142 research outputs found

    Observability studies for spacecraft attitude determination based on temperature data

    Get PDF
    Die Schätzung und Steuerung der Fluglage ist elementar für jede Raumfahrzeugmission. Die erforderliche Genauigkeit hängt von der jeweiligen Mission und ihren Nutzlasten ab. Ein funktionierendes Lageregelungssystem ist jedoch immer unverzichtbar, um die Zielgenauigkeit und Stabilität der Nutzlasten zu gewährleisten, die für den Erfolg der Mission entscheidend sind. Daher ist es sinnvoll, redundante Methoden zur Schätzung und Regelung der aktuellen Fluglage einzusetzen. Diese Arbeit fokussiert sich primär auf die Lageschätzung. Hierbei wird untersucht ob und wie Temperaturmessungen für die Lagebestimmung genutzt werden können. Diese Untersuchung wird durchgeführt, indem die zugrundeliegenden mathematischen Beschreibungen der Fluglage sowie der Temperaturdynamik betrachtet werden. Auf deren Grundlage wird dann ein Beobachter zur Lageschätzung entwickelt, der sich hauptsächlich auf die Temperaturdaten von zwei verschiedenen Sensorkonfigurationen stützt. In der ersten Konfiguration wird nur ein einziger Temperatursensor verwendet, dessen Informationen mit Gyroskopmessungen fusioniert werden, um die Lage zu bestimmen. Dies wird durch eine Transformation in Normalform und eine neuartige Lagebeschreibung erreicht. Auftretende Mehrdeutigkeiten bei der Lagebestimmung sowie alternative Beobachterdesigns werden vorgestellt. Die Analyse zeigt, dass mit dem vorgeschlagenen Beobachter lokale Aussagen zur Lageschätzung getroffen werden können - vorausgesetzt, die verwendeten Modelle und Messungen sind ausreichend genau und es steht genügend Rechenleistung zur Verfügung. In der zweiten Konfiguration werden sechs Paare von Temperatursensoren betrachtet. Jedes Paar besteht aus zwei Sensoren mit unterschiedlichen physikalischen Eigenschaften und zeigt in Richtung einer anderen Raumfahrzeugachse. Diese Sensorsignale enthalten genügend Informationen, um die Fluglage zu rekonstruieren, ohne dass die Verwendung von Ableitungen höherer Ordnung erforderlich ist. Es wird ein Algorithmus vorgeschlagen, der die Position der Sonne und der Erde schätzt und diese zur Bestimmung der Lage verwendet. Die Beobachter für beide Konfigurationen verwenden eine Transformation in eine kanonische Form, um ihre Schätzungen zu erhalten. Die resultierenden Beobachter sind daher sowohl in den transformierten als auch in den ursprünglichen Koordinaten formuliert. Während diese Beobachter unter Annahmen die häufig in der Literatur verwendeten werden äquivalent sind, kann es, sobald diese Annahmen fallengelassen werden, zu einer Reihe interessanter Phänomene wie Mehrdeutigkeit der Lösungen und sogar Instabilität kommen. Diese Phänomene werden an unserem vorgestellten System veranschaulicht und es werden Methoden vorgeschlagen, um sie zu bewältigen. Die für die zweite Konfiguration entworfenen Beobachter werden auf die von der Raumsondenmission GRACE erhaltenen Daten angewandt. Dabei hat sich gezeigt, dass die vorgeschlagenen Modelle für die Temperaturschätzung mit einem R2-Wert zwischen 78,8 % und 99,9 % gut geeignet sind. Die vorgeschlagenen Algorithmen erlauben eine Genauigkeit mit einem mittleren Fehler über eine Umlaufbahn von weniger als fünf Grad und lassen sich nachweislich leicht durch zusätzliche Messungen ergänzen.Attitude estimation and control is fundamental for every spacecraft mission. Accuracy requirements are strongly dependant on mission level goals and the respective payloads and experiments. However, it is always essential for the mission success to have a functioning attitude control system to allow a high pointing accuracy and stability of the payloads. Therefore, it is useful to employ redundant means to estimate and control the current attitude. The estimation of the attitude is the main topic of this work in which the information contained in temperature measurements for attitude estimation is investigated. This investigation is carried out by providing the underlying mathematical descriptions of the attitude as well as temperature dynamics. Different observer designs are considered based on these models to estimate the attitude relying mostly on the temperature data obtained from two different sensor configurations. In the first configuration, only a single temperature sensor is employed and the information is fused with gyroscope measurements to determine the attitude. This is achieved based on a transformation into normal form and a novel attitude description. Arising ambiguities in the attitude estimation, as well as alternative observer designs are presented. The analysis shows that with the proposed observer, it is possible to estimate the attitude provided that the employed models and measurements are sufficiently accurate and that enough computational power is available. The second configuration considers six pairs of temperature sensors. Each pair consists of two sensors with different physical properties and every pair points into a different body axis. These sensor signals contain enough information to reconstruct the attitude without requiring the usage of higher-order derivatives. An algorithm is proposed that estimates the position of the Sun and Earth and uses these to estimate the attitude. The observers for both configurations use a transformation of the system dynamics into canonical form to obtain a formulation of the problem that allows for estimation. The resulting observers are therefore formulated in transformed and original coordinates. While these observers are equivalent under assumptions widely used in literature, the moment these assumptions are dropped, a number of interesting phenomena such as ambiguity of the solutions and even instability can occur. These phenomena are illustrated by the system of interest and methods are proposed to deal with them. The designed observers for the second configuration are applied to the data obtained from the spacecraft mission GRACE. The results indicate that the proposed models are well suited for the temperature estimation with a R2 value between 78.8% and 99.9%. The proposed algorithms admit an accuracy with a mean error over an orbit of less than five degrees and are shown to be easily augmented with additional measurements

