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Gyrubot: nonanthropomorphic stabilization for a biped

Nikita Mikhalkov1, Alexey Prutskiy2, Semyon Sechenev1, Dmitry Kazakov1,
Alexey Simulin1, Dmitry Sokolov3,4, Igor Ryadchikov2

Abstract— Demands on leg degrees of freedom and control
precision for bipedal robotics are steadily increasing, especially
for the tasks involving walking on a rough terrain. In this paper
we present an alternative, as well as a working proof-of-concept.
Meet gyrubot: a 5-link almost planar bipedal robot with a torso
complemented by a nonanthropomorphic stabilization system,
capable of blindly walking through uneven areas. Despite being
almost planar, the robot does not need any support in the frontal
plane! This paper describes the mechanical design and the
architecture of the controllers. We also provide the experimental
evidence of the ability of gyrubot to navigate across non-flat
terrains.

I. INTRODUCTION

Gyrubot is a bipedal robot: wheels are perfect for a paved
road, but if you want a robot to cross a uneven terrain, legs
are really the best option. While dynamic bipedal stabiliza-
tion remains a challenging topic and a relevant benchmark
for control design and a multitude of technological processes,
a fulgurant progress in this area does not cease to amaze
the public. Robots like Atlas [1], Cassie [2], Digit [3] have
almost become commercially available and video clips of
their capabilities attract hundreds of millions of viewers.
They are able to perform somersaults [4] and ride hovershoes
[5]. Amazing grace and agility of these robots, up until
now available only for humans and animals, rely on the
outstanding mechanical design, finest motor control and real-
time processing of accurate sensor data.

Unfortunately, legs are difficult to control. Recall that legs
have multiple articulations chained together; each one comes
with its own mechanical play, the inaccuracies are cumula-
tive. This can rapidly result in a system that is difficult to
control, or even unusable. The problem becomes more acute
if the robot manufacturing costs are to be reduced. Lower
cost generally means more weight, less torque and a great
deal of accidental backlash in the mechanical transmission.
Here is the immutable truth: the less you pay for the robot
parts, the more challenging the control task becomes.

There is, however, a way to enhance the robot’s sta-
bility even in a presence of hard-to-model factors like
backlashes, frictions and mechanical deformations. We can
design auxiliary devices capable to improve the stability
while performing complex tasks. There is a rich universe
for nonanthropomorphic stabilization helpers. Thus, Handle
[6] and Ascento [7] use wheels as a replacement for actuated
feet to provide more stability. In [8] augmentation of ERNIE
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parameter value
robot height, m 1.18
total mass, kg 39.70
femur length, m 0.25
femur mass, kg 1.59
tibia length, m 0.25
tibia mass, kg 0.75
torso mass, kg 14.90
flywheel mass, kg 2.01
flywheel axial
rotational inertia,
kgm2

0.01

CMG mass, kg 4.99
flywheel speed,
RPM

6000

Fig. 1: Current prototype of the gyrubot robot. It has two
2 DoF legs and two scissored pair control moment gyro-
scopes. The table to the right provides its main mechanical
parameters.

robot with a reaction wheel coupled with hybrid zero-
dynamics [9] has improved some of the walking parameters
of the robot. Another example is Anywalker [10], [11], a
robot that uses flywheels to provide increased stability of the
zero moment point controller. Our work is inspired by [12],
we propose to give robots an additional “support point”
without touching the rest of the mechanical system. We have
created an electromechanical auxiliary stabilization system
able to compensate for external disturbances and control
errors with aid of control moment gyroscopes (CMGs).

A CMG is an electromechanical device consisting of a
rapidly rotating flywheel, and actuated gimbals that alter the
plane of rotation of the flywheel. When the gimbal actuators
produce the control torque, CMG applies a torque in the
direction orthogonal to the control axes. The ratio resulting
torque / control torque is large enough to provide a wide
variety of applications for these devices. They are commonly
used for attitude steering of satellites [13] and underwater
vessels [14], [15] due to their relatively low power consump-
tion. Also, they have similar applications for motorcycle and
bicycle balancing [16], [17], exoskeletons [18] and wheel-
based robots [19].

