1 (0,0) Improvement (2,0),(0,3) ∅ 3
2 (0,3) Improvement (2,0) (0,4), (0.4,2.4) 4
3 (0,4) Threshold (4,0) (0,4) 4
4 (4,0) Improvement ∅ (0,4), (5,0), (0.25,3.75) 5

Figure 4.2 and Table 4.1 show in each iteration the extreme point chosen, the type

of cut added and the objective function value. In the first iteration, an improvement

cut is added generating two new vertices, (2,0)T and (0,3)T . Then (0,3)T is chosen

in the next iteration because it provides the best objective function value so far. The

second iteration improves the function value to 4. Since (0,4)T is feasible, a threshold

cut, y1 +y2 = 4, is then added. Although it does not improve the objective function value,

this cut generates a new infeasible vertex (4,0)T . An optimal point, (5,0)T , is found after

another improvement cut has been generated.

4.2 The dual method for (P)

In this section, we explore some properties of (P) in dual objective space, which enable us

to solve (P) more efficiently than by the primal algorithm of Section 4.1. We call this the

dual algorithm.

47



Let yex be an extreme point of P. Hence yex ∈ YN . Via set-valued map H∗, yex

corresponds to a hyperplane H∗(yex) in the dual objective space,

H∗(yex) = {v ∈ Rp : λ∗(yex)T v = −yex
p },

= {v ∈ Rp : (yex
1 −yex

p )v1+, ...,+(yex
p−1 −yex

p )vp−1 −vp = −yex
p }.

Moreover, µ and yex define a hyperplane Hyex in primal objective space

Hyex =
{
y ∈ Rp : µT y = µT yex

}
. (4.1)

We notice that without loss of generality we can assume that µ ≥ 0. Otherwise we set

µ̂k = −µk and ŷk = −yk whenever µk < 0 and µ̂k = µk and ŷk = yk whenever µk = 0 to

rewrite (4.1) as

Hyex =
{
ŷ ∈ Rp : µ̂T ŷ = µ̂T ŷex

}
. (4.2)

Let us now define µ′ :=∑p
i=1 µi and divide both sides of the equation in (4.2) by µ′ to

obtain

Hyex =
{

y ∈ Rp : µT y

µ′ = µT yex

µ′

}
. (4.3)

Since (4.3) is a hyperplane in the primal objective space, it corresponds to a point vµ

in dual objective space. According to geometric duality theory, in particular (2.1), this

point is nothing but

vµ =
(

µ1
µ′ , ...,

µp−1
µ′ ,

µT yex

µ′

)T

.

Notice that only the last element of vµ varies with yex, i.e., the first p − 1 elements

of vµ are merely determined by µ. Geometrically, it means that vµ with respect to

various extreme points yex lies on a vertical line Lµ := {v ∈ Rp : v1 = vµ
1 , ...,vp−1 = vµ

p−1}.

Furthermore, the last element of vµ is equal to the objective function value of (P) at

yex divided by µ′. Hence, geometrically, (P) is equivalent to finding a point vµ with the

largest last element along Lµ.

48



Theorem 4.4. The point vµ lies on H∗(yex).

Proof. Substitute the point vµ into the equation of H∗(yex). The left hand side is

LHS = (yex
1 −yex

p )µ1
µ′ +, ...,+(yex

p−1 −yex
p )µp−1

µ′ − µT yex

µ′

=
p−1∑

i=1
µiy

ex
i −yex

p

p−1∑
i=1

µi −
p−1∑
i=1

µiy
ex
i −µpyex

p

 1
µ′

= −

p∑
i=1

µi

µ′ yex
p = −yex

p .

This discussion shows that, because we are just interested in finding a H∗(yex) that

intersects Lµ at the highest point, i.e., the point with the largest last element value, it

is unnecessary to obtain the complete K-maximal set of D. We now characterise which

elements of this set we need to consider.

In Section 4.1, we reached the conclusion that an optimal solution to (P) can be

found at an incomplete vertex of Y . An analogous idea applies to the facets of the dual

polyhedron. In the rest of this section, we derive this idea through the association between

the primal and the dual polyhedra, and implement this idea to propose the dual algorithm.

1

1

v1

v2

P (F 1)

P (F 2)

P (F 3)

P (F 4)

P (F 5)

Figure 4.3 Projection of a three dimensional dual polyhedron onto the v1-v2 coordinate plane.

49



Figure 4.3 shows the projection of a three dimensional dual polyhedron onto the v1

and v2 coordinate plane. The cells P (F 1) to P (F 5) are the projection of facets F 1 to F 5

of D, respectively.

Definition 4.3. Two K-maximal facets F i and F j of polyhedron D are called neighbouring

facets if dim(F i ∩F j) = p−2.

Figure 4.3 shows that the neighbouring facets of facet F 2 are F 3 and F 5. Neither F 4

or F 1 is a neighbouring facet of F 2.

Proposition 4.3. If yi, yj ∈ VP , and yi and yj are non-dominated neighbouring vertices

of P, then facets F i = H∗(yi)∩D and F j = H∗(yj)∩D are neighbouring facets of D.

Proof. Since yi and yj are neighbouring vertices of Y there is an edge [yi −yj ] connecting

them. Since the edge [yi − yj ] has dimension one and since according to Theorem

2.2 dim([yi − yj ]) + dim(Ψ−1([yi − yj ])) = p − 1. Therefore, dim(Ψ−1([yi − yj ])) = p − 2.

Moreover, Ψ−1([yi −yj ]) = (H∗(yi)∩D)∩ (H∗(yj)∩D) = F i ∩F j . Hence dim(F i ∩F j) =

p−2 and F i and F j are neighbouring facets.

Definition 4.4. Let F be a K-maximal facet of D. If all neighbouring facets of F are

K-maximal facets, then F is called a complete facet, otherwise it is called an incomplete

facet. The set of all complete facets of D is denoted by F c, the set of all incomplete facets

of D is denoted by F ic.

From the projection of the facets P (F 1) to P (F 5) in Figure 4.3 the incomplete facets

are F 2, F 3, F 4 and F 5. The only complete facet is F 1.

Theorem 4.5. There exists a one-to-one correspondence between incomplete facets of D

and incomplete vertices of Y.

Proof. Proposition 4.3 states that the facets of D have the same neighbouring relations

with the vertices of Y , which implies the completeness of a facet of D remains the same

as that of its corresponding vertex of Y . Therefore, Theorem 4.5 is true.

50



Theorem 4.6. If y∗ is an optimal extreme point solution of (P), then (H∗(y∗)∩D) is a

K-maximal incomplete facet of D.

Proof. Theorem 4.6 follows directly from Theorem 4.3 and Theorem 4.5.

Theorem 4.6 says that a facet of D corresponding to an optimal solution to (P) is an

incomplete facet. In other words, a complete facet cannot produce an optimal solution

because in the primal objective space the vertex corresponding to this facet has only

non-dominated neighbours, i.e., this vertex is a complete vertex, which cannot be an

optimal solution of (P). On the other hand, an incomplete facet of D is the counterpart

of an incomplete vertex of Y. Hence an optimal solution to (P) can be obtained among

the incomplete facets. In order to obtain the set of incomplete facets of D, let us define

WD :=
p−1⋃
i=1

{v ∈ Rp : vi = 0,0 5 vj 5 1, j = 1 . . .(p−1), j ̸= i}

∪

v ∈ Rp :
p−1∑
i=1

vi = 1,0 5 vi 5 1, i = 1 . . .(p−1)
 .

In Figure 4.3, the highlighted triangle is the projection of WD onto the v1-v2 coordinate

plane. The incomplete facets intersect with WD because their neighbouring facets are not

all K-maximal facets. On the other hand, a complete facet “surrounded” by K-maximal

facets does not intersect with WD. Hence, it is sufficient to consider the facets that

intersect with WD. The dual algorithm (Algorithm 4.3) is designed to solve (P) in the

dual objective space through finding facets that intersect with WD.