    Gyrubot: nonanthropomorphic stabilization for a biped

    Get PDF
    International audienceDemands on leg degrees of freedom and control precision for bipedal robotics are steadily increasing, especially for the tasks involving walking on a rough terrain. In this paper we present an alternative, as well as a working proof-of-concept. Meet gyrubot: a 5-link almost planar bipedal robot with a torso complemented by a nonanthropomorphic stabilization system, capable of blindly walking through uneven areas. Despite being almost planar, the robot does not need any support in the frontal plane! This paper describes the mechanical design and the architecture of the controllers. We also provide the experimental evidence of the ability of gyrubot to navigate across non-flat terrains

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding

    New Jersey Institute of Technology Catalog of Graduate Programs 1975-1976 Academic Year

    Get PDF
    https://digitalcommons.njit.edu/coursecatalogs/1020/thumbnail.jp

    Vision-based control of multi-agent systems

    Get PDF
    Scope and Methodology of Study: Creating systems with multiple autonomous vehicles places severe demands on the design of decision-making supervisors, cooperative control schemes, and communication strategies. In last years, several approaches have been developed in the literature. Most of them solve the vehicle coordination problem assuming some kind of communications between team members. However, communications make the group sensitive to failure and restrict the applicability of the controllers to teams of friendly robots. This dissertation deals with the problem of designing decentralized controllers that use just local sensor information to achieve some group goals.Findings and Conclusions: This dissertation presents a decentralized architecture for vision-based stabilization of unmanned vehicles moving in formation. The architecture consists of two main components: (i) a vision system, and (ii) vision-based control algorithms. The vision system is capable of recognizing and localizing robots. It is a model-based scheme composed of three main components: image acquisition and processing, robot identification, and pose estimation.Using vision information, we address the problem of stabilizing groups of mobile robots in leader- or two leader-follower formations. The strategies use relative pose between a robot and its designated leader or leaders to achieve formation objectives. Several leader-follower formation control algorithms, which ensure asymptotic coordinated motion, are described and compared. Lyapunov's stability theory-based analysis and numerical simulations in a realistic tridimensional environment show the stability properties of the control approaches

    Newark College of Engineering Graduate Programs 1974-75 Academic Year

    Get PDF
    https://digitalcommons.njit.edu/coursecatalogs/1021/thumbnail.jp
    • …
    corecore