There exist several variations of CMGs, but in this paper
we restrict ourselves to constant speed, single gimbal CMGs.
Constant speed means that the flywheel has a motor that
keeps its spinning at a constant velocity. Single gimbal
means that it has only one actuated gimbal. To create a
unidirectional torque, it is possible to assemble two single
gimbal CMGs in a scissored pair, where the actuators and
flywheels rotate in opposite directions. We refer to such a



device as to a scissored pair CMG, or SP-CMG.
In this paper we present gyrubot (refer to Fig. 1), a

biped with 2 DoF legs that is stabilized by two orthogonal
SP-CMGs. To challenge the stabilization system, the legs’
controller is completely ignorant of the inertial measurement
unit (IMU) readings. Moreover, the robot is built around
low-end ($2.5k) servo drives. Despite that, our prototype
successfully walks blindfolded even through (slightly) rough
terrains. To conclude the above, gyrubot is a bold little step
away from the mainstream developments in legged robotics.

Three main contributions of this work can be summarized
as follows:
• The original mechanical design of a 3D bipedal robot

based on the idea of robot augmentation with multiple
CMGs.

• A synthesis of a naive model-based control. This control
is surprisingly viable, even when the legs do not play
any part in the stabilization.

• A successful experimental validation of the idea on a
real robot.

The rest of the paper is organized as follows: first we
provide a brief description of the system (§ II). Then in § III
we design two control laws: one for the vertical stabilization
and the other one is for the steering of the robot. We
provide the experimental results in § IV, and we conclude
the presentation in § V.

II. SYSTEM DESCRIPTION

In this section we provide a brief description of the robot
shown in Fig. 1.

Legs: Our robot inherits a classical 2 DoF leg design
from RABBIT [20] and other underactuated robots that have
leg actuators located directly at the leg joints. We have
minimized the distance between the legs in order to improve
its “planarity” and decrease rotational force on the robot
(torque in the transverse/frontal planes) during the walking.
We have also chosen a passive pinpoint foot design. The leg
parts were cut from sheet aluminium and welded together.

A major difficulty in this project was a choice of motors
that combine such contradictory qualities as “lightweight”,
“high torque” and “low cost”. For the legs we have chosen
four powerful harmonic servo drives RDrive60 with gear
ratio 1:100. These motors are capable of providing both
high angular velocity (up to 5 rad/s) and a large peak torque
(54 Nm), which is an essential requirement for ensuring the
ability to move quickly while walking.

CMG: The most technically advanced part of our
robot is the CMGs. To ease maintenance, we have adopted
a modular design: we have four identical easy-to-remove
assemblies CMG + actuator. To improve rotational stability
at high speeds, the flywheels have been statically and dy-
namically balanced, and the center of mass of the flywheel-
motor system is located at the CMG drive axle. The main
flywheel design challenge is to maximize the axial moment
of inertia while minimizing the mass, keeping in mind
resistance to radial loads and manufacturing constraints. We
have performed a FEM analysis of the flywheel deformations

to ensure the operational safety at the maximum possible
speeds of flywheel rotation and CMG actuation. In addition
to that, the flywheel housing is designed in a way to ensure
the possibility of full revolution of each CMG without
mechanical damage to the structure (with the exception of
damage to the wires of the flywheel spinning system) in the
event of a failure of the robot software or drive controllers.

For CMG actuation, we have chosen four RDrive50 servo-
motors by Rozum Robotics for their peak torque of 22 Nm,
mass of about 600 g and an integrated controller. Four T-
Motor MN3110 brushless motors are capable to spin the
flywheels up to 12K revolutions-per-minute (RPM) speed.
To maintain constant RPM of the flywheels, we have built
a custom controller using popular multi-rotor ESC. To have
a precise control of the RPM, we have built custom 3 bit
magnetic encoders based on Hall sensors. Note that this
system is entirely separated from the stabilization system
which relies on a constant RPM assumption.

Electronics: During the prototyping and debugging
phase, we have used a Speedgoat real-time computer with
Simulink environment as the main computational node of
the system. The Speedgoat machine communicates with a
Nucleo STM32F767 board, the main robot’s controller. After
completion of the prototyping phase, the Speedgoat computer
was removed, and the robot became autonomous, receiving
only high-level orders (“start walking”, “stop”) from an
Android tablet.

All servo drives communicate with the Nucleo
STM32F767 board via two dedicated CAN channels.
To satisfy the bandwidth limitations, we have chosen a
200 Hz control loop frequency, which is atypically low
compared to other bipedal robots [7], [21], [22]. To estimate
the inclination of the robot, we have chosen an IMU
GyroLab GL203 that communicates with the main board
via a serial interface. For the autonomous mode, we use 2
Tattu LiPo 6S 10 Ah batteries with a total mass of 2.8 kg.