51



Algorithm 4.3 Dual algorithm
Input: (P)

Output: y∗ (an optimal solution to (P))

1: Choose some d̂ ∈ intD.

2: Compute an optimal solution x0 of (P1(d̂)), set y∗ := Cx0, M∗ := µT y∗.

3: Set S0 := {v ∈ Rp : λ(v) = 0,ϕ(Cx0,v) = 0} and k := 1.

4: while WD ∩VSk−1 ̸⊂ D do

5: Choose vk ∈ WD ∩VSk−1 such that vk /∈ D.

6: Compute an optimal solution xk of (P1(vk)), set yk := Cxk.

7: if M∗ < µT yk then

8: Set y∗ := yk and M∗ := µT yk.

9: end if

10: Set Sk := Sk−1 ∩{v ∈ R : ϕ(Cxk,v) = 0}.. Update V k
S .

11: Set k := k +1.

12: end while

Example 4.2. Figure 4.4 below illustrates the dual algorithm by maximising y1 +y2 over

the non-dominated set of Example 2.1. By employing the dual method, only two of the

four K-maximal hyperplanes need to be generated.

S0

D

0 1 v1

v2

(a)

a b

S1

D

0 1 v1

v2

(b)

b

S2

D

0 1 v1

v2

(c)

Figure 4.4 The dual algorithm.

52



In this example, WD = {v ∈R2 : v1 = 0}∪{v ∈R2 : v1 = 1}. In Figure 4.4 (a), a,b ∈ WD.

In Figure 4.4 (b), vertex a is used to generate a hyperplane, which corresponds to extreme

point (0,4)T in the primal space. Meanwhile, a new vertex c is found. Since c /∈ WD,

in Figure 4.4 (c)vertex b is employed to generate another hyperplane corresponding to

extreme point (5,0)T in the primal space. At this stage, there is no infeasible vertex

belonging to WD and the algorithm terminates with optimal point (5,0)T .

4.3 Computational experiments

In this section, we use randomly generated instances to compare some of the algorithms

discussed in Chapter 3 and the primal and the dual algorithms. The method proposed

by Charnes et al. (1974) is used to generate instances whose coefficients are uniformly

distributed between -10 and 10. All of the algorithms were implemented in Matlab R2013b

using CPLEX 12.5 as linear programming solver. The experiments were run on an Intel(R)

Core(TM) i7 CPU computer with 16GB RAM and 1TB hard drive. Table 4.2 below shows

the average CPU times (in seconds) of solving three instances of the same size for which

the underlying (MOLP) has p objectives, m constraints and n variables. We tested six

algorithms, namely

• the brute force algorithm (Algorithm 4.1), A1

• the bi-objective branch and bound algorithm of Section 3.2.2, A2

• the conical branch and bound algorithm of Section 3.2.3, A3

• Benson’s branch and bound algorithm (Section 3.2.4), A4

• the primal algorithm (Algorithm 4.2), A5

• the dual algorithm (Algorithm 4.3), A6

53



Table 4.2 CPU times of six different algorithms.

p m = n A1 A2 A3 A4 A5 A6

5 0.0427 0.0066 0.0128 0.0343 0.0065 0.0147

10 0.0065 0.0016 0.0035 0.0063 0.0068 0.0067

2 50 0.0072 0.0038 0.0282 0.0732 0.0038 0.0084

100 0.0239 0.0069 0.0541 0.1418 0.0197 0.0163

500 0.3226 0.1634 2.5935 12.5185 0.2464 0.2789

5 0.0678 - 0.0074 0.0209 0.0161 0.0269

10 0.0294 - 0.0052 0.0077 0.0114 0.0178

3 50 0.0847 - 0.1005 0.2327 0.0402 0.0386

100 0.1385 - 0.302 0.9642 0.0985 0.0596

500 3.4191 - 3.9931 17.0181 1.4985 0.4342

5 0.1373 - 0.0084 0.0232 0.0637 0.0414

10 0.1951 - 0.1638 0.3575 0.2061 0.0445

4 50 0.5496 - 0.2004 0.066 0.5685 0.1103

100 2.0857 - 3.6578 4.2433 0.7587 0.4348

500 35.8634 - 66.1054 141.241 21.0746 9.1878

5 5.1236 - 0.0934 0.024 0.8902 0.0618

10 2.6293 - 0.0277 0.0099 2.7356 0.1623

5 50 10.9649 - 7.1391 3.249 3.5458 0.8399

100 25.9835 - 50.4573 10.6344 6.4632 2.9714

500 204.7300 - 354.8034 578.1003 89.6327 53.5104

Clearly, as the size of the instances grows, the CPU time increases rapidly. The crucial

parameter here is the number of objective functions. While with p = 2 objectives, even

problems with 500 variables and constraints can be solved in less than a second, this takes

between less than 1 minutes and about 10 minutes with p = 5 objectives for the different

54



algorithms. We observe that for p = 2, the bi-objective branch and bound algorithm turns

out to be the fastest algorithm, but it cannot be generalised to problems with more than

two objectives. As p increases, the merit of the primal and the dual algorithms is revealed.

Specifically, when solving problems with 5 objectives and 500 variables and constraints,

the primal and the dual algorithms take much less time (one sixth, respectively one

tenth) than Benson’s branch and bound algorithm. Table 4.2 also shows the dual method

performs better than the primal method in solving instances of large scale. In Figure 4.5,

we plot the log-transformed CPU times of solving the instances with 500 variables and

constraints for the five different applicable algorithms. It shows that, as expected, the

time required to achieve optimality exponentially increases with the number of objectives,

even for our primal and dual algorithm, making the speed-up obtained by our algorithms

even more important.

−1

−0.5

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
ga

rit
hm

of
C

PU
tim

e

number of objectives p

Brute force

+

+

+

+
+

Conical branch and bound

× ×

×

××
Benson’s branch and bound

∗ ∗

∗

∗
∗

Primal algorithm

✷

✷

✷

✷
✷

Dual algorithm

�
�

�

�
�

Figure 4.5 Log-transformed CPU times for instances with 500 variables and constraints.

55



4.4 Conclusion

Optimisation over the non-dominated set is a problem of concern when decision makers

have to choose a preferred point among an infinite number of non-dominated points. We

have addressed the case that this selection is based on the optimisation of a linear function.

We have exploited primal and dual variants of Benson’s algorithm, which compute all

non-dominated extreme points and facets of multi-objective linear programmes, as the

basis of algorithms to solve this problem. In addition, we have described structural

properties of the problem of optimising a linear function over the non-dominated set of

(MOLP) to dramatically reduce the need for complete enumeration of all non-dominated

extreme points of (MOLP). We have compared our algorithms to several algorithms from

the literature, and the complete enumeration approach, and obtained speed-ups of up to

10 times on instances with up to 5 objectives and 500 variables and constraints.

56



Chapter 5

The Determination of the Nadir

Point

5.1 The nadir point of (MOP)

The nadir point is characterized by the componentwise worst values of the non-dominated

points of a multi-objective optimisation problem (MOP). In this chapter, we propose

two exact methods to find the nadir point of (MOLP). Computational experiments were

performed to test the new methods against another exact method from the literature.

The task of the determination of the nadir point is of significant importance. Firstly

the knowledge of the nadir point facilitates the normalisation of the objectives with

inconsistent magnitude (Miettinen (1999)). Secondly the nadir point is a pre-requisite

for some interactive methods such as the STEM method (Benayoun et al. (1971)) and

the GUESS method (Buchanan (1997)). In compromise programming, it serves as a

reference point (Ehrgott and Tenfelde-Podehl (2003)). Additionally, another motivation is

proposed by Deb et al. (2010) that the nadir point is crucial in terms of visualising the

non-dominated set.

