2,623 research outputs found

    Statistical distributions in the folding of elastic structures

    Get PDF
    The behaviour of elastic structures undergoing large deformations is the result of the competition between confining conditions, self-avoidance and elasticity. This combination of multiple phenomena creates a geometrical frustration that leads to complex fold patterns. By studying the case of a rod confined isotropically into a disk, we show that the emergence of the complexity is associated with a well defined underlying statistical measure that determines the energy distribution of sub-elements,``branches'', of the rod. This result suggests that branches act as the ``microscopic'' degrees of freedom laying the foundations for a statistical mechanical theory of this athermal and amorphous system

    Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    Full text link
    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level

    A Normalization Model of Attentional Modulation of Single Unit Responses

    Get PDF
    Although many studies have shown that attention to a stimulus can enhance the responses of individual cortical sensory neurons, little is known about how attention accomplishes this change in response. Here, we propose that attention-based changes in neuronal responses depend on the same response normalization mechanism that adjusts sensory responses whenever multiple stimuli are present. We have implemented a model of attention that assumes that attention works only through this normalization mechanism, and show that it can replicate key effects of attention. The model successfully explains how attention changes the gain of responses to individual stimuli and also why modulation by attention is more robust and not a simple gain change when multiple stimuli are present inside a neuron's receptive field. Additionally, the model accounts well for physiological data that measure separately attentional modulation and sensory normalization of the responses of individual neurons in area MT in visual cortex. The proposal that attention works through a normalization mechanism sheds new light a broad range of observations on how attention alters the representation of sensory information in cerebral cortex

    Size and the Not-So-Single Sex: Disentangling the Effects of Size and Budget on Sex Allocation in Hermaphrodites

    Get PDF
    Sex allocation theory explains how size-related variations in male and female fitness may favor the evolution of size-dependent sex allocation in hermaphrodites. Although empirical studies show that sex allocation changes gradually with size in many species, theoretical studies tend to predict an abrupt sex reversal from one sex to the other, that is, single-sexed sequential hermaphrodites. We show that this discrepancy between data and theory collapses if one takes into account that size affects male and female fitness through distinct routes. Using the classification of budget (larger individuals spend a greater budget on reproduction) and direct (e.g., larger plants are taller and may disperse pollen more efficiently) effects of size suggested by Klinkhamer et al., we propose a simple general framework appropriately incorporating these two categories of size effects in male and female fitness expressions. Analytical and numerical results show that a gradual sex change is evolutionarily stable for a large set of parameter values. Sex reversal is selected only in the absence of budget effects of size. We provide further predictions on size-dependent sex allocation and assess the relative importance of budget and direct effect for creating different patterns

    Regional and global changes in TCR [alpha][beta] T cell repertoires in the gut are dependent upon the complexity of the enteric microflora

    Get PDF
    The repertoire of gut associated T cells is shaped by exposure to microbes, including the natural enteric microflora. Previous studies compared the repertoire of gut associated T cell populations in germ free (GF) and conventional mammals often focussing on intra-epithelial lymphocyte compartments. Using GF, conventional and monocolonised (gnotobiotic) chickens and chicken TCRbeta-repertoire analysis techniques, we determined the influence of microbial status on global and regional enteric TCRbeta repertoires. The gut of conventionally reared chickens exhibited non-Gaussian distributions of CDR3-lengths with some shared over-represented peaks in neighbouring gut segments. Sequence analysis revealed local clonal over-representation. Germ-free chickens exhibited a polyclonal, non-selected population of T cells in the spleen and in the gut. In contrast, gnotobiotic chickens exhibited a biased repertoire with shared clones evident throughout the gut. These data indicate the dramatic influence of enteric microflora complexity on the profile of TCRbeta repertoire in the gut at local and global levels

    Neural Dynamics of Motion Processing and Speed Discrimination

    Full text link
    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-tuned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the Vl→7 MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-94-1-0597, N00014-95-1-0409); Air Force Office of Scientific Research (F49620-92-J-0499); National Science Foundation (IRI-90-00530

    Neural Dynamics of Motion Grouping: From Aperture Ambiguity to Object Speed and Direction

    Full text link
    A neural network model of visual motion perception and speed discrimination is developed to simulate data concerning the conditions under which components of moving stimuli cohere or not into a global direction of motion, as in barberpole and plaid patterns (both Type 1 and Type 2). The model also simulates how the perceived speed of lines moving in a prescribed direction depends upon their orientation, length, duration, and contrast. Motion direction and speed both emerge as part of an interactive motion grouping or segmentation process. The model proposes a solution to the global aperture problem by showing how information from feature tracking points, namely locations from which unambiguous motion directions can be computed, can propagate to ambiguous motion direction points, and capture the motion signals there. The model does this without computing intersections of constraints or parallel Fourier and non-Fourier pathways. Instead, the model uses orientationally-unselective cell responses to activate directionally-tuned transient cells. These transient cells, in turn, activate spatially short-range filters and competitive mechanisms over multiple spatial scales to generate speed-tuned and directionally-tuned cells. Spatially long-range filters and top-down feedback from grouping cells are then used to track motion of featural points and to select and propagate correct motion directions to ambiguous motion points. Top-down grouping can also prime the system to attend a particular motion direction. The model hereby links low-level automatic motion processing with attention-based motion processing. Homologs of model mechanisms have been used in models of other brain systems to simulate data about visual grouping, figure-ground separation, and speech perception. Earlier versions of the model have simulated data about short-range and long-range apparent motion, second-order motion, and the effects of parvocellular and magnocellular LGN lesions on motion perception.Office of Naval Research (N00014-920J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-91-J-0597); Air Force Office of Scientific Research (F4620-92-J-0225, F49620-92-J-0499); National Science Foundation (IRI-90-00530
    corecore