III. MODELLING AND CONTROL

Three independent control loops are used in the robot
(refer to Fig. 2 for an illustration):

1) legs’ servo drives operate in the open-loop manner with
respect to the environment; a pre-computed (model-
based) reference signal is repeatedly applied to the
servo drives as a feedforward input;

2) flywheels are spun by an autonomous constant-speed
controller;

3) finally, four control moment gyroscopes are controlled
by taking into account only readings from the IMU
and four corresponding encoders, completely ignoring
the actual configuration of the legs.

So, all the stabilization of gyrubot relies on the CMGs
only, the legs do not play any part in it at all.

A. Leg control

While the legs do not take any part in the stabilization of
the robot, it can be a good idea to minimize the disturbances



Fig. 2: Three independent control loops are used in the robot.
From top to bottom: (1) the flywheels spin at a constant
speed, (2) the CMG actuators react as a function of CMG
encoders and IMU readings, (3) legs move in constant pre-
computed patterns, completely ignoring the environment and
the IMU readings.

they bring in. The idea is to pre-compute periodic model-
based trajectories for the leg joints that will be repeteadly
applied to the legs as a feedforward input. To this end,
we build a model of a planar robot using the FROST
software [23], that allows us to formulate and solve a non-
linear constrained optimization problem. We have put torque
and velocity limitations, as well as we have asked for an
asymptotically stable trajectory for the robot’s torso. The
result of the optimization is a set of 4 fifth-order Bézier
curves that represent one step of the robot, defining the
trajectories for all 4 leg joints.

Note that it is a deliberate choice to ignore the presence
of IMU and to control the legs in an open-loop manner w.r.t.
the environment. Of course, it would make sense to apply
more robust locomotion control methods like the HZD-based
control [9], however we have decided to challenge the CMG
stabilization system and to implement a very basic control
law for the legs. In practice, we use the velocity tracking
mode for all leg joints with a PID control loop.

B. Keep it upright
To stabilize itself, the robot uses two scissored pairs of

control moment gyroscopes. The idea behind a single-gimbal
scissored pair is to spin the flywheels in opposite directions;
then, under symmetric control of the gimbals, there is no
parasitic torque on the robot’s body in the transverse plane.
Our scissored pairs are orthogonal and thus the problem
of vertical stabilization of the robot can be considered for
each axis separately. We therefore consider our robot as two
independent rigid inverted pendulums moving in the sagittal
and frontal planes, respectively (Fig. 3).

To formulate the control law, first we derive the equations
of motion for the system. For each pendulum we choose the
state vectors

q1 := [θ ,α1,α
′
1,γ 1,γ

′
1]
> q2 := [ϕ,α2,α

′
2,γ 2,γ

′
2]
>.

ϕ

γ1

α′
2α2

θ

γ2
γ ′
2

γ ′
1

α1 α′
1

Fig. 3: We consider our robot as two independent inverted
pendulums: one moving in the frontal plane (left) and the
other moving in the sagittal plane (right). By θ and ϕ we
denote the pitch and roll angles, respectively. Two scissored
pair control moment gyroscopes allow to control these angles
without interfering with each other. N.B. The upper scissored
pair (α1,α

′
1) controls the pitch θ , whereas the lower pair

(α2,α
′
2) controls the roll ϕ .

Throughout this section we use the subscripts 1 and 2 to
denote the sagittal and the frontal pendulums, respectively.
Here θ is the pitch, ϕ is the roll, α1,α

′
1,α2,α

′
2 denote the

CMG gimbal angles and the γ 1,γ
′
1,γ 2,γ

′
2 denote the angle

of the flywheels w.r.t the CMG housing, refer to Fig. 3 for
an illustration.

Then we derive the equations of motion for the corre-
sponding Lagrangians L1 and L2 (refer to [24], [25] for
the full derivation): d

dt

(
∂Li
∂ q̇i

)
− ∂Li

∂qi
= Sτi, i = 1,2, where

S := diag(0,1,1,1,1) is the selection matrix that determines
on which generalized coordinates the actuation torques τi act.