Definition 5.1. The nadir point yN ∈ Rp of (MOP) is defined to be the vector of

componentwise maxima of YN .

57



We consider the problem

yN
k = max {yk : y ∈ YN }, k = 1, ...,p, (N)

where yN
k denotes the kth component of yN , and YN is the non-dominated set of (MOLP).

Figure 5.1 below shows the objective polyhedron Y of Example 2.1 along with the

ideal point yI , the nadir point yN and the anti-ideal point yAI .

Y

YN

yI

yAI

yN

Figure 5.1 Ideal point, nadir point and anti-ideal point.

The nadir point contains the maximal objective values attained from the non-dominated

set of (MOP), which is a nonconvex set and therefore burdensome to compute even for

(MOLP) (Ehrgott and Tenfelde-Podehl (2003)). On the other hand, if the entire non-

dominated set is found, it is not motivated to determine the nadir point since decisions

can then be made based on the full knowledge of the non-dominated set. Hence, it is

intuitive to make an estimate of the location of the nadir point.

Benayoun et al. (1971) established a payoff table method to approximate the nadir

point. This method constructs a table consisting of the vectors optimising the objec-

tives individually, and an estimation is made through the worst values of each of the

58



criteria. Assume xk ∈ argmin{fk(x) : x ∈ X }, k = 1 . . .p. The estimated nadir point

ỹN
i := max{fi(xk),k = 1 . . .p}, i = 1 . . .p. A payoff table of Example 2.1 is shown below.

Table 5.1 Payoff table of Example 2.1

x f1(x) f2(x)
x1 ∈ argmin{f1(x) : x ∈ X } (0,4)T 0 4
x2 ∈ argmin{f2(x) : x ∈ X } (5,0)T 5 0

ỹN 5 4

Example 5.1. In this example, the payoff table method finds the true nadir point (5,4)T .

Nevertheless, Isermann and Steuer (1988) illustrated the possible considerable discrepancy

between the estimated point derived from the payoff table and the true nadir point in

case xk is not unique. For example the payyoff table below shows an overestimate of the

true nadir point of Example 2.1.

Table 5.2 Payoff table of Example 2.1

x f1(x) f2(x)
x1 ∈ argmin{f1(x) : x ∈ X } (0,5)T 0 5
x2 ∈ argmin{f2(x) : x ∈ X } (6,0)T 6 0

ỹN 6 5

Ehrgott (2005) (Section 2.2) shows an example, in which the nadir values derived

from the payoff table may over-estimate or under-estimate the true nadir values and the

estimated nadir point can be arbitrarily far from the true nadir point.

More sophisticated heuristic methods have been developed to estimate the nadir point.

One class of these procedures integrates evolutionary approaches. A review on the nadir

point estimation by evolutionary approaches was made by Deb and Miettinen (2008).

However, heuristics provide no guarantee for finding the true nadir point.

Ehrgott and Tenfelde-Podehl (2003) propose a general scheme to compute the nadir

point based on some theoretical results on the relationship between the non-dominated sets

of (MOP) and that of subproblems with fewer objectives. Theoretically, this method finds

59



the true nadir point of (MOP) with any number p of objectives. However, p subproblems

of p−1 objectives have to be solved, which is computationally impracticable for p greater

than 3.

To the best of our knowledge, the only exact method for computing the nadir point

from the literature is proposed by Alves and Costa (2009). This method starts with the

payoff table estimation. For each objective function, it searches for efficient solutions

that deteriorate the objective values. This is achieved by investigating the so-called nadir

region (the area in the weight space corresponding to the efficient solutions that provide

worse objective values). The nadir value of a specific objective is determined if there exists

no such nadir region.

For each objective function fk(x) (k = 1, . . . ,p), the method checks if a value z

is the nadir value of fk(x). If not, it searches the weight space defined by the set

Λ =
{

λ ∈ Rp : λk > 0,k = 1, . . . ,p,
p∑

k=1
= 1

}
for efficient solutions that lead to larger nadir

values.

Assuming zk is the maximum of the kth objective function already known, an auxiliary

problem is solved:

min {ckx : x ∈ X , ckx = zk + δ}. (Aux(k))

All of the alternative optimal bases to Aux(k) are to be computed, of which only the

efficient bases are considered. Then feasible pivot operations are performed on the efficient

bases that leads to other efficient bases with greater objective values. Assume that s is the

variable associated with the extra constraints of Aux(k). If s is also an efficient nonbasic

variable, allowing s to enter the basis leads to anther efficient basis with larger objective

value. The reader is referred to Alves and Costa (2009) for more details.

60



5.2 The determination the nadir point by the primal

method and the dual method

In this section we adapt the primal method (Algorithm 4.2) and the dual method

(Algorithm 4.3) proposed in Chapter 4 to determine the exact nadir point of (MOLP).

Recall that (P) is

max {µT y : y ∈ PN }, (P)

where µ is a column vector with p elements, and PN is the non-dominated set of the

extended feasible set of (MOLP). If µ = ek (a unit vector with the kth entry being one,

others zero), (N) can be rewritten as

yN
k = max {ekT y : y ∈ PN }, k = 1, . . . ,p. (N)

Obviously, we can solve (N) through solving p individual (P) with µ = ek,k = 1, . . . ,p.

On the other hand, (P) can be solved by calculating the nadir values of (MOP) which

is constructed by adding Φ(x) to the underlying (MOP) of (P) as a dummy objective

function. To show this, we write (P) as

max {µT Cx : x ∈ X (MOP)
E },

where X (MOP)
E denotes the efficient set of the following (MOP)

min {Cx : x ∈ X } (MOP)

By adding µT Cx to (MOP) as an objective, we have (MOP′)

min


 Cx

µT Cx

 : x ∈ X

 . (MOP′)

61



Let X (MOP′)
E denote the efficient set of (MOP′), and let yN

p+1 denote the (p + 1)th element

of the nadir point of (MOP′). Adding an extra dimension to the objective space of (MOP)

may extend the efficient set, i.e., X (MOP)
E ⊆ X (MOP′)

E , therefore,

max {µT Cx : x ∈ X (MOP)
E }

5 max {µT Cx : x ∈ X (MOP′)
E }

= yN
p+1.

We assume

max {µT Cx : x ∈ X (MOP)
E } < yN

p+1.

Therefore, there exists x̄ ∈ X (MOP′)
E \X (MOP)

E such that

µT Cx̄ > max {µT Cx : x ∈ X (MOP)
E }. (5.1)

Since x̄ /∈ X (MOP)
E , there exists x′ ∈ X (MOP)

E such that Cx′ ≤ Cx̄. By (5.1) we have

µT Cx̄ > µT Cx′. Hence,  Cx′

µT Cx′

≤

 Cx̄

µT Cx̄

 .

This contradicts x̄ ∈ X (MOP′)
E . Therefore,

yN
p+1 = max {µT Cx : x ∈ X (MOP)

E }.

In this section a modified version of Algorithm 4.2 is designed to solve (N) more

efficiently than solving (P) by the primal method (Algorithm 4.2) p times independently.

Remark 1. For (MOP), if y ∈ YN , then yk 5 yN
k , k = 1, . . . ,p.

