The behaviour of elastic structures undergoing large deformations is the
result of the competition between confining conditions, self-avoidance and
elasticity. This combination of multiple phenomena creates a geometrical
frustration that leads to complex fold patterns. By studying the case of a rod
confined isotropically into a disk, we show that the emergence of the
complexity is associated with a well defined underlying statistical measure
that determines the energy distribution of sub-elements,``branches'', of the
rod. This result suggests that branches act as the ``microscopic'' degrees of
freedom laying the foundations for a statistical mechanical theory of this
athermal and amorphous system