Recall that the main idea of a scissored pair control
moment gyroscope is to have a symmetric (as symmetric
as possible) control of the gimbals in order to avoid para-
sitic torques in the transverse plane. So, after deriving the
equations of motion, we impose the constraints α1 = α ′1 and
α2 = α ′2, and remove α ′1 and α ′2 from the state vectors. In
addition to that, we assume that the flywheels spin with a
constant speed, so we impose non-holonomic constraints in a
form of γ 1(t) = γ ′1(t) = γ 2(t) = γ ′2(t) = Γ ·t and also remove
all flywheel angles from the state vectors.

In other words, we redefine the state vectors as: q1 :=
[θ ,α1]

> and q2 := [ϕ,α2]
>, what allows us to represent the

equations of motion in matrix form

Mi q̈i +(Ci +Cnc
i ) q̇i +Gi = [0,τi]

>, i = 1,2, (1)

where Mi is the mass matrix, Ci is the Coriolis matrix, Gi is
the vector of gravity terms, and Cnc

1 and Cnc
2 are the matrices

of non-conservative forces in the system that in our case are
formed by the non-holonomic constraints.

In our hardware the gimbals are controlled by the means
of servo drives that ensure velocity tracking. In this case,
the velocities α̇1 and α̇2 can be considered as the input
signals. We also need to account for the perturbations in the
equilibrium position due to the configurations of the legs,
external disturbances etc. As proposed in [24]–[26], we add
an integral action. To this end, we introduce two auxiliary



variables e1 and e2, defined as ėi := αi, i = 1,2. Then it is
convenient to define the new state vectors as follows:

x1 := [θ ,α1, θ̇ ,e1]
> x2 := [ϕ,α2, ϕ̇,e2]

>.

Now let us define two linearization matrices Alin
i as follows:

Alin
i :=

[
02×2 I2×2

−M−1
i

∂Gi
∂qi

(0,0) −M−1
i Cnc

i (0,0)

]
i = 1,2

Let us denote by Alin
i [1–3,1–3] the upper left 3×3 submatrix

and by Alin
i [1–3,4] first three components of the rightmost

column. Then we can write the final linearized equations of
motion as follows:

ẋi = Aixi +Biui, i = 1,2, (2)

Ai :=
[

Alin
i [1–3,1–3] 03×1

0 1 0 0

]
and Bi :=

[
Alin

i [1–3,4]
0

]
.

To stabilize the pendulums, two linear-quadratic regulators
are designed:

ui :=−Kixi, i = 1,2, (3)

where Ki is the gain vector minimizing the cost function∫
∞

0 (x>i (t)Qixi(t)+Riu2
i (t))dt, where the matrices Qi > 0 and

the scalars Ri > 0 are the design parameters.

C. Steering

As we will see shortly in the experimental section § IV-A,
the control law (3) allows for a quite robust stabilization of
the biped w.r.t the vertical. The yaw (transverse plane) angle,
however, is not stabilized and the robot gradually “drifts” off
the original direction. In this section we present our ongoing
work with early results that allow us to alleviate this issue.

As before, we disregard all movements of the legs. The
idea is to leave the control law (3) as is for the frontal plane
control u2, and to redefine the control for the sagittal plane
pendulum, by incorporating the yaw control. Here we present
an asymmetric SP-CMG control, therefore, our stabilization
system will have three control signals in total.

To synthezise the control law, the general procedure is
the same we have presented in § III-B. There are, however,
few adjustments. First of all, let us denote by ψ the angle
of the robot in the transverse plane. Next we will perform
the following change of variables: β := (α1 +α ′1)/2 , β ′ :=
(α1−α ′1)/2. We define the initial state vector of the system
as q := [ψ, θ , β , β ′,γ 1,γ

′
1]
>, compute the corresponding

Lagrangian L (refer to [25] for the derivation). Then, we
can calculate the Lagrange equations d

dt

(
∂L
∂ q̇

)
− ∂L

∂q = Sτ,

where S := diag(0,0,1,1,1,1) is the corresponding selection
matrix. As before, we impose the non-holonomic constraint
γ1(t) = γ ′1(t) = Γ · t and remove γ1 and γ ′1 from the state
vector. It allows us to write the equations of motion in a
matrix form:

M q̈+(C+Cnc) q̇+G = [0,0,τ,τ ′]>, (4)

where q := [ψ, θ , β , β ′]>, M is the mass matrix, C is the
Coriolis matrix, Cnc is the matrix of non-conservative forces,
and G is the vector of gravity terms.

One of the control goals of the Eq. 3 is to keep the CMG
gimbals parallel to the ground; it is, however a singular point
for the transverse plane control. We therefore shift the goal
to some angle δ ; in practice we use δ = π/6.