Remark 1 says that any non-dominated point provides lower bounds to the nadir values

of all of the p objective functions. Throughout the primal algorithm, non-dominated points

are attained, each of which provides lower bounds for the p nadir values. The best lower

62



bounds for all p objective functions are kept. Through the lower bounds threshold cuts can

be constructed to eliminate regions of PN which are not worthy of further exploration. We

employ the payoff table method in the beginning of the algorithm to obtain non-dominated

points (therefore lower bounds of the nadir values), based on which threshold cuts are

constructed. However, a numerical example illustrated by Ehrgott (2005)(section 2.2)

shows that the nadir values can be over-estimated or under-estimated if the solutions

to {fk(x) : x ∈ X } are not unique. This is because the (LP) may have multiple optimal

solutions, which are not necessarily all efficient. If weakly efficient (but not efficient)

solutions are attained, weakly non-dominated (but not non-dominated) points derived

from these solutions may cause over-estimation of the nadir value. In this case, the weakly

non-dominated points cannot be used to derive lower bounds of the nadir values. To

amend this we add two steps in the beginning of Algorithm 4.2. It is well known that

x̂k ∈ argmin{ckx : x ∈ X } is weakly efficient. By solving min{∑i̸=k cix : x ∈ X , ckx = ckx̂},

an efficient solution can be guaranteed. These steps are listed in Line 3 and Line 4 of

Algorithm 5.1 below.

63



Algorithm 5.1 Primal method for the nadir point
Input: (N).

Output: yN .

1: N := ∅.

2: for k = 1 . . .p do

3: Compute x̂k ∈ argmin{ckx : x ∈ X }.

4: Compute xk ∈ argmin{∑j ̸=k cjx : x ∈ X , ckx = ckx̂}. N = N ∪{Cxk}.

5: Set S0 := {yI}+Rp
=.

6: yk := max{yk : y ∈ N}.

7: S1 := S0 ∩{y ∈ Rp : ekT y = yk}. Threshold = True. i = 2.

8: while VSk−1 ̸⊂ P do

9: si := max{yk : y ∈ N ∪VSi−1}.

10: if si ∈ P and if Threshold = False then

11: Si := Si−1 ∩{y ∈ Rp : ekT y = si
k}. Threshold = True.

12: else

13: Compute an optimal solution (xi, zi) to P2(si) and its dual variable values

(ui,λi). N = N ∪{Cxi}.

14: Set Si := Si−1 ∩{y ∈ Rp : ϕ(y,(λi
1, . . . ,λi

p−1, bT ui)) = 0}.

15: end if

16: N = N ∪ (VSi ∩P).

17: Set i := i+1.

18: end while

19: yN
k = si

k.

20: end for

In Line 1 of Algorithm 5.1, we create a set N to store non-dominated points discovered

throughout the algorithm. In Line 13, an optimal solution to P2(si) provides a weakly

non-dominated point Cxi. Another source of non-dominated points is the vertex set VSi

64



of Si. This set is updated when there is a cut added in Line 11 or Line 14 (ϕ is defined in

(2.3)). If a new vertex is a non-dominated point, it is added to N in Line 16. Throughout

the algorithm the set N collects the non-dominated points found. In this process our

knowledge of PN accumulates. Therefore, the determination of one nadir value benefits

the subsequent ones because at the start of the exploration of a nadir value a threshold

cut is generated based on the highest lower bound on that nadir value. As a result, a

substantial part of PN is removed by the cut. Therefore, it is obvious that Algorithm

5.1 is more efficient than solving p problems (P) individually. Eventually, this algorithm

terminates when all of the nadir values are determined.

In Chapter 4 we introduced the dual method (Algorithm 4.3) to solve (P). We now

modify Algorithm 4.3 to solve (N). Recall that this algorithm enumerates all of the

incomplete facets (therefore all of incomplete vertices in primal objective space), which

contains all the information needed to compute each component of yN . Therefore, it is

sufficient to perform the dual method once to determine yN . Throughout the algorithm

non-dominated points yk are determined, some of which are incomplete vertices. We

revise Algorithm 4.3 by storing all yk in a set Y , and propose Algorithm 5.2 to determine

the nadir point.

Algorithm 5.2 Dual method for nadir point
Input: (N).

Output: yN .

1: Perform Algorithm 4.3 to obtain all of the incomplete vertices and store them in Y .

2: for k = 1, . . . ,p do

3: yN
k = max {ekT y : y ∈ Y }.

4: end for

65



5.3 Computational experiments

In this section, we use the instances from Alves and Costa (2009) to compare the primal

and the dual method against Alves and Costa’s method discussed in Section 5.1. All

of the algorithms were implemented in Matlab R2013b using CPLEX 12.5 as the linear

programming solver. The experiments were run on an Intel(R) Core(TM) i7 CPU computer

with 16GB RAM and 1TB hard drive. Table 5.3 below shows the average CPU times (in

seconds) to solve five instances of the same size for which the underlying (MOLP) has p

objectives, m constraints and n variables. Table 5.3 shows the CPU times of the three

algorithms solving instances of different sizes.

Table 5.3 CPU times of three different algorithms.

p n,m Alves and Costa’s method Primal algorithm Dual algorithm

60,30 1.6333 0.4595 0.3825

3 80,40 4.6131 0.6755 0.5967

100,50 8.4728 1.3887 0.9956

60,30 53.8227 54.1272 43.5604

4 80,40 3072.7837 595.6945 52.7250

100,50 5176.4915 1275.2579 498.6906

60,30 787.7661 187.9240 104.5201

5 80,40 9456.3452 2781.8934 563.0983

100,50 96034.3420 48720.9043 14893.3421

66



3 4 5−0.5
0

1

2

3

4

5
5.5

Number of objective functions p

lo
ga

rit
hm

ic
C

PU
tim

es

Alves and Costa’s method
Primal method
Dual method

Figure 5.2 Log-transformed CPU times for instances with 100 variables and 50 constraints

Figure 5.2 shows the logarithmic CPU times for instances with 100 variables and 50

constraints. As the size of the instances grows, the CPU time increases rapidly. The

crucial parameter here is the number of objective functions. With p = 3 objectives, even

problems with 100 variables and 50 constraints can be solved in less than a second. As p

increases, the merit of the primal and the dual algorithms is revealed. Specifically, when

solving problems with 4 objectives and 100 variables and 50 constraints, the primal and

the dual algorithms take much less time than Alves and Costa’s method. Table 5.3 also

shows that the dual method performs better than the primal method in solving instances

of large scale.

5.4 Conclusions

The nadir point is characterized by the componentwise maximal values of the non-

dominated points of (MOP). The determination of the nadir point is of significant

importance because of its indispensable role as a prerequisite for many optimisation

problems. However it is a challenging task to obtain the exact nadir values. It is obvious

that this problem is a special case of optimising a linear function over the non-dominated

67



set of (MOP), which is achievable by the two methods, namely, the primal method and

the dual method, proposed in Chapter 4. In this chapter, we apply these two methods to

compute the exact nadir values. We have compared our methods against the only other

exact method from the literature. It is evident that the new methods outperform this

method.

68



Chapter 6

Optimisation over the

Non-dominated Set of a Convex

Multi-objective Optimisation

Problem

In Chapter 2 the convex multi-objective optimisation problem (CMOP) is defined as

min {f(x) : x ∈ Rn,g(x) 5 0}, (CMOP)

where f(x) = (f1(x), . . . ,fp(x))T , and g(x) = (g1(x), . . . ,gm(x))T . If f(x) and g(x) are

convex, i.e., the objectives and the constraints are all convex functions, the problem is a

convex multi-objective optimisation problem (CMOP). Example 6.1 is a numerical example

of (CMOP). Figure 6.1 shows the feasible set in objective space and the non-dominated

set of this example.

69



Example 6.1.

min

1 0

0 1


x1

x2


s.t. (x1 −3)2

9 + (x2 −2)2

4 5 1.

y1

y2

0

P

Y

PN

Figure 6.1 The non-dominated set of Example 6.1.