Then we define a new linearization matrix Alin as follows:

Alin :=
[

04×4 I4×4
−M−1 ∂G

∂q (0,0,δ ,0) −M−1Cnc(0,0,δ ,0)

]
To build the control law, as before, we introduce an

integral action ė := β and define the state vector as follows:

x := [ψ,θ ,β ,β ′, ψ̇, θ̇ ,e]>.

The linearized dynamics obeys the following law:

ẋ = Ax+B
[

1/2 1/2
1/2 −1/2

][
v1
v2

]
,

where the matrices A and B are assembled from the cor-
responding submatrices of Alin, expanded with an integral
action, like it is done in § III-B:

A :=
[

Alin[1–6,1–6] 06×1
0 0 1 0 0 0 0

]
, B :=

[
Alin[1–6,7–8]

0 0

]
.

Note that the control signals v1 and v2 correspond to the real
velocities of the servo drives, and a change of basis is needed
before they are fed up to the system.

Let us denote by ψ̄ the target for the yaw angle that comes
from the remote control panel, then the final control law can
be expressed as follows:[

v1
v2

]
:=
[

1 1
1 −1

]
× (−K)×

(
x− [ψ̄,0,δ ,0,0,0,0]>

)
, (5)

where K is a 2×7 gain matrix computed w.r.t the correspond-
ing quadratic cost function. Once again, note the change of
basis matrix that connects the linear system with the real
gyrubot’s input signals.

IV. EXPERIMENTAL RESULTS

In this section we present two main experiments: the first
one implementing the vertical stabilization control law (3)
(§ IV-A) and the other one implementing the control law (5)
that allows for steering (§ IV-B). We conclude the section
with with our experience on stand-alone (as opposed to
external power) walking (§ IV-C).

A. Uneven terrain crossing

Here we present an experiment with gyrubot blindly
walking through a unknown terrain, refer to Fig. 4 for an
action sequence photo. For that purpose, we have built an
assembly of randomly laid plywood sheets.

In the beginning of the experiment the robot balances
while standing still on both legs. Then gyrubot starts march-
ing on the spot (for about 7 seconds) until a signal from
the remote control panel is received. Then the robot walks
forward for about 15 seconds, first on even ground, then
right through the obstacle course that the robot cannot see.
After that, having received a command from the remote
control panel, the robot marches on the spot (for about 5
seconds) and terminates by standing still. All the phases



TABLE I: Currents during the experiment

Peak total RMS
phase currrent, A

Average total input
current, A

Task Legs CMGs Legs CMGs
Balancing 2 2 0.01 0.01
Even floor 14 6 1.4 0.7
Obstacle crossing 16 8 1.5 0.8

of the experiment are visible through the plots of the leg
joint signals, refer to Fig. 5-a and Fig. 5-b. These plots
show clearly that the leg movements are (locally) periodic:
the legs move in constant patterns that do not adapt to the
environment.

The control goal of the stabilization controller is to keep
the robot vertical. Fig. 5-c and Fig. 5-d show the inclination
angles as well as the control signals for the control law (3).
The plots are color coded: the blue plot of the control signal
u1 corresponds to the blue plot of the pitch angle θ , and
the organge plot u2 corresponds to the orange control goal
ϕ . Note the correlation of these plots with periodic leg
movements; it is possible to see all the experiment phases
from the inclination signals, including the traversal of the
uneven ground.

During the experiment the active currents of the gyrubot’s
actuators varied a lot. The average power consumption of
gyrubot at a 1 km/h walking gait is about 500 Wt. We
performed few identical experiments and measured the peak
RMS phase currents as well as the average consumption at
different stages of the experiment (balancing while stand-
ing still, walking on even terrain, rough terrain crossing).
Table I summarizes the measurements. Note that the power
consumption of the flywheel motors is almost constant even
when the CMGs are heavily actuated.

B. Steering

The second experiment we demonstrate in this section
shows the capability of the robot to hold its heading while
walking, as well as the tracking of the input reference signal
coming from the remote control panel.