In this chapter we are concerned with an optimisation problem which maximises a

linear function over the non-dominated set of (CMOP). To solve this problem we extend

the primal algorithm (Algorithm 4.2) and the dual algorithm (Algorithm 4.3), which are

designed to optimise a linear function over the non-dominated set of (MOLP) (see Chapter

4 for more details of the methods). In this chapter we firstly introduce the problem of

interest, and then we propose two methods to solve this problem. The two new methods

are tested against comparable methods from the literature on a set of randomly generated

instances. The results are presented and discussed in the end.

70



6.1 Optimisation over the non-dominated set of (CMOP)

Consider the following problem

max {µT y : y ∈ PϵN }, (Q)

where PϵN is the ϵ-non-dominated set of the extended feasible set P (P := Y +Rp
=) for

ϵ ∈ Rp
≥. The concept of ϵ-non-dominance is defined in Definition 2.4. Column vector µ

contains the coefficients of the linear function to be maximised. Example 6.2 below is a

numerical example of (Q).

Example 6.2. A linear function 5y1 +7y2 is to be maximised over the non-dominated

set of the (CMOP) in Example 6.1:

max {5y1 +7y2 : y ∈ PϵN },

where PϵN is the ϵ-non-dominated set of Example 6.1.

6.2 Primal method to solve (Q)

In Chapter 4, we investigated some properties of (P) to facilitate solving the problem. In

this section, we show that some properties of (P) still hold for (Q). Then we present a

primal method to solve (Q).

Through Theorem 4.1 we know that an optimal solution to (P) is obtained at an

extreme point of P of (MOLP). However, for problem (Q) the underlying (MOP) has a

non-polyhedral feasible set P which may have no extreme point at all (see for example

Example 6.1). Another way to view this case is that every point of PN is an extreme

point.

The outer approximation algorithm for (CMOP) (Algorithm 2.3) approximates this

non-polyhedral P through a polyhedron Si, which is refined iteratively, i.e., S0 ⊇ S1 ⊇

71



S2 . . .Si ⊃ P. This algorithm terminates if all of the vertices of Si are ϵ-non-dominated.

Without loss of generality assume that Algorithm 2.3 terminates after n iterations. Thus

all of the vertices of Sn are ϵ-non-dominated, i.e., VSn ⊂ PϵN . Consider the following

problem

max {µT y : y ∈ VSn}. (Q1)

Since the vertices of Sn are ϵ-non-dominated points, solving (Q1) provides a ϵ-non-

dominated point that optimise the objective function of (Q). An optimal solution to (Q1)

can be obtained at a vertex of Sn. This implies that a naïve algorithm for solving (Q)

is to obtain a set of ϵ-non-dominated points of P through Algorithm 2.3 and determine

which one has the largest value of µT y. This algorithm is summarised in Algorithm 6.1.

Algorithm 6.1 Brute force algorithm
Input: (Q), ϵ
Output: y∗ (an optimal solution to (Q))

Phase 1: Obtain YϵN (a set of ϵ-non-dominated points) through Algorithm 2.3.
Phase 2: y∗ ∈ argmax {µT y : y ∈ YϵN }.

In Chapter 4 we introduced the concept of completeness of a vertex of the feasible

polyhedron Y of (MOLP). Theorem 4.3 concludes that an optimal solution to (P) is an

incomplete vertex of Y . Therefore (Q1) is equivalent to (Q2).

max {µT y : y ∈ V ic
Sn}, (Q2)

where V ic
Sn is the set of incomplete vertices of Sn. This mean that it is sufficient to find

the incomplete vertices of Sn to solve (Q). However, due to the complex structure of Y , it

is difficult to design an algorithm to confine the search to the set of incomplete vertices.

Fortunately the dual method proposed in the following section takes advantage of this

property to achieve better efficiency.

The primal method for (Q) is detailed in Algorithm 6.2. In each iteration, a hyperplane

is generated and added as a cut resulting in a set of extreme points. Evaluating µT y

72



at these points, we select the one with the best function value to construct the cut for

the next iteration. If the selected point is an ϵ-non-dominated point, a threshold cut

is added; otherwise an improvement cut ({y ∈ Rp : ϕ(y,(λk
1, . . . ,λk

p−1,λkT yk)) = 0}) used

in the revised version of Benson’s algorithm is added, which leads to better objective

function value in the next iteration. A threshold cut is {y ∈ Rp : µT y = µT ŷ}, where ŷ is

the incumbent solution. A threshold cut removes the region where points are worse than

ŷ. This primal method is detailed in Algorithm 6.2.

Algorithm 6.2 Primal method for (Q)
Input: (Q), ϵ

Output: y∗ (an optimal solution to (Q))

1: Compute an optimal solution ūi and an optimal value yI
i of (D1(ei)), for i = 1, . . . ,p.

2: Set S0 := {yI}+Rp
= and k = 1.

3: Threshold = False.

4: while VSk−1 ∩PϵN ̸= ∅ do

5: sk ∈ argmax{µT y : y ∈ VSk−1}.

6: if sk ∈ PϵN and if Threshold = False then

7: Sk := Sk−1 ∩{y ∈ Rp : µT y = µT sk}. Threshold = True.

8: else

9: Compute an optimal solution (uk,λk) of D2(yk).

10: Set Sk := Sk−1 ∩{y ∈ Rp : ϕ(y,(λk
1, . . . ,λk

p−1,λkT yk)) = 0}.

11: end if

12: Set k := k +1.

13: end while

We illustrate Algorithm 6.2 through solving Example 6.2.

73



y1

y2

yI

S0

(a)

y1

y2

0

S1

(b)

y1

y2

0

S2

(c)

y1

y2

0

S3

(d)

y1

y2

0

S4

(e)

y1

y2

0

S5

(f)

Figure 6.2 Iterations of Algorithm 6.2 in Example 6.2.

74



Table 6.1 Iterations of Algorithm 6.2 in Example 6.2.

Iteration k Vertex sk Cut type Candidates ϵ-non-dominated points µT y

1 (0,0) Improvement (0,1.27),(1.61,0) ∅ 8.88

2 (0,1.27) Improvement (1.61,0) (0.32,1.01), (0,1.71) 11.94

3 (0,1.71) Threshold (2.39,0) (0,1.71) 11.94

4 (2.39,0) Improvement ∅ (2.9,0), (2.3,0.06) 14.5

Example 6.3. Figure 6.2 and Table 6.1 show the iterations of Algorithm 6.2 in solving

Example 6.2. In the first iteration, an improvement cut is added generating two new

vertices, (0,1.27)T and (1.61,0)T . Then (0,1.27)T is chosen in the next iteration because it

provides the best objective function value so far. The second iteration improves the function

value to 11.94. Since (0,1.71)T is ϵ-non-dominated, a threshold cut, 5y1 +7y2 = 11.94, is

then added. Although it does not improve the objective function value, this cut generates

a new infeasible vertex (2.39,0)T . An ϵ-non-dominated point, (2.9,0)T , is found after

another improvement cut has been generated. This point is an approximately optimal

solution to Example 6.2.

6.3 Dual method to solve (Q)

In Chapter 2 the geometric dual of (CMOP) is defined as

max
K

{D(v) : v ∈ Rp,λ(v) ≥ 0}, (DCMOP)

where D(v) =
{
v1, . . . ,vp−1,minx∈X

[
λ(v)T f(x)

]}
. Let K := {v ∈ Rp : v1 = v2 = · · · =

vp−1 = 0,vp = 0} denote the ordering cone in the dual objective space. Maximisation

in (DCMOP) is with respect to the order defined by K. Let V denote the feasible set

in the dual objective space, then the extended set of V in the dual objective space is

D := V − K = {v − v̂ : v ∈ V , v̂ ∈ K}. For (DCMOP) it is of interest to determine the

75



K-maximal set, which is

DK = max
K

{(λ1, ...,λp−1,min
x∈X

[
λ(v)T f(x)

]
)T : (u,λ) = 0, eT λ = 1}.

Figure 6.3 shows the extended feasible set and K-maximal set of Example 6.1 in dual

objective space.

v1

v2

D

Figure 6.3 Extended feasible set and K-maximal set of Example 6.1 in dual objective space.

In practice it is often sufficient to have an approximation of the K-maximal set. This

is modelled by the concept of ϵK-maximum, which is defined in Definition 2.5. A point v

is called an ϵK-maximal point if v − ϵ ∈ D and there does not exist any v̂ ∈ D such that

v̂j = vj for j = 1, . . . ,p−1 and v̂p > vp.

In this section, a dual algorithm for solving (Q) is presented. In Section 4.2, we

investigate the properties of (P) in the dual objective space and propose a dual algorithm

to solve (P). The dual algorithm (Algorithm 4.3) for (P) determines incomplete K-maximal

facets of D. However the underlying (DCMOP) of (Q) has non-polyhedral D, which

means it may have no facets (see Figure 6.3 for example).

Fortunately the dual variant of Benson’s outer approximation algorithm for (CMOP)

(Algorithm 2.4) performs an outer approximation to D. This is done by iteratively refining

a polyhedron that contains D, i.e., S0 ⊇ S1 ⊇ S2 . . .Si ⊃ D. This algorithm terminates if

76



all of the vertices of Si are ϵK-maximal. Without loss of generality assume Algorithm

2.4 terminates after n iterations. Thus all of the vertices of Sn are ϵK-maximal, i.e.,

VSn ⊂ DϵK. According to the geometric duality theory discussed in Chapter 2 the facets

of Sn correspond to the vertices of the dual of Sn, i.e., the corresponding polyhedron

in primal space. Furthermore in the dual objective space the set of incomplete facets of

Sn corresponds to the set of incomplete vertices of the dual polyhedron of Sn (Theorem

4.5). Theorem 4.6 states that the facet corresponding to an optimal vertex to (P) is

an incomplete facet. Hence the set of incomplete facets of Sn is of interest. The dual

algorithm for (Q) is designed to generate the set of incomplete facets.

Algorithm 6.3 Dual algorithm for (Q)
Input: (Q), ϵ

Output: y∗ (an optimal solution to (Q))

1: Choose some d̂ ∈ intD.

2: Compute an optimal solution x0 of (P1(d̂)), set y∗ := f(x0), M∗ := µT y∗.

3: Set S0 := {v ∈ Rp : λ(v) = 0,ϕ(y∗,v) = 0} and k = 1.

4: while WD ∩VSk−1 ̸⊂ DϵK do

5: Choose v ∈ WD ∩VSk−1 such that v /∈ DϵK.

6: Compute αk ∈ (0,1) such that vk := αksk +(1−αk)d̂ ∈ VK.

7: Compute an optimal solution xk of (P1(vk)), set yk := f(xk), Mk := µT yk.

8: if M∗ < Mk then

9: y∗ := yk.

10: M∗ := Mk.

11: end if

12: Set Sk := Sk−1 ∩{v ∈ R : ϕ(yk,v) = 0}. Update V k
S

13: Set k := k +1.

14: end while

77



Figure 6.4 below illustrates the dual algorithm in Example 6.2.

S0

D

v1

v2

0
(a)

S1

D

v1

v2

0
(b)

S2

D

v1

v2

0
(c)

Figure 6.4 Dual algorithm for (Q).

6.4 Experimental results

In this section, we use randomly generated instances to compare some of the algorithms

discussed in Chapter 3 and the primal and the dual algorithms for (Q). The method

proposed by Charnes et al. (1974) is used to generate convex polyhedra as feasible sets of

the underlying (CMOP). Quadratic functions are generated as the objective functions,

which are in the form: f(x) = xT Hx + aT x, where H is a positive semi-definite matrix

and a is a column vector. Matrix H = ST S, where S is a square matrix. All coefficients

are uniformly distributed between -10 and 10. All of the algorithms were implemented in

Matlab R2013b using CPLEX 12.5 as a solver. The experiments were run on an Intel(R)

Core(TM) i7 CPU computer with 16GB RAM and 1TB hard drive. Table 6.2 below shows

the average CPU times (in seconds) of solving three instances of the same size for which

78



the underlying (CMOP) has p objectives, m constraints and n variables. We tested five

algorithms, namely

• the brute force algorithm (Algorithm 2.3), A1

• the extended bi-objective branch and bound algorithm in Section 3.2.2, A2

• the conical branch and bound algorithm of Section 3.2.3, A3

• the primal algorithm (Algorithm 6.2), A4

• the dual algorithm (Algorithm 6.3), A5

Table 6.2 CPU times of six different algorithms.

p m = n A1 A2 A3 A4 A5
5 2.3037 0.0397 0.2541 0.0821 0.1123

10 4.8086 0.0549 0.4510 0.0869 0.1303
2 50 16.1997 0.4027 1.0291 0.6939 0.4150

100 28.0444 1.8492 2.8614 2.2391 2.0439
5 453.2516 - 246.2019 203.5841 160.5440

10 3821.214 - 2921.345 2061.1652 1631.1805
3 50 17982.2314 - 14669.2419 10621.4219 7243.1480

100 31987.2540 - 24613.2754 18213.4621 13717.6684

Obviously, the CPU time increases rapidly as the size of the instances grows. The

largest size of instances we tested is 3 objectives and 100 variables and constraints due

to the substantial amount of time required to solve the instances. We notice that the

number of objective functions is a crucial factor. While with p = 2 objectives, all of the

instances can be solved within 30 seconds. The most efficient algorithm is the extended

bi-objective branch and bound algorithm (A2) proposed by Kim and Thang (2013), which

solves the largest instances with 100 variables and constraints within 2 seconds. But it

cannot be generalised to problems with more than two objectives. The difference in time

between A3, A4 and A5 is not significant. We notice that adding one more dimension to

the objective space (i.e., adding one more objective function) leads to substantial increase

79



in computational effort. For instances with 3 objectives, the required CPU time increases

predominantly. Even for instances with 5 variables and constraints, it takes a few minutes

to solve. Furthermore, for the largest instances with 100 variables and constraints, it

takes a few hours. The merits of the primal and the dual methods are revealed. The

dual method solves the largest instances in half of the time used by the conical branch

and bound method (A3). We also notice that the dual method is faster than the primal

method in most of the cases. Throughout the test, the slowest algorithm is the brute force

algorithm (A1). This is due to the fact that this method enumerates a large number of

vertices which are redundant. This also proves the advantage of the techniques employed

in the new methods. Additionally, in the implementation of the algorithms, we notice that

time required to solve instances are sensitive to the approximation accuracy (reflected by

ϵ as stated in the algorithms). In this test the level of accuracy is 10−3. It is expected

that a lower level of accuracy results in faster solution time.

6.5 Conclusion

This section proposed two new methods to maximise a linear function over the non-

dominated set of a convex multi-objective optimisation problem. These two methods

are based on the primal and the dual methods introduced in Chapter 4. Computational

experiments were conducted to compare the new methods against some other methods

from the literature. The results reveal the merit of the new methods, especially in solving

instances with three objectives.

80



Chapter 7

Conclusion

In this thesis we are concerned with optimisation over the non-dominated set of a

multi-objective optimisation problem (MOP). An MOP is an optimisation problem that

simultaneously optimise conflicting objectives. A solution that optimises every objective

function concurrently dose not usually exist. A set of solutions that provide the “best”

trade-off options of the objectives is of interest. This set is known as the efficient set.