In the beginning of the experiment (refer to Fig. 6 and
Fig. 7), the robot starts in the vertical stabilization mode

Fig. 4: The robot is able to walk ”blindfolded” over small
obstacles; no any kind of vision/remote sensing is used. Refer
to Fig. 5 for a plot of the signals for this experiment.
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Fig. 5: Plot of the main signals from the experiment shown in
Fig. 4. First and second rows: hip and knee angles for both
legs. Note that these signals present two constant patterns
that do not adapt to the environment: marching on the spot
and a walking gait. Third row: two inclination angles, the
control goal is to drive them to zero. Bottom row: control
signals for both SP-CMGs.

that was described in the previous section. When the steering
mode is activated by the operator, the current yaw ψ reading
from the IMU is set as a reference for the steering controller.
Thus, robort walks forward while holding the direction in the
transverse plane.

After several seconds of the robot walking straight, the
operator starts to alter the robot’s target yaw ψ̄ and the
effect of the assymmetric control becomes clearly visible!
As shown in Fig. 7-c, control inputs v1 (the blue plot) and
v2 (the orange plot) almost coincide when the reference angle
of the robot does not change. However, when the operator
drives the robot to a new target, the steering controller forces
actuators to move individually, without, of course, forgetting
to keep the robot upright, compensating for the gait.

Note that the reference signal ψ̄ seen in Fig. 7-a is
piecewise constant, this is a direct consequence of the fact



Fig. 6: The steering experiment: with asymettric control of
the scissored pairs it is possible to track the yaw angle,
allowing for turns. The reference signal is set from a remote
control panel. Refer to Fig. 7 for a plot of the signals for
this experiment.

that the operator uses a GUI on the remote Android tablet
to set the reference.

All phases of the locomotion are presented in Fig. 6 and
corresponding plots of the IMU measurements for the entire
experiment are presented in Fig. 7-a and Fig. 7-b. We did
not plot the leg signals, because they are exactly the same
we have already presented in Fig. 5-a and Fig. 5-b. From
the yaw angle plot (Fig. 7-c) we can notice oscillations in
the transverse plane. We think that the reason for that are
the roll angle variations due to the imperfect orientation of
the SP-CMG w.r.t the contact point that causes undesirable
dynamics of the yaw angle.

C. Getting rid of the leash

During both above experiments the robot had a wire
connection and was powered with an external 48 V supply.
The principal reason for this wire connection was to record
a continuous data stream. Despite that, due to its relatively
low power consumption, gyrubot is meant to operate au-
tonomously, including outdoors (refer to Fig. 8), receiving
high-level control signals from the Android tablet connected
via a portable wireless access point. For this purpose two
6S 10 Ah LiPo batteries were added to the system as the
onboard power supplies. In these settings, the robot has an
operation time a little under 1 h.

Despite the fact that the batteries represent 10% of the
total weight of the robot, neither control gains nor leg pat-
terns were recomputed. The robustness of both controllers,
synthesized in §-III-B and §-III-C was quite sufficient to
execute all the tasks in the real-world operation environment:
gyrubot successfully balances, walks at a regular sidewalk,
tracks the trajectories prescribed by the operator, and even
climbs up ramps for disabled persons.

V. CONCLUSION

The paper introduces gyrubot, an underactuated robot
augmented with two SP-CMGs capable of blind walking
across rough terrain. It was a deliberate choice to challenge
the stabilization system with the very basic leg design: it is
virtually impossible for a biped robot with 2 DoF legs to
walk without external support. To make things even more
challenging, we chose to ignore completely IMU readings

0 5 10 15 20 25 30

0

1

2

(a) Yaw angle tracking

0 5 10 15 20 25 30

-0.04

-0.02

0

0.02

(b) Inclination of the robot

0 5 10 15 20 25 30

-2

0

2

(c) Asymmetric CMG control signals

0 5 10 15 20 25 30

-2

0

2

(d) Symmetric CMG control signal

Fig. 7: The steering experiment: plot of the main signals
from the experiment shown in Fig. 6. (a) the user-provided
yaw target ψ̄ along with the actual IMU reading of the yaw
angle ψ; (b) inclination angles of the robot; (c) the control
law (5); (d) the control law (3).

Fig. 8: gyrubot is meant to be autonomous, and is capable
of walking outdoors. Even loaded with heavy batteries, no
new control gains are needed!

for the legs control, they move in an open-loop manner w.r.t
the environment. Despite all that, the robot walks in a quite
robust manner. Obviously, these exaggerated settings are
made for the benchmarking purposes. Auxiliary stabilization
systems we propose to build are meant to be auxiliary: in
real applications legs must do most of the work on the
stabilization, and smaller CMGs would give an additional
(and not the only!) point of support, providing necessary
help in difficult situations.
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