In Chapter 2 we review several algorithms to solve two classes of (MOP), namely the

multi-objective linear programme (MOLP) and the convex multi-objective optimisation

problem (CMOP). The algorithms discussed include a revised version of Benson’s outer

approximation algorithm. This algorithm is developed to find the non-dominated set

of (MOLP), which is essential to the core problem of this study, optimisation over the

non-dominated set of (MOP). We call this problem (ON). This problem is of great interest

because it models a common situation where a decision maker has to choose one solution

from the efficient set for implementation. By solving this problem a non-dominated

point is obtained and the efficient solutions that lead to this point can be determined.

Most methods for (ON) in the literature employ the branch and bound technique. These

methods are discussed in Chapter 3.

In Chapter 4 we propose a primal method and a dual method to solve problem (P),

which maximises a linear function over the non-dominated set of (MOLP). In this study

81



we discover some important properties of (P). Firstly an optimal solution occurs at a

vertex of the feasible polyhedron. Hence Benson’s outer approximation algorithm which

enumerates the non-dominated vertices can be employed to solve (P). Furthermore, we

notice that it is unnecessary to determine all of the non-dominated vertices, because an

optimal solution to (P) is always obtained at a so-called incomplete vertex of the feasible

polyhedron. A vertex is incomplete if not all of its neighbouring vertex are non-dominated.

Taking advantage of this property we propose the primal algorithm to solve (P). This

algorithm is based on the revised version of Benson’s outer approximation method. It

employs two types of cutting planes so that enumeration of vertices is avoided. We also

discover that there is a one-to-one mapping between the the incomplete vertices of the

primal polyhedron and the incomplete facets of the dual polyhedron. Obviously, it is

sufficient to determine the incomplete facets to solve (P). The dual method is designed

to attain these facets. Derived from the dual variant of Benson’s outer approximation

algorithm it dispenses with enumeration of all the facets. These two new algorithms

are tested against several comparable algorithms in the literature on a set of randomly

generated instances. The size of the instances varies from 2 objectives, 5 variables and

constraints to 5 objectives 500 variables and constraints. The experimental results show

that the new methods outperform the others in terms of computational efficiency. As

the size of the instances grows, the time required to achieve optimality exponentially

increases. While with two objectives, all instances can be solved quite quickly. As the

number of objectives increases, the merit of the primal and the dual algorithms is revealed.

Specifically, when solving problems with 5 objectives and 500 variables and constraints,

the primal and the dual algorithms take much less time (one sixth, respectively one tenth)

than Benson’s branch and bound algorithm. We also notice that the dual method performs

better than the primal method in solving instances of large scale.

The nadir point is a vector of component-wise maxima of the objective functions over

the non-dominated set of (MOP). This point is of interest because it plays an important

role in the field of multi-objective decision making and multi-objective optimisation. The

82



determination of the nadir point is a special case of (ON). Therefore the primal and the

dual methods are capable of finding this point. We modify these two new methods to

avoid solving (P) repeatedly. For the primal method, instead of solving individual (P) for

p times we integrate the p iterations for the nadir values by means of keeping records of

the non-dominated points found throughout the algorithm because each non-dominated

point provides p lower bounds for the corresponding nadir values. In the beginning of

each iteration, a cut derived from the highest lower bound of that nadir value is utilized

to remove search regions which are not worthy of exploration. For the dual method, as a

single performance of it determines all incomplete facets, all nadir values can be obtained

at once. Computational experiments are conducted to compare the new methods against

the only exact method for computing nadir point from the literature. The results show

the new methods are faster then the competitor. The CPU times required to determine

the exact nadir point increase rapidly as the number of objectives increases. All three

algorithms can solve instances with 3 objectives and 60 variables and 30 constraints quite

quickly. As the number of objectives increases to 5 and the number of variables to 100

and of constraints to 50 the advantage of the new methods is revealed. We also notice

that the dual algorithm is faster than the primal algorithm.

In Chapter 6 we extend the primal method and the dual method to solve (Q), which

maximises a linear function over the non-dominated set of a convex multi-objective

optimisation problem. A convex multi-objective optimisation problem (CMOP) is featured

with convex objectives and constraints, which may involve nonlinear terms. A CMOP

usually has non-polyhedral feasible set. An outer approximation algorithm has been

developed by Ehrgott et al. (2011b) to obtain an approximation of the non-dominated

set of (CMOP). Based on this method we extend the primal algorithm to solve (Q). We

first show that the properties of (P) still hold for the polyhedron that approximates the

non-dominated set in the outer approximation algorithm. The primal algorithm aims at

an incomplete ϵ-non-dominated vertex, which maximise the objective function of (Q). The

dual method for (Q) is based on the dual variant of the outer approximation algorithm.

83



Similarly, an outer approximation scheme is performed to the dual feasible set through an

approximating polyhedron that contains the dual feasible set. The dual method for (Q)

determines an incomplete ϵK-maximal facet, which provides an optimal solution to (Q).

The main contributions of the study are listed below.

1. A survey and an implementation of the existing objective space based algorithms

for (OE).

2. Corrections and amendments on the existing algorithms for (OE).

3. Discovery of some important properties of (P).

4. A primal algorithm and a dual algorithm for (P).

5. Computational experiments comparing the new methods and the existing methods

for (P).

6. A primal method and a dual method for the determination of the exact nadir point

of (MOLP).

7. Computational experiments comparing the new methods and the existing algorithm

for determining the nadir point.

8. A primal method and a dual method for (Q).

9. Computational experiments comparing the new methods and the existing methods

for (Q).

84



Bibliography

A. H. Land, A. G. D. (1960). An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520.

Alves, M. J. and Costa, J. P. (2009). An exact method for computing the nadir values
in multiple objective linear programming. European Journal of Operational Research,
198(2):637 – 646.

An, L. T. H., Tao, P. D., and Muu, L. D. (1996). Numerical solution for optimization
over the efficient set by d.c. optimization algorithms. Operations Research Letters,
19(3):117–128.

Benayoun, R., De Montgolfier, J., Tergny, J., and Laritchev, O. (1971). Linear pro-
gramming with multiple objective functions: Step method (STEM). Mathematical
Programming, 1(1):366–375.

Benson, H. (1995). A geometrical analysis of the efficient outcome set in multiple objective
convex programs with linear criterion functions. Journal of Global Optimization,
6(3):231–251.

Benson, H. (1998). An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal
of Global Optimization, 13:1–24.

Benson, H. (2011). An outcome space algorithm for optimization over the weakly effi-
cient set of a multiple objective nonlinear programming problem. Journal of Global
Optimization, 52(3):553–574.

Benson, H. and Lee, D. (1996). Outcome-based algorithm for optimizing over the efficient
set of a bicriteria linear programming problem. Journal of Optimization Theory and
Applications, 88(1):77–105.

Benson, H. P. (1984). Optimization over the efficient set. Journal of Mathematical Analysis
and Applications, 98(2):562–580.

Benson, H. P. (1992). A finite, nonadjacent extreme-point search algorithm for optimization
over the efficient set. Journal of Optimization Theory and Applications, 73(1):47–64.

Bolintineanu, S. (1993). Minimization of a quasi-concave function over an efficient set.
Mathematical Programming, 61(1-3):89–110.

Buchanan, J. T. (1997). A naïve approach for solving MCDM problems: The GUESS
method. Journal of the Operational Research Society, 48(2):202–206.

Charnes, A., Raike, W. M., Stutz, J. D., and Walters, A. S. (1974). On generation of test
problems for linear programming codes. Communications of the ACM, 17(10):583–586.

85



Dauer, J. (1993). On degeneracy and collapsing in the construction of the set of objective
values in a multiple objective linear program. Annals of Operations Research, 46-
47(2):279–292.

Dauer, J. and Fosnaugh, T. (1995). Optimization over the efficient set. Journal of Global
Optimization, 7(3):261–277.

Dauer, J. P. (1987). Analysis of the objective space in multiple objective linear program-
ming. Journal of Mathematical Analysis and Applications, 126(2):579–593.

Deb, K. and Miettinen, K. (2008). A Review of Nadir Point Estimation Procedures
Using Evolutionary Approaches: A Tale of Dimensionality Reduction. Technical report,
Indian Institute of Technology, Kanpur, India.

Deb, K., Miettinen, K., and Chaudhuri, S. (2010). Toward an estimation of nadir objective
vector using a hybrid of evolutionary and local search approaches. IEEE Transactions
on Evolutionary Computation, 14(6):821–841.

Ecker, J. G. and Song, J. H. (1994). Optimizing a linear function over an efficient set.
Journal of Optimization Theory and Applications, 83(3):541–563.

Ehrgott, M. (2005). Multicriteria Optimization (2. ed.). Springer, Berlin.

Ehrgott, M., Güler, Ç., Hamacher, H. W., and Shao, L. (2009a). Mathematical opti-
mization in intensity modulated radiation therapy. Annals of Operations Research,
175(1):309–365.

Ehrgott, M., Löhne, A., and Shao, L. (2011a). A dual variant of benson’s “outer
approximation algorithm” for multiple objective linear programming. Journal of Global
Optimization, 52(4):757–778.

Ehrgott, M., Naujoks, B., Stewart, T. J., and Wallenius, J. (2010). Multiple Criteria
Decision Making for Sustainable Energy and Transportation Systems, volume 634 of
Lecture Notes in Economics and Mathematical Systems. Springer, Berlin.

Ehrgott, M., Shao, L., and Schöbel, A. (2011b). An approximation algorithm for convex
multi-objective programming problems. Journal of Global Optimization, 50(3):397–416.

Ehrgott, M. and Tenfelde-Podehl, D. (2003). Computation of ideal and nadir values and
implications for their use in mcdm methods. European Journal of Operational Research,
151(1):119 – 139.

Ehrgott, M., Waters, C., Kasimbeyli, R., and Ustun, O. (2009b). Multiobjective pro-
gramming and multiattribute utility functions in portfolio optimization. Information
Systems and Operational Research, 47:117–128.

Fruhwirth, M. and Mekelburg, K. (1994). On the efficient point set of tricriteria linear
programs. European Journal of Operational Research, 72:192–199.

Fülöp, J. (1994). A cutting plane algorithm for linear optimization over the efficient set.
Generalized Convexity, 405:pp.374–385.

Fülöp, J. and Muu, L. D. (2000). Branch-and-bound variant of an outcome-based algorithm
for optimizing over the efficient set of a bicriteria linear programming problem. Journal
of Optimization Theory and Applications, 105(1):37–54.

86



Hamel, A., Löhne, A., and Rudloff, B. (2014). Benson type algorithms for linear vector
optimization and applications. Journal of Global Optimization, 59(4):811–836.

Heyde, F. and Löhne, A. (2008). Geometric duality in multiple objective linear program-
ming. SIAM Journal on Optimization, 19(2):836–845.

Isermann, H. and Steuer, R. E. (1988). Computational experience concerning payoff tables
and minimum criterion values over the efficient set. European Journal of Operational
Research, 33(1):91–97.

Kim, N. T. B. and Thang, T. N. (2013). Optimization over the efficient set of a bicriteria
convex programming problem. Pacific Journal of Optimization, 9:103–115.

Le Thi, H. A., Pham, D. T., and Thoai, N. V. (2002). Combination between global and
local methods for solving an optimization problem over the efficient set. European
Journal of Operational Research, 142(2):258–270.

Löhne, A., Rudloff, B., and Ulus, F. (2014). Primal and dual approximation algorithms for
convex vector optimization problems. Journal of Global Optimization, 60(4):713–736.

Markowitz, H. (1952). Portfolio selection*. The Journal of Finance, 7(1):77–91.

Miettinen, K. (1999). Nonlinear multiobjective optimization, volume 12 of International
Series in Operations Research & Management Science. Kluwer Academic Publishers
Dordrecht.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization.
Wiley-Interscience, New York, NY, USA.

Nguyen Thi, B. K., Le Thi, H. A., and Tran, M. T. (2008). Outcome-space polyblock
approximation algorithm for optimizing over efficient sets. Modelling, Computation and
Optimization in Information Systems and Management Sciences, 14:234–243.

Philip, J. (1972). Algorithms for the vector maximization problem. Mathematical
Programming, 2(1):207–229.

Sayin, S. (2000). Optimizing over the efficient set using a top-down search of faces.
Operations Research, 48(1):65–72.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Applica-
tion. John Wiley, New York, 546 pp.

Thach, P. T. (1991). Quasiconjugates of functions, duality relationship between quasi-
convex minimization under a reverse convex constraint and quasiconvex maximization
under a convex constraint, and applications. Journal of Mathematical Analysis and
Applications, 159(2):299–322.

Thach, P. T., Konno, H., and Yokota, D. (1996). Dual approach to minimization on
the set of pareto-optimal solutions. Journal of Optimization Theory and Applications,
88(3):689–707.

Thai Quynh, P. and Hoang Quang, T. (2000). Bisection search algorithm for optimizing
over the efficient set. Vietnam Journal of Mathematics, 28(3):217.

Thoai, N. V. (2000). Conical algorithm in global optimization for optimizing over efficient
sets. Journal of Global Optimization, 18(4):321–336.

87



Tuyen, H. Q. and Muu, L. D. (2001). Biconvex programming approach to optimization
over the weakly efficient set of a multiple objective affine fractional problem. Operations
Research Letters, 28(2):81–92.

White, D. J. (1996). The maximization of a function over the efficient set via a penalty
function approach. European Journal of Operational Research, 94(1):143–153.

Yamada, S., Tanino, T., and Inuiguchi, M. (2000). An inner approximation method for
optimization over the weakly efficient set. Journal of Global Optimization, 16(3):197–217.

Yamada, S., Tanino, T., and Inuiguchi, M. (2001). An inner approximation method
incorporating a branch and bound procedure for optimization over the weakly efficient
set. European Journal of Operational Research, 133(2):267–286.

Yu, P.-L. (1985). Multiple-Criteria Decision Making (Concepts, Techniques, and Exten-
sions), volume 30 of Mathematical Concepts and Methods in Science and Engineering.
Springer US.

88


	Contents
	1 Introduction
	2 Multi-objective Optimisation
	2.1 Multi-objective linear programming
	2.1.1 A revised version of Benson's outer approximation algorithm for (MOLP)
	2.1.2 Geometric duality
	2.1.3 A dual variant of Benson's outer approximation algorithm for (MOLP)

	2.2 Convex multi-objective optimisation
	2.2.1 An outer approximation algorithm for (CMOP)
	2.2.2 Dual method for (CMOP)


	3 Literature Review
	3.1 Decision space based algorithms
	3.2 Objective space based algorithms
	3.2.1 Polyblock approximation method
	3.2.2 Bi-objective branch and bound algorithm
	3.2.3 Conical branch and bound algorithm
	3.2.4 An outcome space algorithm


	4 Linear Optimisation over the Non-dominated Set of a Multi-objective Linear Programme
	4.1 The primal method for (P)
	4.2 The dual method for (P)
	4.3 Computational experiments
	4.4 Conclusion

	5 The Determination of the Nadir Point
	5.1 The nadir point of (MOP)
	5.2 The determination the nadir point by the primal method and the dual method 
	5.3 Computational experiments
	5.4 Conclusions

	6 Optimisation over the Non-dominated Set of a Convex Multi-objective Optimisation Problem
	6.1 Optimisation over the non-dominated set of (CMOP)
	6.2 Primal method to solve (Q)
	6.3 Dual method to solve (Q)
	6.4 Experimental results
	6.5 Conclusion

	7 Conclusion
	Bibliography

